Abstract

The effects of the 5d energy locations of Ce3+ centers on the NIR quantum cutting process were studied in Y2SiO5 with two different substitutional Y3+ lattice sites for Ce3+ and Yb3+. Powder XRD and Rietveld refinement were used to characterize phase purity, crystal structure, lattice parameters and occupation fractions of Y2-x-yCexYbySiO5 (x = 0.002 and 0.3, y = 0-0.2). PLE and PL spectra show that both kinds of Ce3+ centers in Y2-x-yCexYbySiO5 can cooperatively transfer energy to Yb3+-Yb3+ ions pair. The dependence of the integrated emission intensities of Ce3+ and Yb3+, decay lifetime (τ) of Ce3+, nonradiative energy transfer rate (KCe→Yb), cooperative energy transfer efficiency (ηCET) and quantum efficiency (ηQE) on the concentration of Yb3+ ions were studied in details. More importantly, these results demonstrate that the 5d energy locations of Ce3+ ions have a great influence on NIR quantum cutting process in Ce3+-Yb3+ system: the closer they are to twice the absorption energy (~20000 cm−1) of Yb3+, the higher the cooperative energy transfer efficiency from the lowest 5d excited state of Ce3+ to the Yb3+-Yb3+ ions pair.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Q. Y. Zhang and X. Y. Huang, “Recent progress in quantum cutting phosphors,” Prog. Mater. Sci.55(5), 353–427 (2010).
    [CrossRef]
  2. B. M. van der Ende, L. Aarts, and A. Meijerink, “Near-Infrared Quantum Cutting for Photovoltaics,” Adv. Mater. (Deerfield Beach Fla.)21(30), 3073–3077 (2009).
    [CrossRef]
  3. B. M. van der Ende, L. Aarts, and A. Meijerink, “Lanthanide ions as spectral converters for solar cells,” Phys. Chem. Chem. Phys.11(47), 11081–11095 (2009).
    [CrossRef] [PubMed]
  4. W. Shockley and H. J. Queisser, “Detailed Balance Limit of Efficiency of p-n Junction Solar Cells,” J. Appl. Phys.32(3), 510–519 (1961).
    [CrossRef]
  5. T. Trupke, M. A. Green, and P. Wurfel, “Improving solar cell efficiencies by down-conversion of high-energy photons,” J. Appl. Phys.92(3), 1668–1674 (2002).
    [CrossRef]
  6. J. M. Meijer, L. Aarts, B. M. van der Ende, T. J. H. Vlugt, and A. Meijerink, “Downconversion for solar cells in YF3:Nd3+, Yb3+,” Phys. Rev. B81(3), 035107–035116 (2010).
    [CrossRef]
  7. X. Y. Huang, D. C. Yu, and Q. Y. Zhang, “Enhanced near-infrared quantum cutting in GdBO3:Tb3+,Yb3+ phosphors by Ce3+ codoping,” J. Appl. Phys.106(11), 113521 (2009).
    [CrossRef]
  8. L. Aarts, B. M. van der Ende, M. F. Reid, and A. Meijerink, “Downconversion for Solar Cells in YF3:Pr3+, Yb3+,” Spectrosc. Lett.43(5), 373–381 (2010).
    [CrossRef]
  9. J. T. van Wijngaarden, S. Scheidelaar, T. J. H. Vlugt, M. F. Reid, and A. Meijerink, “Energy transfer mechanism for downconversion in the (Pr3+, Yb3+) couple,” Phys. Rev. B81(15), 155112 (2010).
    [CrossRef]
  10. P. Vergeer, T. J. H. Vlugt, M. H. F. Kox, M. I. den Hertog, J. P. J. M. van der Eerden, and A. Meijerink, “Quantum cutting by cooperative energy transfer in YbxY1-xPO4: Tb3+,” Phys. Rev. B71(1), 014119–014129 (2005).
    [CrossRef]
  11. J. D. Chen, H. Guo, Z. Q. Li, H. Zhang, and Y. X. Zhuang, “Near-infrared quantum cutting in Ce3+, Yb3+ co-doped YBO3 phosphors by cooperative energy transfer,” Opt. Mater.32(9), 998–1001 (2010).
    [CrossRef]
  12. X. F. Liu, Y. Teng, Y. X. Zhuang, J. H. Xie, Y. B. Qiao, G. P. Dong, D. P. Chen, and J. R. Qiu, “Broadband conversion of visible light to near-infrared emission by Ce3+, Yb3+-codoped yttrium aluminum garnet,” Opt. Lett.34(22), 3565–3567 (2009).
    [CrossRef] [PubMed]
  13. J. Ueda and S. Tanabe, “Visible to near infrared conversion in Ce3+-Yb3+ Co-doped YAG ceramics,” J. Appl. Phys.106(4), 043101–043105 (2009).
    [CrossRef]
