Abstract

Moderate cylindrical cavity was used to regularize the laser-induced plasma for signal strength enhancement and precision improvement in laser-induced breakdown spectroscopy (LIBS). A polytetrafluoroethylene (PTFE) plate of 1.5 mm thickness with diameter of 3 mm was fabricated. It was placed closely on a sample surface and a laser pulse was shot through the center of the hole to the sample. Using coal as samples, it was verified that the configuration both enhanced the spectral line intensity and reduced shot-to-shot fluctuation, showing its great potential in improving the precision of LIBS analysis.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. D. Winefordner, I. B. Gornushkin, T. Correll, E. Gibb, B. W. Smith, and N. Omenetto, “Comparing several atomic spectrometric methods to the super stars: special emphasis on laser induced breakdown spectrometry, LIBS, a future super star,” J. Anal. At. Spectrom.19(9), 1061–1083 (2004).
    [CrossRef]
  2. R. E. Russo, X. Mao, H. Liu, J. Gonzalez, and S. S. Mao, “Laser ablation in analytical chemistry-a review,” Talanta57(3), 425–451 (2002).
    [CrossRef] [PubMed]
  3. V. I. Babushok, F. C. DeLucia, J. L. Gottfried, C. A. Munson, and A. W. Miziolek, “Double pulse laser ablation and plasma: Laser induced breakdown spectroscopy signal enhancement,” Spectrochim. Acta, B At. Spectrosc.61(9), 999–1014 (2006).
    [CrossRef]
  4. L. B. Guo, B. Y. Zhang, X. N. He, C. M. Li, Y. S. Zhou, T. Wu, J. B. Park, X. Y. Zeng, and Y. F. Lu, “Optimally enhanced optical emission in laser-induced breakdown spectroscopy by combining spatial confinement and dual-pulse irradiation,” Opt. Express20(2), 1436–1443 (2012).
    [CrossRef] [PubMed]
  5. D. K. Killinger, S. D. Allen, R. D. Waterbury, C. Stefano, and E. L. Dottery, “Enhancement of Nd:YAG LIBS emission of a remote target using a simultaneous CO2 laser pulse,” Opt. Express15(20), 12905–12915 (2007).
    [CrossRef] [PubMed]
  6. M. Weidman, M. Baudelet, S. Palanco, M. Sigman, P. J. Dagdigian, and M. Richardson, “Nd:YAG-CO2 double-pulse laser induced breakdown spectroscopy of organic films,” Opt. Express18(1), 259–266 (2010).
    [CrossRef] [PubMed]
  7. Q. L. Ma, V. Motto-Ros, W. Q. Lei, M. Boueri, X. S. Bai, L. J. Zheng, H. P. Zeng, and J. Yu, “Temporal and spatial dynamics of laser-induced aluminum plasma in argon background at atmospheric pressure: Interplay with the ambient gas,” Spectrochim. Acta, B At. Spectrosc.65(11), 896–907 (2010).
    [CrossRef]
  8. N. B. Zorov, A. A. Gorbatenko, T. A. Labutin, and A. M. Popov, “A review of normalization techniques in analytical atomic spectrometry with laser sampling: From single to multivariate correction,” Spectrochim. Acta, B At. Spectrosc.65(8), 642–657 (2010).
    [CrossRef]
  9. D. W. Hahn and N. Omenetto, “Laser-Induced Breakdown Spectroscopy (LIBS), Part II: Review of Instrumental and Methodological Approaches to Material Analysis and Applications to Different Fields,” Appl. Spectrosc.66(4), 347–419 (2012).
    [CrossRef] [PubMed]
  10. Z. Wang, L. Li, L. West, Z. Li, and W. Ni, “A spectrum standardization approach for laser-induced breakdown spectroscopy measurements,” Spectrochim. Acta, B At. Spectrosc.68, 58–64 (2012).
    [CrossRef]
  11. L. Li, Z. Wang, T. Yuan, Z. Hou, Z. Li, and W. Ni, “A simplified spectrum standardization method for laser-induced breakdown spectroscopy measurements,” J. Anal. At. Spectrom.26(11), 2274–2280 (2011).
    [CrossRef]
  12. R. Hedwig, “Confinement effect in enhancing shock wave plasma generation at low pressure by TEA CO2 laser bombardment on quartz sample,” Spectrochim. Acta, B At. Spectrosc.58(3), 531–542 (2003).
    [CrossRef]
  13. K. H. Kurniawan, M. Pardede, T. J. Lie, H. Niki, K. Fukumoto, T. Maruyama, K. Kagawa, and M. O. Tjia, “Crater effects on H and D emission from laser induced low-pressure helium plasma,” J. Appl. Phys.106(6), 063303–063306 (2009).
    [CrossRef]
  14. M. Corsi, G. Cristoforetti, M. Hidalgo, D. Iriarte, S. Legnaioli, V. Palleschi, A. Salvetti, and E. Tognoni, “Effect of laser-induced crater depth in laser-induced breakdown spectroscopy emission features,” Appl. Spectrosc.59(7), 853–860 (2005).
    [CrossRef] [PubMed]
  15. A. M. Popov, F. Colao, and R. Fantoni, “Enhancement of LIBS signal by spatially confining the laser-induced plasma,” J. Anal. At. Spectrom.24(5), 602–604 (2009).
    [CrossRef]
  16. L. B. Guo, W. Hu, B. Y. Zhang, X. N. He, C. M. Li, Y. S. Zhou, Z. X. Cai, X. Y. Zeng, and Y. F. Lu, “Enhancement of optical emission from laser-induced plasmas by combined spatial and magnetic confinement,” Opt. Express19(15), 14067–14075 (2011).
    [CrossRef] [PubMed]
  17. X. Zeng, X. Mao, S. S. Mao, S.-B. Wen, R. Greif, and R. E. Russo, “Laser-induced shockwave propagation from ablation in a cavity,” Appl. Phys. Lett.88(6), 061502–061503 (2006).
    [CrossRef]
  18. X. Zeng, X. Mao, S. S. Mao, J. H. Yoo, R. Greif, and R. E. Russo, “Laser-plasma interactions in fused silica cavities,” J. Appl. Phys.95(3), 816–822 (2004).
    [CrossRef]
  19. X. Zeng, S. S. Mao, C. Liu, X. Mao, R. Greif, and R. E. Russo, “Plasma diagnostics during laser ablation in a cavity,” Spectrochim. Acta, B At. Spectrosc.58(5), 867–877 (2003).
    [CrossRef]
  20. L. B. Guo, C. M. Li, W. Hu, Y. S. Zhou, B. Y. Zhang, Z. X. Cai, X. Y. Zeng, and Y. F. Lu, “Plasma confinement by hemispherical cavity in laser-induced breakdown spectroscopy,” Appl. Phys. Lett.98(13), 131501 (2011).
    [CrossRef]
  21. A. M. Popov, F. Colao, and R. Fantoni, “Spatial confinement of laser-induced plasma to enhance LIBS sensitivity for trace elements determination in soils,” J. Anal. At. Spectrom.25(6), 837–848 (2010).
    [CrossRef]
  22. X. K. Shen, J. Sun, H. Ling, and Y. F. Lu, “Spectroscopic study of laser-induced Al plasmas with cylindrical confinement,” J. Appl. Phys.102(9), 093301–093305 (2007).
    [CrossRef]
  23. P. Yeates and E. T. Kennedy, “Spectroscopic, imaging, and probe diagnostics of laser plasma plumes expanding between confining surfaces,” J. Appl. Phys.108(9), 093306–093312 (2010).
    [CrossRef]
  24. R. Mavrodineanu, ed., “Flame Spectroscopy” (John Wiley & Sons, New York, 1965).
  25. H. R. Griem, ed., “Plasma Spectroscopy” (McGraw-Hill Inc., New York, 1964).
  26. J. Feng, Z. Wang, Z. Li, and W. Ni, “Study to reduce laser-induced breakdown spectroscopy measurement uncertainty using plasma characteristic parameters,” Spectrochim. Acta, B At. Spectrosc.65(7), 549–556 (2010).
    [CrossRef]
  27. M. Dong, J. Lu, S. Yao, J. Li, J. Li, Z. Zhong, and W. Lu, “Application of LIBS for direct determination of volatile matter content in coal,” J. Anal. At. Spectrom.26(11), 2183–2188 (2011).
    [CrossRef]
  28. J. Feng, Z. Wang, L. West, Z. Li, and W. D. Ni, “A PLS model based on dominant factor for coal analysis using laser-induced breakdown spectroscopy,” Anal. Bioanal. Chem.400(10), 3261–3271 (2011).
    [CrossRef] [PubMed]
  29. C. Aragon and J. Aguilera, “Characterization of laser induced plasmas by optical emission spectroscopy: A review of experiments and methods,” Spectrochim. Acta, B At. Spectrosc.63(9), 893–916 (2008).
    [CrossRef]
  30. G. Cristoforetti, A. De Giacomo, M. Dell'Aglio, S. Legnaioli, E. Tognoni, V. Palleschi, and N. Omenetto, “Local Thermodynamic Equilibrium in Laser-Induced Breakdown Spectroscopy: Beyond the McWhirter criterion,” Spectrochim. Acta, B At. Spectrosc.65(1), 86–95 (2010).
    [CrossRef]