  14. J. J. Zhou, Y. Teng, G. Lin, X. Q. Xu, Z. J. Ma, and J. R. Qiu, “Broad-Band Excited Quantum Cutting in Eu2+-Yb3+ Co-doped Aluminosilicate Glasses,” J. Electrochem. Soc.157(8), B1146–B1148 (2010).
    [CrossRef]
  15. Q. H. Zhang, J. Wang, G. G. Zhang, and Q. Su, “UV photon harvesting and enhanced near-infrared emission in novel quantum cutting Ca2BO3Cl:Ce3+,Tb3+,Yb3+ phosphor,” J. Mater. Chem.19(38), 7088–7092 (2009).
    [CrossRef]
  16. G. G. Zhang, C. M. Liu, J. Wang, X. J. Kuang, and Q. Su, “A dual-mode solar spectral converter CaLaGa3S6O:Ce3+,Pr3+: UV-Vis-NIR luminescence properties and solar spectral converting mechanism,” J. Mater. Chem.22(5), 2226–2232 (2012).
    [CrossRef]
  17. D. Q. Chen, Y. S. Wang, Y. L. Yu, P. Huang, and F. Y. Weng, “Quantum cutting downconversion by cooperative energy transfer from Ce3+ to Yb3+ in borate glasses,” J. Appl. Phys.104(11), 116105 (2008).
    [CrossRef]
  18. A. A. Coelho, TOPAS ACADEMIC. Brisbane: Australia, 2005, version 4.
  19. B. A. Maksimov, V. V. Ilyukhin, Y. A. Kharitonov, and N. V. Belov, “Crystal structure of yttrium oxyorthosilicate Y2O3SiO2 and Y2SiO5,” Kristallografiya15, 926–933 (1970).
  20. R. D. Shannon, “Revised Effective Ionic Radii and Systematic Studies of Interatomie Distances in Halides and Chaleogenides,” Acta Crystallogr. A32(5), 751–767 (1976).
    [CrossRef]
  21. L. Pidola, O. Guillot-Noëla, A. Kahn-Hararia, B. Viana, D. Pelencc, and D. Gouriera, “EPR study of Ce3+ ions in lutetium silicate scintillators Lu2Si2O7 and Lu2SiO5,” J. Phys. Chem. Solids67(4), 643–650 (2006).
    [CrossRef]
  22. A. Denoyer, S. Jandl, B. Viana, O. Guillot-Noel, P. Goldner, D. Pelenc, and F. Thibault, “Optical properties of Yb-doped Y2SiO5 thin films,” Opt. Mater.30(3), 416–422 (2007).
    [CrossRef]
  23. S. Campos, A. Denoyer, S. Jandl, B. Viana, D. Vivien, P. Loiseau, and B. Ferrand, “Spectroscopic studies of Yb3+-doped rare earth orthosilicate crystals,” J. Phys-Condens. Mat.16, 4579–4590 (2004).
  24. H. Jiao, F. H. Liao, S. J. Tian, and X. P. Jing, “Influence of rare earth Sc and La to the luminescent properties of FED blue phosphor Y2SiO5: Ce,” J. Electrochem. Soc.151(7), J39–J42 (2004).
    [CrossRef]
  25. H. Yokota, M. Yoshida, H. Ishibashi, T. Yano, H. Yamamoto, and S. Kikkawa, “Concentration effect of cerium in (Y0.9-xGd0.1Cex)2SiO5 blue phosphor,” J. Alloy. Comp.495(1), 162–166 (2010).
    [CrossRef]
  26. E. Coetsee, J. J. Terblans, O. M. Ntwaeaborwa, and H. C. Swart, “Luminescent mechanism of Y2SiO5:Ce phosphor powder,” Physica B404(22), 4426–4430 (2009).
    [CrossRef]
  27. H. Feng, V. Jary, E. Mihokova, D. Ding, M. Nikl, G. Ren, H. Li, S. Pan, A. Beitlerova, and R. Kucerkova, “Temperature dependence of luminescence characteristics of Lu2(1-x)Y2xSiO5: Ce3+ scintillator grown by the Czochralski method,” J. Appl. Phys.108(3), 033519–033524 (2010).
    [CrossRef]
  28. H. Matsui, C. N. Xu, Y. Liu, and T. Watanabe, “Optical Spectroscopy of Ce3+-Activated X2-Y2SiO5,” J. Ceram. Soc. Jpn.108(1263), 1003–1006 (2000).
    [CrossRef]
  29. R. B. Jabbarova, C. Chartier, B. G. Tagieva, O. B. Tagiev, N. N. Musayeva, C. Barthou, and P. Benalloul, “Radiative properties of Eu2+ in BaGa2S4,” J. Phys. Chem. Solids66(6), 1049–1056 (2005).
    [CrossRef]
  30. S. Saha, P. S. Chowdhury, and A. Patra, “Luminescence of Ce3+ in Y2SiO5 nanocrystals: Role of crystal structure and crystal size,” J. Phys. Chem. B109(7), 2699–2702 (2005).
    [CrossRef] [PubMed]
  31. B. Han, H. B. Liang, Y. Huang, Y. Tao, and Q. Su, “Vacuum Ultraviolet-Visible Spectroscopic Properties of Tb3+ in Li(Y, Gd)(PO3)4: Tunable Emission, Quantum Cutting, and Energy Transfer,” J. Phys. Chem. C114(14), 6770–6777 (2010).
    [CrossRef]