2012 (3)

2011 (5)

L. Li, Z. Wang, T. Yuan, Z. Hou, Z. Li, and W. Ni, “A simplified spectrum standardization method for laser-induced breakdown spectroscopy measurements,” J. Anal. At. Spectrom.26(11), 2274–2280 (2011).
[CrossRef]

L. B. Guo, W. Hu, B. Y. Zhang, X. N. He, C. M. Li, Y. S. Zhou, Z. X. Cai, X. Y. Zeng, and Y. F. Lu, “Enhancement of optical emission from laser-induced plasmas by combined spatial and magnetic confinement,” Opt. Express19(15), 14067–14075 (2011).
[CrossRef] [PubMed]

L. B. Guo, C. M. Li, W. Hu, Y. S. Zhou, B. Y. Zhang, Z. X. Cai, X. Y. Zeng, and Y. F. Lu, “Plasma confinement by hemispherical cavity in laser-induced breakdown spectroscopy,” Appl. Phys. Lett.98(13), 131501 (2011).
[CrossRef]

M. Dong, J. Lu, S. Yao, J. Li, J. Li, Z. Zhong, and W. Lu, “Application of LIBS for direct determination of volatile matter content in coal,” J. Anal. At. Spectrom.26(11), 2183–2188 (2011).
[CrossRef]

J. Feng, Z. Wang, L. West, Z. Li, and W. D. Ni, “A PLS model based on dominant factor for coal analysis using laser-induced breakdown spectroscopy,” Anal. Bioanal. Chem.400(10), 3261–3271 (2011).
[CrossRef] [PubMed]

2010 (7)

P. Yeates and E. T. Kennedy, “Spectroscopic, imaging, and probe diagnostics of laser plasma plumes expanding between confining surfaces,” J. Appl. Phys.108(9), 093306–093312 (2010).
[CrossRef]

J. Feng, Z. Wang, Z. Li, and W. Ni, “Study to reduce laser-induced breakdown spectroscopy measurement uncertainty using plasma characteristic parameters,” Spectrochim. Acta, B At. Spectrosc.65(7), 549–556 (2010).
[CrossRef]

A. M. Popov, F. Colao, and R. Fantoni, “Spatial confinement of laser-induced plasma to enhance LIBS sensitivity for trace elements determination in soils,” J. Anal. At. Spectrom.25(6), 837–848 (2010).
[CrossRef]

G. Cristoforetti, A. De Giacomo, M. Dell'Aglio, S. Legnaioli, E. Tognoni, V. Palleschi, and N. Omenetto, “Local Thermodynamic Equilibrium in Laser-Induced Breakdown Spectroscopy: Beyond the McWhirter criterion,” Spectrochim. Acta, B At. Spectrosc.65(1), 86–95 (2010).
[CrossRef]

M. Weidman, M. Baudelet, S. Palanco, M. Sigman, P. J. Dagdigian, and M. Richardson, “Nd:YAG-CO2 double-pulse laser induced breakdown spectroscopy of organic films,” Opt. Express18(1), 259–266 (2010).
[CrossRef] [PubMed]

Q. L. Ma, V. Motto-Ros, W. Q. Lei, M. Boueri, X. S. Bai, L. J. Zheng, H. P. Zeng, and J. Yu, “Temporal and spatial dynamics of laser-induced aluminum plasma in argon background at atmospheric pressure: Interplay with the ambient gas,” Spectrochim. Acta, B At. Spectrosc.65(11), 896–907 (2010).
[CrossRef]

N. B. Zorov, A. A. Gorbatenko, T. A. Labutin, and A. M. Popov, “A review of normalization techniques in analytical atomic spectrometry with laser sampling: From single to multivariate correction,” Spectrochim. Acta, B At. Spectrosc.65(8), 642–657 (2010).
[CrossRef]

2009 (2)

K. H. Kurniawan, M. Pardede, T. J. Lie, H. Niki, K. Fukumoto, T. Maruyama, K. Kagawa, and M. O. Tjia, “Crater effects on H and D emission from laser induced low-pressure helium plasma,” J. Appl. Phys.106(6), 063303–063306 (2009).
[CrossRef]

A. M. Popov, F. Colao, and R. Fantoni, “Enhancement of LIBS signal by spatially confining the laser-induced plasma,” J. Anal. At. Spectrom.24(5), 602–604 (2009).
[CrossRef]

2008 (1)

C. Aragon and J. Aguilera, “Characterization of laser induced plasmas by optical emission spectroscopy: A review of experiments and methods,” Spectrochim. Acta, B At. Spectrosc.63(9), 893–916 (2008).
[CrossRef]

2007 (2)

X. K. Shen, J. Sun, H. Ling, and Y. F. Lu, “Spectroscopic study of laser-induced Al plasmas with cylindrical confinement,” J. Appl. Phys.102(9), 093301–093305 (2007).
[CrossRef]

D. K. Killinger, S. D. Allen, R. D. Waterbury, C. Stefano, and E. L. Dottery, “Enhancement of Nd:YAG LIBS emission of a remote target using a simultaneous CO2 laser pulse,” Opt. Express15(20), 12905–12915 (2007).
[CrossRef] [PubMed]

2006 (2)

X. Zeng, X. Mao, S. S. Mao, S.-B. Wen, R. Greif, and R. E. Russo, “Laser-induced shockwave propagation from ablation in a cavity,” Appl. Phys. Lett.88(6), 061502–061503 (2006).
[CrossRef]

V. I. Babushok, F. C. DeLucia, J. L. Gottfried, C. A. Munson, and A. W. Miziolek, “Double pulse laser ablation and plasma: Laser induced breakdown spectroscopy signal enhancement,” Spectrochim. Acta, B At. Spectrosc.61(9), 999–1014 (2006).
[CrossRef]

2005 (1)

2004 (2)

X. Zeng, X. Mao, S. S. Mao, J. H. Yoo, R. Greif, and R. E. Russo, “Laser-plasma interactions in fused silica cavities,” J. Appl. Phys.95(3), 816–822 (2004).
[CrossRef]

J. D. Winefordner, I. B. Gornushkin, T. Correll, E. Gibb, B. W. Smith, and N. Omenetto, “Comparing several atomic spectrometric methods to the super stars: special emphasis on laser induced breakdown spectrometry, LIBS, a future super star,” J. Anal. At. Spectrom.19(9), 1061–1083 (2004).
[CrossRef]

2003 (2)

R. Hedwig, “Confinement effect in enhancing shock wave plasma generation at low pressure by TEA CO2 laser bombardment on quartz sample,” Spectrochim. Acta, B At. Spectrosc.58(3), 531–542 (2003).
[CrossRef]

X. Zeng, S. S. Mao, C. Liu, X. Mao, R. Greif, and R. E. Russo, “Plasma diagnostics during laser ablation in a cavity,” Spectrochim. Acta, B At. Spectrosc.58(5), 867–877 (2003).
[CrossRef]

2002 (1)

R. E. Russo, X. Mao, H. Liu, J. Gonzalez, and S. S. Mao, “Laser ablation in analytical chemistry-a review,” Talanta57(3), 425–451 (2002).
[CrossRef] [PubMed]

Aguilera, J.

C. Aragon and J. Aguilera, “Characterization of laser induced plasmas by optical emission spectroscopy: A review of experiments and methods,” Spectrochim. Acta, B At. Spectrosc.63(9), 893–916 (2008).
[CrossRef]

Allen, S. D.

Aragon, C.

C. Aragon and J. Aguilera, “Characterization of laser induced plasmas by optical emission spectroscopy: A review of experiments and methods,” Spectrochim. Acta, B At. Spectrosc.63(9), 893–916 (2008).
[CrossRef]

Babushok, V. I.

V. I. Babushok, F. C. DeLucia, J. L. Gottfried, C. A. Munson, and A. W. Miziolek, “Double pulse laser ablation and plasma: Laser induced breakdown spectroscopy signal enhancement,” Spectrochim. Acta, B At. Spectrosc.61(9), 999–1014 (2006).
[CrossRef]

Bai, X. S.

Q. L. Ma, V. Motto-Ros, W. Q. Lei, M. Boueri, X. S. Bai, L. J. Zheng, H. P. Zeng, and J. Yu, “Temporal and spatial dynamics of laser-induced aluminum plasma in argon background at atmospheric pressure: Interplay with the ambient gas,” Spectrochim. Acta, B At. Spectrosc.65(11), 896–907 (2010).
[CrossRef]

Baudelet, M.

Boueri, M.

Q. L. Ma, V. Motto-Ros, W. Q. Lei, M. Boueri, X. S. Bai, L. J. Zheng, H. P. Zeng, and J. Yu, “Temporal and spatial dynamics of laser-induced aluminum plasma in argon background at atmospheric pressure: Interplay with the ambient gas,” Spectrochim. Acta, B At. Spectrosc.65(11), 896–907 (2010).
[CrossRef]

Cai, Z. X.

L. B. Guo, C. M. Li, W. Hu, Y. S. Zhou, B. Y. Zhang, Z. X. Cai, X. Y. Zeng, and Y. F. Lu, “Plasma confinement by hemispherical cavity in laser-induced breakdown spectroscopy,” Appl. Phys. Lett.98(13), 131501 (2011).
[CrossRef]

L. B. Guo, W. Hu, B. Y. Zhang, X. N. He, C. M. Li, Y. S. Zhou, Z. X. Cai, X. Y. Zeng, and Y. F. Lu, “Enhancement of optical emission from laser-induced plasmas by combined spatial and magnetic confinement,” Opt. Express19(15), 14067–14075 (2011).
[CrossRef] [PubMed]

Colao, F.

A. M. Popov, F. Colao, and R. Fantoni, “Spatial confinement of laser-induced plasma to enhance LIBS sensitivity for trace elements determination in soils,” J. Anal. At. Spectrom.25(6), 837–848 (2010).
[CrossRef]

A. M. Popov, F. Colao, and R. Fantoni, “Enhancement of LIBS signal by spatially confining the laser-induced plasma,” J. Anal. At. Spectrom.24(5), 602–604 (2009).
[CrossRef]

Correll, T.

J. D. Winefordner, I. B. Gornushkin, T. Correll, E. Gibb, B. W. Smith, and N. Omenetto, “Comparing several atomic spectrometric methods to the super stars: special emphasis on laser induced breakdown spectrometry, LIBS, a future super star,” J. Anal. At. Spectrom.19(9), 1061–1083 (2004).
[CrossRef]

Corsi, M.

Cristoforetti, G.

G. Cristoforetti, A. De Giacomo, M. Dell'Aglio, S. Legnaioli, E. Tognoni, V. Palleschi, and N. Omenetto, “Local Thermodynamic Equilibrium in Laser-Induced Breakdown Spectroscopy: Beyond the McWhirter criterion,” Spectrochim. Acta, B At. Spectrosc.65(1), 86–95 (2010).
[CrossRef]

M. Corsi, G. Cristoforetti, M. Hidalgo, D. Iriarte, S. Legnaioli, V. Palleschi, A. Salvetti, and E. Tognoni, “Effect of laser-induced crater depth in laser-induced breakdown spectroscopy emission features,” Appl. Spectrosc.59(7), 853–860 (2005).
[CrossRef] [PubMed]

Dagdigian, P. J.

De Giacomo, A.

G. Cristoforetti, A. De Giacomo, M. Dell'Aglio, S. Legnaioli, E. Tognoni, V. Palleschi, and N. Omenetto, “Local Thermodynamic Equilibrium in Laser-Induced Breakdown Spectroscopy: Beyond the McWhirter criterion,” Spectrochim. Acta, B At. Spectrosc.65(1), 86–95 (2010).
[CrossRef]

Dell'Aglio, M.

G. Cristoforetti, A. De Giacomo, M. Dell'Aglio, S. Legnaioli, E. Tognoni, V. Palleschi, and N. Omenetto, “Local Thermodynamic Equilibrium in Laser-Induced Breakdown Spectroscopy: Beyond the McWhirter criterion,” Spectrochim. Acta, B At. Spectrosc.65(1), 86–95 (2010).
[CrossRef]

DeLucia, F. C.

V. I. Babushok, F. C. DeLucia, J. L. Gottfried, C. A. Munson, and A. W. Miziolek, “Double pulse laser ablation and plasma: Laser induced breakdown spectroscopy signal enhancement,” Spectrochim. Acta, B At. Spectrosc.61(9), 999–1014 (2006).
[CrossRef]

Dong, M.

M. Dong, J. Lu, S. Yao, J. Li, J. Li, Z. Zhong, and W. Lu, “Application of LIBS for direct determination of volatile matter content in coal,” J. Anal. At. Spectrom.26(11), 2183–2188 (2011).
[CrossRef]

Dottery, E. L.

Fantoni, R.

A. M. Popov, F. Colao, and R. Fantoni, “Spatial confinement of laser-induced plasma to enhance LIBS sensitivity for trace elements determination in soils,” J. Anal. At. Spectrom.25(6), 837–848 (2010).
[CrossRef]

A. M. Popov, F. Colao, and R. Fantoni, “Enhancement of LIBS signal by spatially confining the laser-induced plasma,” J. Anal. At. Spectrom.24(5), 602–604 (2009).
[CrossRef]

Feng, J.

J. Feng, Z. Wang, L. West, Z. Li, and W. D. Ni, “A PLS model based on dominant factor for coal analysis using laser-induced breakdown spectroscopy,” Anal. Bioanal. Chem.400(10), 3261–3271 (2011).
[CrossRef] [PubMed]

J. Feng, Z. Wang, Z. Li, and W. Ni, “Study to reduce laser-induced breakdown spectroscopy measurement uncertainty using plasma characteristic parameters,” Spectrochim. Acta, B At. Spectrosc.65(7), 549–556 (2010).
[CrossRef]

Fukumoto, K.

K. H. Kurniawan, M. Pardede, T. J. Lie, H. Niki, K. Fukumoto, T. Maruyama, K. Kagawa, and M. O. Tjia, “Crater effects on H and D emission from laser induced low-pressure helium plasma,” J. Appl. Phys.106(6), 063303–063306 (2009).
[CrossRef]

Gibb, E.

J. D. Winefordner, I. B. Gornushkin, T. Correll, E. Gibb, B. W. Smith, and N. Omenetto, “Comparing several atomic spectrometric methods to the super stars: special emphasis on laser induced breakdown spectrometry, LIBS, a future super star,” J. Anal. At. Spectrom.19(9), 1061–1083 (2004).
[CrossRef]

Gonzalez, J.

R. E. Russo, X. Mao, H. Liu, J. Gonzalez, and S. S. Mao, “Laser ablation in analytical chemistry-a review,” Talanta57(3), 425–451 (2002).
[CrossRef] [PubMed]

Gorbatenko, A. A.

N. B. Zorov, A. A. Gorbatenko, T. A. Labutin, and A. M. Popov, “A review of normalization techniques in analytical atomic spectrometry with laser sampling: From single to multivariate correction,” Spectrochim. Acta, B At. Spectrosc.65(8), 642–657 (2010).
[CrossRef]

Gornushkin, I. B.

J. D. Winefordner, I. B. Gornushkin, T. Correll, E. Gibb, B. W. Smith, and N. Omenetto, “Comparing several atomic spectrometric methods to the super stars: special emphasis on laser induced breakdown spectrometry, LIBS, a future super star,” J. Anal. At. Spectrom.19(9), 1061–1083 (2004).
[CrossRef]

Gottfried, J. L.

V. I. Babushok, F. C. DeLucia, J. L. Gottfried, C. A. Munson, and A. W. Miziolek, “Double pulse laser ablation and plasma: Laser induced breakdown spectroscopy signal enhancement,” Spectrochim. Acta, B At. Spectrosc.61(9), 999–1014 (2006).
[CrossRef]

Greif, R.

X. Zeng, X. Mao, S. S. Mao, S.-B. Wen, R. Greif, and R. E. Russo, “Laser-induced shockwave propagation from ablation in a cavity,” Appl. Phys. Lett.88(6), 061502–061503 (2006).
[CrossRef]

X. Zeng, X. Mao, S. S. Mao, J. H. Yoo, R. Greif, and R. E. Russo, “Laser-plasma interactions in fused silica cavities,” J. Appl. Phys.95(3), 816–822 (2004).
[CrossRef]

X. Zeng, S. S. Mao, C. Liu, X. Mao, R. Greif, and R. E. Russo, “Plasma diagnostics during laser ablation in a cavity,” Spectrochim. Acta, B At. Spectrosc.58(5), 867–877 (2003).
[CrossRef]

Guo, L. B.

Hahn, D. W.

He, X. N.

Hedwig, R.

R. Hedwig, “Confinement effect in enhancing shock wave plasma generation at low pressure by TEA CO2 laser bombardment on quartz sample,” Spectrochim. Acta, B At. Spectrosc.58(3), 531–542 (2003).
[CrossRef]

Hidalgo, M.

Hou, Z.

L. Li, Z. Wang, T. Yuan, Z. Hou, Z. Li, and W. Ni, “A simplified spectrum standardization method for laser-induced breakdown spectroscopy measurements,” J. Anal. At. Spectrom.26(11), 2274–2280 (2011).
[CrossRef]

Hu, W.

L. B. Guo, W. Hu, B. Y. Zhang, X. N. He, C. M. Li, Y. S. Zhou, Z. X. Cai, X. Y. Zeng, and Y. F. Lu, “Enhancement of optical emission from laser-induced plasmas by combined spatial and magnetic confinement,” Opt. Express19(15), 14067–14075 (2011).
[CrossRef] [PubMed]

L. B. Guo, C. M. Li, W. Hu, Y. S. Zhou, B. Y. Zhang, Z. X. Cai, X. Y. Zeng, and Y. F. Lu, “Plasma confinement by hemispherical cavity in laser-induced breakdown spectroscopy,” Appl. Phys. Lett.98(13), 131501 (2011).
[CrossRef]

Iriarte, D.

Kagawa, K.

K. H. Kurniawan, M. Pardede, T. J. Lie, H. Niki, K. Fukumoto, T. Maruyama, K. Kagawa, and M. O. Tjia, “Crater effects on H and D emission from laser induced low-pressure helium plasma,” J. Appl. Phys.106(6), 063303–063306 (2009).
[CrossRef]

Kennedy, E. T.

P. Yeates and E. T. Kennedy, “Spectroscopic, imaging, and probe diagnostics of laser plasma plumes expanding between confining surfaces,” J. Appl. Phys.108(9), 093306–093312 (2010).
[CrossRef]

Killinger, D. K.

Kurniawan, K. H.

K. H. Kurniawan, M. Pardede, T. J. Lie, H. Niki, K. Fukumoto, T. Maruyama, K. Kagawa, and M. O. Tjia, “Crater effects on H and D emission from laser induced low-pressure helium plasma,” J. Appl. Phys.106(6), 063303–063306 (2009).
[CrossRef]

Labutin, T. A.

N. B. Zorov, A. A. Gorbatenko, T. A. Labutin, and A. M. Popov, “A review of normalization techniques in analytical atomic spectrometry with laser sampling: From single to multivariate correction,” Spectrochim. Acta, B At. Spectrosc.65(8), 642–657 (2010).
[CrossRef]

Legnaioli, S.

G. Cristoforetti, A. De Giacomo, M. Dell'Aglio, S. Legnaioli, E. Tognoni, V. Palleschi, and N. Omenetto, “Local Thermodynamic Equilibrium in Laser-Induced Breakdown Spectroscopy: Beyond the McWhirter criterion,” Spectrochim. Acta, B At. Spectrosc.65(1), 86–95 (2010).
[CrossRef]

M. Corsi, G. Cristoforetti, M. Hidalgo, D. Iriarte, S. Legnaioli, V. Palleschi, A. Salvetti, and E. Tognoni, “Effect of laser-induced crater depth in laser-induced breakdown spectroscopy emission features,” Appl. Spectrosc.59(7), 853–860 (2005).
[CrossRef] [PubMed]

Lei, W. Q.

Q. L. Ma, V. Motto-Ros, W. Q. Lei, M. Boueri, X. S. Bai, L. J. Zheng, H. P. Zeng, and J. Yu, “Temporal and spatial dynamics of laser-induced aluminum plasma in argon background at atmospheric pressure: Interplay with the ambient gas,” Spectrochim. Acta, B At. Spectrosc.65(11), 896–907 (2010).
[CrossRef]

Li, C. M.

Li, J.

M. Dong, J. Lu, S. Yao, J. Li, J. Li, Z. Zhong, and W. Lu, “Application of LIBS for direct determination of volatile matter content in coal,” J. Anal. At. Spectrom.26(11), 2183–2188 (2011).
[CrossRef]

M. Dong, J. Lu, S. Yao, J. Li, J. Li, Z. Zhong, and W. Lu, “Application of LIBS for direct determination of volatile matter content in coal,” J. Anal. At. Spectrom.26(11), 2183–2188 (2011).
[CrossRef]

Li, L.

Z. Wang, L. Li, L. West, Z. Li, and W. Ni, “A spectrum standardization approach for laser-induced breakdown spectroscopy measurements,” Spectrochim. Acta, B At. Spectrosc.68, 58–64 (2012).
[CrossRef]

L. Li, Z. Wang, T. Yuan, Z. Hou, Z. Li, and W. Ni, “A simplified spectrum standardization method for laser-induced breakdown spectroscopy measurements,” J. Anal. At. Spectrom.26(11), 2274–2280 (2011).
[CrossRef]

Li, Z.

Z. Wang, L. Li, L. West, Z. Li, and W. Ni, “A spectrum standardization approach for laser-induced breakdown spectroscopy measurements,” Spectrochim. Acta, B At. Spectrosc.68, 58–64 (2012).
[CrossRef]

L. Li, Z. Wang, T. Yuan, Z. Hou, Z. Li, and W. Ni, “A simplified spectrum standardization method for laser-induced breakdown spectroscopy measurements,” J. Anal. At. Spectrom.26(11), 2274–2280 (2011).
[CrossRef]

J. Feng, Z. Wang, L. West, Z. Li, and W. D. Ni, “A PLS model based on dominant factor for coal analysis using laser-induced breakdown spectroscopy,” Anal. Bioanal. Chem.400(10), 3261–3271 (2011).
[CrossRef] [PubMed]

J. Feng, Z. Wang, Z. Li, and W. Ni, “Study to reduce laser-induced breakdown spectroscopy measurement uncertainty using plasma characteristic parameters,” Spectrochim. Acta, B At. Spectrosc.65(7), 549–556 (2010).
[CrossRef]

Lie, T. J.

K. H. Kurniawan, M. Pardede, T. J. Lie, H. Niki, K. Fukumoto, T. Maruyama, K. Kagawa, and M. O. Tjia, “Crater effects on H and D emission from laser induced low-pressure helium plasma,” J. Appl. Phys.106(6), 063303–063306 (2009).
[CrossRef]

Ling, H.

X. K. Shen, J. Sun, H. Ling, and Y. F. Lu, “Spectroscopic study of laser-induced Al plasmas with cylindrical confinement,” J. Appl. Phys.102(9), 093301–093305 (2007).
[CrossRef]

Liu, C.

X. Zeng, S. S. Mao, C. Liu, X. Mao, R. Greif, and R. E. Russo, “Plasma diagnostics during laser ablation in a cavity,” Spectrochim. Acta, B At. Spectrosc.58(5), 867–877 (2003).
[CrossRef]

Liu, H.

R. E. Russo, X. Mao, H. Liu, J. Gonzalez, and S. S. Mao, “Laser ablation in analytical chemistry-a review,” Talanta57(3), 425–451 (2002).
[CrossRef] [PubMed]

Lu, J.

M. Dong, J. Lu, S. Yao, J. Li, J. Li, Z. Zhong, and W. Lu, “Application of LIBS for direct determination of volatile matter content in coal,” J. Anal. At. Spectrom.26(11), 2183–2188 (2011).
[CrossRef]

Lu, W.

M. Dong, J. Lu, S. Yao, J. Li, J. Li, Z. Zhong, and W. Lu, “Application of LIBS for direct determination of volatile matter content in coal,” J. Anal. At. Spectrom.26(11), 2183–2188 (2011).
[CrossRef]

Lu, Y. F.

Ma, Q. L.

Q. L. Ma, V. Motto-Ros, W. Q. Lei, M. Boueri, X. S. Bai, L. J. Zheng, H. P. Zeng, and J. Yu, “Temporal and spatial dynamics of laser-induced aluminum plasma in argon background at atmospheric pressure: Interplay with the ambient gas,” Spectrochim. Acta, B At. Spectrosc.65(11), 896–907 (2010).
[CrossRef]

Mao, S. S.

X. Zeng, X. Mao, S. S. Mao, S.-B. Wen, R. Greif, and R. E. Russo, “Laser-induced shockwave propagation from ablation in a cavity,” Appl. Phys. Lett.88(6), 061502–061503 (2006).
[CrossRef]

X. Zeng, X. Mao, S. S. Mao, J. H. Yoo, R. Greif, and R. E. Russo, “Laser-plasma interactions in fused silica cavities,” J. Appl. Phys.95(3), 816–822 (2004).
[CrossRef]

X. Zeng, S. S. Mao, C. Liu, X. Mao, R. Greif, and R. E. Russo, “Plasma diagnostics during laser ablation in a cavity,” Spectrochim. Acta, B At. Spectrosc.58(5), 867–877 (2003).
[CrossRef]

R. E. Russo, X. Mao, H. Liu, J. Gonzalez, and S. S. Mao, “Laser ablation in analytical chemistry-a review,” Talanta57(3), 425–451 (2002).
[CrossRef] [PubMed]

Mao, X.

X. Zeng, X. Mao, S. S. Mao, S.-B. Wen, R. Greif, and R. E. Russo, “Laser-induced shockwave propagation from ablation in a cavity,” Appl. Phys. Lett.88(6), 061502–061503 (2006).
[CrossRef]

X. Zeng, X. Mao, S. S. Mao, J. H. Yoo, R. Greif, and R. E. Russo, “Laser-plasma interactions in fused silica cavities,” J. Appl. Phys.95(3), 816–822 (2004).
[CrossRef]

X. Zeng, S. S. Mao, C. Liu, X. Mao, R. Greif, and R. E. Russo, “Plasma diagnostics during laser ablation in a cavity,” Spectrochim. Acta, B At. Spectrosc.58(5), 867–877 (2003).
[CrossRef]

R. E. Russo, X. Mao, H. Liu, J. Gonzalez, and S. S. Mao, “Laser ablation in analytical chemistry-a review,” Talanta57(3), 425–451 (2002).
[CrossRef] [PubMed]

Maruyama, T.

K. H. Kurniawan, M. Pardede, T. J. Lie, H. Niki, K. Fukumoto, T. Maruyama, K. Kagawa, and M. O. Tjia, “Crater effects on H and D emission from laser induced low-pressure helium plasma,” J. Appl. Phys.106(6), 063303–063306 (2009).
[CrossRef]

Miziolek, A. W.

V. I. Babushok, F. C. DeLucia, J. L. Gottfried, C. A. Munson, and A. W. Miziolek, “Double pulse laser ablation and plasma: Laser induced breakdown spectroscopy signal enhancement,” Spectrochim. Acta, B At. Spectrosc.61(9), 999–1014 (2006).
[CrossRef]

Motto-Ros, V.

Q. L. Ma, V. Motto-Ros, W. Q. Lei, M. Boueri, X. S. Bai, L. J. Zheng, H. P. Zeng, and J. Yu, “Temporal and spatial dynamics of laser-induced aluminum plasma in argon background at atmospheric pressure: Interplay with the ambient gas,” Spectrochim. Acta, B At. Spectrosc.65(11), 896–907 (2010).
[CrossRef]

Munson, C. A.

V. I. Babushok, F. C. DeLucia, J. L. Gottfried, C. A. Munson, and A. W. Miziolek, “Double pulse laser ablation and plasma: Laser induced breakdown spectroscopy signal enhancement,” Spectrochim. Acta, B At. Spectrosc.61(9), 999–1014 (2006).
[CrossRef]

Ni, W.

Z. Wang, L. Li, L. West, Z. Li, and W. Ni, “A spectrum standardization approach for laser-induced breakdown spectroscopy measurements,” Spectrochim. Acta, B At. Spectrosc.68, 58–64 (2012).
[CrossRef]

L. Li, Z. Wang, T. Yuan, Z. Hou, Z. Li, and W. Ni, “A simplified spectrum standardization method for laser-induced breakdown spectroscopy measurements,” J. Anal. At. Spectrom.26(11), 2274–2280 (2011).
[CrossRef]

J. Feng, Z. Wang, Z. Li, and W. Ni, “Study to reduce laser-induced breakdown spectroscopy measurement uncertainty using plasma characteristic parameters,” Spectrochim. Acta, B At. Spectrosc.65(7), 549–556 (2010).
[CrossRef]

Ni, W. D.

J. Feng, Z. Wang, L. West, Z. Li, and W. D. Ni, “A PLS model based on dominant factor for coal analysis using laser-induced breakdown spectroscopy,” Anal. Bioanal. Chem.400(10), 3261–3271 (2011).
[CrossRef] [PubMed]

Niki, H.

K. H. Kurniawan, M. Pardede, T. J. Lie, H. Niki, K. Fukumoto, T. Maruyama, K. Kagawa, and M. O. Tjia, “Crater effects on H and D emission from laser induced low-pressure helium plasma,” J. Appl. Phys.106(6), 063303–063306 (2009).
[CrossRef]

Omenetto, N.

D. W. Hahn and N. Omenetto, “Laser-Induced Breakdown Spectroscopy (LIBS), Part II: Review of Instrumental and Methodological Approaches to Material Analysis and Applications to Different Fields,” Appl. Spectrosc.66(4), 347–419 (2012).
[CrossRef] [PubMed]

G. Cristoforetti, A. De Giacomo, M. Dell'Aglio, S. Legnaioli, E. Tognoni, V. Palleschi, and N. Omenetto, “Local Thermodynamic Equilibrium in Laser-Induced Breakdown Spectroscopy: Beyond the McWhirter criterion,” Spectrochim. Acta, B At. Spectrosc.65(1), 86–95 (2010).
[CrossRef]

J. D. Winefordner, I. B. Gornushkin, T. Correll, E. Gibb, B. W. Smith, and N. Omenetto, “Comparing several atomic spectrometric methods to the super stars: special emphasis on laser induced breakdown spectrometry, LIBS, a future super star,” J. Anal. At. Spectrom.19(9), 1061–1083 (2004).
[CrossRef]

Palanco, S.

Palleschi, V.

G. Cristoforetti, A. De Giacomo, M. Dell'Aglio, S. Legnaioli, E. Tognoni, V. Palleschi, and N. Omenetto, “Local Thermodynamic Equilibrium in Laser-Induced Breakdown Spectroscopy: Beyond the McWhirter criterion,” Spectrochim. Acta, B At. Spectrosc.65(1), 86–95 (2010).
[CrossRef]

M. Corsi, G. Cristoforetti, M. Hidalgo, D. Iriarte, S. Legnaioli, V. Palleschi, A. Salvetti, and E. Tognoni, “Effect of laser-induced crater depth in laser-induced breakdown spectroscopy emission features,” Appl. Spectrosc.59(7), 853–860 (2005).
[CrossRef] [PubMed]

Pardede, M.

K. H. Kurniawan, M. Pardede, T. J. Lie, H. Niki, K. Fukumoto, T. Maruyama, K. Kagawa, and M. O. Tjia, “Crater effects on H and D emission from laser induced low-pressure helium plasma,” J. Appl. Phys.106(6), 063303–063306 (2009).
[CrossRef]

Park, J. B.

Popov, A. M.

N. B. Zorov, A. A. Gorbatenko, T. A. Labutin, and A. M. Popov, “A review of normalization techniques in analytical atomic spectrometry with laser sampling: From single to multivariate correction,” Spectrochim. Acta, B At. Spectrosc.65(8), 642–657 (2010).
[CrossRef]

A. M. Popov, F. Colao, and R. Fantoni, “Spatial confinement of laser-induced plasma to enhance LIBS sensitivity for trace elements determination in soils,” J. Anal. At. Spectrom.25(6), 837–848 (2010).
[CrossRef]

A. M. Popov, F. Colao, and R. Fantoni, “Enhancement of LIBS signal by spatially confining the laser-induced plasma,” J. Anal. At. Spectrom.24(5), 602–604 (2009).
[CrossRef]

Richardson, M.

Russo, R. E.

X. Zeng, X. Mao, S. S. Mao, S.-B. Wen, R. Greif, and R. E. Russo, “Laser-induced shockwave propagation from ablation in a cavity,” Appl. Phys. Lett.88(6), 061502–061503 (2006).
[CrossRef]

X. Zeng, X. Mao, S. S. Mao, J. H. Yoo, R. Greif, and R. E. Russo, “Laser-plasma interactions in fused silica cavities,” J. Appl. Phys.95(3), 816–822 (2004).
[CrossRef]

X. Zeng, S. S. Mao, C. Liu, X. Mao, R. Greif, and R. E. Russo, “Plasma diagnostics during laser ablation in a cavity,” Spectrochim. Acta, B At. Spectrosc.58(5), 867–877 (2003).
[CrossRef]

R. E. Russo, X. Mao, H. Liu, J. Gonzalez, and S. S. Mao, “Laser ablation in analytical chemistry-a review,” Talanta57(3), 425–451 (2002).
[CrossRef] [PubMed]

Salvetti, A.

Shen, X. K.

X. K. Shen, J. Sun, H. Ling, and Y. F. Lu, “Spectroscopic study of laser-induced Al plasmas with cylindrical confinement,” J. Appl. Phys.102(9), 093301–093305 (2007).
[CrossRef]

Sigman, M.

Smith, B. W.

J. D. Winefordner, I. B. Gornushkin, T. Correll, E. Gibb, B. W. Smith, and N. Omenetto, “Comparing several atomic spectrometric methods to the super stars: special emphasis on laser induced breakdown spectrometry, LIBS, a future super star,” J. Anal. At. Spectrom.19(9), 1061–1083 (2004).
[CrossRef]

Stefano, C.

Sun, J.

X. K. Shen, J. Sun, H. Ling, and Y. F. Lu, “Spectroscopic study of laser-induced Al plasmas with cylindrical confinement,” J. Appl. Phys.102(9), 093301–093305 (2007).
[CrossRef]

Tjia, M. O.

K. H. Kurniawan, M. Pardede, T. J. Lie, H. Niki, K. Fukumoto, T. Maruyama, K. Kagawa, and M. O. Tjia, “Crater effects on H and D emission from laser induced low-pressure helium plasma,” J. Appl. Phys.106(6), 063303–063306 (2009).
[CrossRef]

Tognoni, E.

G. Cristoforetti, A. De Giacomo, M. Dell'Aglio, S. Legnaioli, E. Tognoni, V. Palleschi, and N. Omenetto, “Local Thermodynamic Equilibrium in Laser-Induced Breakdown Spectroscopy: Beyond the McWhirter criterion,” Spectrochim. Acta, B At. Spectrosc.65(1), 86–95 (2010).
[CrossRef]

M. Corsi, G. Cristoforetti, M. Hidalgo, D. Iriarte, S. Legnaioli, V. Palleschi, A. Salvetti, and E. Tognoni, “Effect of laser-induced crater depth in laser-induced breakdown spectroscopy emission features,” Appl. Spectrosc.59(7), 853–860 (2005).
[CrossRef] [PubMed]

Wang, Z.

Z. Wang, L. Li, L. West, Z. Li, and W. Ni, “A spectrum standardization approach for laser-induced breakdown spectroscopy measurements,” Spectrochim. Acta, B At. Spectrosc.68, 58–64 (2012).
[CrossRef]

L. Li, Z. Wang, T. Yuan, Z. Hou, Z. Li, and W. Ni, “A simplified spectrum standardization method for laser-induced breakdown spectroscopy measurements,” J. Anal. At. Spectrom.26(11), 2274–2280 (2011).
[CrossRef]

J. Feng, Z. Wang, L. West, Z. Li, and W. D. Ni, “A PLS model based on dominant factor for coal analysis using laser-induced breakdown spectroscopy,” Anal. Bioanal. Chem.400(10), 3261–3271 (2011).
[CrossRef] [PubMed]

J. Feng, Z. Wang, Z. Li, and W. Ni, “Study to reduce laser-induced breakdown spectroscopy measurement uncertainty using plasma characteristic parameters,” Spectrochim. Acta, B At. Spectrosc.65(7), 549–556 (2010).
[CrossRef]

Waterbury, R. D.

Weidman, M.

Wen, S.-B.

X. Zeng, X. Mao, S. S. Mao, S.-B. Wen, R. Greif, and R. E. Russo, “Laser-induced shockwave propagation from ablation in a cavity,” Appl. Phys. Lett.88(6), 061502–061503 (2006).
[CrossRef]

West, L.

Z. Wang, L. Li, L. West, Z. Li, and W. Ni, “A spectrum standardization approach for laser-induced breakdown spectroscopy measurements,” Spectrochim. Acta, B At. Spectrosc.68, 58–64 (2012).
[CrossRef]

J. Feng, Z. Wang, L. West, Z. Li, and W. D. Ni, “A PLS model based on dominant factor for coal analysis using laser-induced breakdown spectroscopy,” Anal. Bioanal. Chem.400(10), 3261–3271 (2011).
[CrossRef] [PubMed]

Winefordner, J. D.

J. D. Winefordner, I. B. Gornushkin, T. Correll, E. Gibb, B. W. Smith, and N. Omenetto, “Comparing several atomic spectrometric methods to the super stars: special emphasis on laser induced breakdown spectrometry, LIBS, a future super star,” J. Anal. At. Spectrom.19(9), 1061–1083 (2004).
[CrossRef]

Wu, T.

Yao, S.

M. Dong, J. Lu, S. Yao, J. Li, J. Li, Z. Zhong, and W. Lu, “Application of LIBS for direct determination of volatile matter content in coal,” J. Anal. At. Spectrom.26(11), 2183–2188 (2011).
[CrossRef]

Yeates, P.

P. Yeates and E. T. Kennedy, “Spectroscopic, imaging, and probe diagnostics of laser plasma plumes expanding between confining surfaces,” J. Appl. Phys.108(9), 093306–093312 (2010).
[CrossRef]

Yoo, J. H.

X. Zeng, X. Mao, S. S. Mao, J. H. Yoo, R. Greif, and R. E. Russo, “Laser-plasma interactions in fused silica cavities,” J. Appl. Phys.95(3), 816–822 (2004).
[CrossRef]

Yu, J.

Q. L. Ma, V. Motto-Ros, W. Q. Lei, M. Boueri, X. S. Bai, L. J. Zheng, H. P. Zeng, and J. Yu, “Temporal and spatial dynamics of laser-induced aluminum plasma in argon background at atmospheric pressure: Interplay with the ambient gas,” Spectrochim. Acta, B At. Spectrosc.65(11), 896–907 (2010).
[CrossRef]

Yuan, T.

L. Li, Z. Wang, T. Yuan, Z. Hou, Z. Li, and W. Ni, “A simplified spectrum standardization method for laser-induced breakdown spectroscopy measurements,” J. Anal. At. Spectrom.26(11), 2274–2280 (2011).
[CrossRef]

Zeng, H. P.

Q. L. Ma, V. Motto-Ros, W. Q. Lei, M. Boueri, X. S. Bai, L. J. Zheng, H. P. Zeng, and J. Yu, “Temporal and spatial dynamics of laser-induced aluminum plasma in argon background at atmospheric pressure: Interplay with the ambient gas,” Spectrochim. Acta, B At. Spectrosc.65(11), 896–907 (2010).
[CrossRef]

Zeng, X.

X. Zeng, X. Mao, S. S. Mao, S.-B. Wen, R. Greif, and R. E. Russo, “Laser-induced shockwave propagation from ablation in a cavity,” Appl. Phys. Lett.88(6), 061502–061503 (2006).
[CrossRef]

X. Zeng, X. Mao, S. S. Mao, J. H. Yoo, R. Greif, and R. E. Russo, “Laser-plasma interactions in fused silica cavities,” J. Appl. Phys.95(3), 816–822 (2004).
[CrossRef]

X. Zeng, S. S. Mao, C. Liu, X. Mao, R. Greif, and R. E. Russo, “Plasma diagnostics during laser ablation in a cavity,” Spectrochim. Acta, B At. Spectrosc.58(5), 867–877 (2003).
[CrossRef]

Zeng, X. Y.

Zhang, B. Y.

Zheng, L. J.

Q. L. Ma, V. Motto-Ros, W. Q. Lei, M. Boueri, X. S. Bai, L. J. Zheng, H. P. Zeng, and J. Yu, “Temporal and spatial dynamics of laser-induced aluminum plasma in argon background at atmospheric pressure: Interplay with the ambient gas,” Spectrochim. Acta, B At. Spectrosc.65(11), 896–907 (2010).
[CrossRef]

Zhong, Z.

M. Dong, J. Lu, S. Yao, J. Li, J. Li, Z. Zhong, and W. Lu, “Application of LIBS for direct determination of volatile matter content in coal,” J. Anal. At. Spectrom.26(11), 2183–2188 (2011).
[CrossRef]

Zhou, Y. S.

Zorov, N. B.

N. B. Zorov, A. A. Gorbatenko, T. A. Labutin, and A. M. Popov, “A review of normalization techniques in analytical atomic spectrometry with laser sampling: From single to multivariate correction,” Spectrochim. Acta, B At. Spectrosc.65(8), 642–657 (2010).
[CrossRef]

Anal. Bioanal. Chem. (1)

J. Feng, Z. Wang, L. West, Z. Li, and W. D. Ni, “A PLS model based on dominant factor for coal analysis using laser-induced breakdown spectroscopy,” Anal. Bioanal. Chem.400(10), 3261–3271 (2011).
[CrossRef] [PubMed]

Appl. Phys. Lett. (2)

L. B. Guo, C. M. Li, W. Hu, Y. S. Zhou, B. Y. Zhang, Z. X. Cai, X. Y. Zeng, and Y. F. Lu, “Plasma confinement by hemispherical cavity in laser-induced breakdown spectroscopy,” Appl. Phys. Lett.98(13), 131501 (2011).
[CrossRef]

X. Zeng, X. Mao, S. S. Mao, S.-B. Wen, R. Greif, and R. E. Russo, “Laser-induced shockwave propagation from ablation in a cavity,” Appl. Phys. Lett.88(6), 061502–061503 (2006).
[CrossRef]

Appl. Spectrosc. (2)

J. Anal. At. Spectrom. (5)

J. D. Winefordner, I. B. Gornushkin, T. Correll, E. Gibb, B. W. Smith, and N. Omenetto, “Comparing several atomic spectrometric methods to the super stars: special emphasis on laser induced breakdown spectrometry, LIBS, a future super star,” J. Anal. At. Spectrom.19(9), 1061–1083 (2004).
[CrossRef]

A. M. Popov, F. Colao, and R. Fantoni, “Enhancement of LIBS signal by spatially confining the laser-induced plasma,” J. Anal. At. Spectrom.24(5), 602–604 (2009).
[CrossRef]

L. Li, Z. Wang, T. Yuan, Z. Hou, Z. Li, and W. Ni, “A simplified spectrum standardization method for laser-induced breakdown spectroscopy measurements,” J. Anal. At. Spectrom.26(11), 2274–2280 (2011).
[CrossRef]

A. M. Popov, F. Colao, and R. Fantoni, “Spatial confinement of laser-induced plasma to enhance LIBS sensitivity for trace elements determination in soils,” J. Anal. At. Spectrom.25(6), 837–848 (2010).
[CrossRef]

M. Dong, J. Lu, S. Yao, J. Li, J. Li, Z. Zhong, and W. Lu, “Application of LIBS for direct determination of volatile matter content in coal,” J. Anal. At. Spectrom.26(11), 2183–2188 (2011).
[CrossRef]

J. Appl. Phys. (4)

X. K. Shen, J. Sun, H. Ling, and Y. F. Lu, “Spectroscopic study of laser-induced Al plasmas with cylindrical confinement,” J. Appl. Phys.102(9), 093301–093305 (2007).
[CrossRef]

P. Yeates and E. T. Kennedy, “Spectroscopic, imaging, and probe diagnostics of laser plasma plumes expanding between confining surfaces,” J. Appl. Phys.108(9), 093306–093312 (2010).
[CrossRef]

K. H. Kurniawan, M. Pardede, T. J. Lie, H. Niki, K. Fukumoto, T. Maruyama, K. Kagawa, and M. O. Tjia, “Crater effects on H and D emission from laser induced low-pressure helium plasma,” J. Appl. Phys.106(6), 063303–063306 (2009).
[CrossRef]

X. Zeng, X. Mao, S. S. Mao, J. H. Yoo, R. Greif, and R. E. Russo, “Laser-plasma interactions in fused silica cavities,” J. Appl. Phys.95(3), 816–822 (2004).
[CrossRef]

Opt. Express (4)

Spectrochim. Acta, B At. Spectrosc. (9)

Q. L. Ma, V. Motto-Ros, W. Q. Lei, M. Boueri, X. S. Bai, L. J. Zheng, H. P. Zeng, and J. Yu, “Temporal and spatial dynamics of laser-induced aluminum plasma in argon background at atmospheric pressure: Interplay with the ambient gas,” Spectrochim. Acta, B At. Spectrosc.65(11), 896–907 (2010).
[CrossRef]

N. B. Zorov, A. A. Gorbatenko, T. A. Labutin, and A. M. Popov, “A review of normalization techniques in analytical atomic spectrometry with laser sampling: From single to multivariate correction,” Spectrochim. Acta, B At. Spectrosc.65(8), 642–657 (2010).
[CrossRef]

Z. Wang, L. Li, L. West, Z. Li, and W. Ni, “A spectrum standardization approach for laser-induced breakdown spectroscopy measurements,” Spectrochim. Acta, B At. Spectrosc.68, 58–64 (2012).
[CrossRef]

X. Zeng, S. S. Mao, C. Liu, X. Mao, R. Greif, and R. E. Russo, “Plasma diagnostics during laser ablation in a cavity,” Spectrochim. Acta, B At. Spectrosc.58(5), 867–877 (2003).
[CrossRef]

V. I. Babushok, F. C. DeLucia, J. L. Gottfried, C. A. Munson, and A. W. Miziolek, “Double pulse laser ablation and plasma: Laser induced breakdown spectroscopy signal enhancement,” Spectrochim. Acta, B At. Spectrosc.61(9), 999–1014 (2006).
[CrossRef]

R. Hedwig, “Confinement effect in enhancing shock wave plasma generation at low pressure by TEA CO2 laser bombardment on quartz sample,” Spectrochim. Acta, B At. Spectrosc.58(3), 531–542 (2003).
[CrossRef]

J. Feng, Z. Wang, Z. Li, and W. Ni, “Study to reduce laser-induced breakdown spectroscopy measurement uncertainty using plasma characteristic parameters,” Spectrochim. Acta, B At. Spectrosc.65(7), 549–556 (2010).
[CrossRef]

C. Aragon and J. Aguilera, “Characterization of laser induced plasmas by optical emission spectroscopy: A review of experiments and methods,” Spectrochim. Acta, B At. Spectrosc.63(9), 893–916 (2008).
[CrossRef]

G. Cristoforetti, A. De Giacomo, M. Dell'Aglio, S. Legnaioli, E. Tognoni, V. Palleschi, and N. Omenetto, “Local Thermodynamic Equilibrium in Laser-Induced Breakdown Spectroscopy: Beyond the McWhirter criterion,” Spectrochim. Acta, B At. Spectrosc.65(1), 86–95 (2010).
[CrossRef]

Talanta (1)

R. E. Russo, X. Mao, H. Liu, J. Gonzalez, and S. S. Mao, “Laser ablation in analytical chemistry-a review,” Talanta57(3), 425–451 (2002).
[CrossRef] [PubMed]

Other (2)

R. Mavrodineanu, ed., “Flame Spectroscopy” (John Wiley & Sons, New York, 1965).

H. R. Griem, ed., “Plasma Spectroscopy” (McGraw-Hill Inc., New York, 1964).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Plasma morphology (a) without and (b) with cavity confinement.

Fig. 2
Fig. 2

Theoretical intensity distribution of C(I)193.09nm at different plasma conditions. The intensities are normalized by their maximum value.

Fig. 3
Fig. 3

Schematic of the experimental setup (not to scale) and the PTFE plate with cylindrical cavities.

Fig. 4
Fig. 4

Spectra showing the C(I) 193.09nm and C(I) 247.856nm lines. Laser energy was (a) 80 mJ and (b) 130 mJ

Tables (4)

Tables Icon

Table 1 Average Line Intensity of 193 nm (a.u.) under Different Conditions

Tables Icon

Table 2 Plasma Parameters under Different Conditions

Tables Icon

Table 3 Relaxation Time and Diffusion Length under Different Conditions

Tables Icon

Table 4 RSD (%) of the C(I) 193 nm of Each Experiment Setting

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

I ij I =F n s ( 1 1+R ) g i I exp( E i I /(kT)) U I (T) A ij I ,
R= n II n I = 2 n e U II (T) U I (T) (2π m e kT) 1.5 h 3 e E ion Δ E ion kT .
n e ( cm 3 )=C(T, n e ) (Δ λ 1/2 ) 3/2 .

Metrics