2012 (1)

G. G. Zhang, C. M. Liu, J. Wang, X. J. Kuang, and Q. Su, “A dual-mode solar spectral converter CaLaGa3S6O:Ce3+,Pr3+: UV-Vis-NIR luminescence properties and solar spectral converting mechanism,” J. Mater. Chem.22(5), 2226–2232 (2012).
[CrossRef]

2010 (9)

J. D. Chen, H. Guo, Z. Q. Li, H. Zhang, and Y. X. Zhuang, “Near-infrared quantum cutting in Ce3+, Yb3+ co-doped YBO3 phosphors by cooperative energy transfer,” Opt. Mater.32(9), 998–1001 (2010).
[CrossRef]

J. J. Zhou, Y. Teng, G. Lin, X. Q. Xu, Z. J. Ma, and J. R. Qiu, “Broad-Band Excited Quantum Cutting in Eu2+-Yb3+ Co-doped Aluminosilicate Glasses,” J. Electrochem. Soc.157(8), B1146–B1148 (2010).
[CrossRef]

Q. Y. Zhang and X. Y. Huang, “Recent progress in quantum cutting phosphors,” Prog. Mater. Sci.55(5), 353–427 (2010).
[CrossRef]

J. M. Meijer, L. Aarts, B. M. van der Ende, T. J. H. Vlugt, and A. Meijerink, “Downconversion for solar cells in YF3:Nd3+, Yb3+,” Phys. Rev. B81(3), 035107–035116 (2010).
[CrossRef]

L. Aarts, B. M. van der Ende, M. F. Reid, and A. Meijerink, “Downconversion for Solar Cells in YF3:Pr3+, Yb3+,” Spectrosc. Lett.43(5), 373–381 (2010).
[CrossRef]

J. T. van Wijngaarden, S. Scheidelaar, T. J. H. Vlugt, M. F. Reid, and A. Meijerink, “Energy transfer mechanism for downconversion in the (Pr3+, Yb3+) couple,” Phys. Rev. B81(15), 155112 (2010).
[CrossRef]

H. Yokota, M. Yoshida, H. Ishibashi, T. Yano, H. Yamamoto, and S. Kikkawa, “Concentration effect of cerium in (Y0.9-xGd0.1Cex)2SiO5 blue phosphor,” J. Alloy. Comp.495(1), 162–166 (2010).
[CrossRef]

H. Feng, V. Jary, E. Mihokova, D. Ding, M. Nikl, G. Ren, H. Li, S. Pan, A. Beitlerova, and R. Kucerkova, “Temperature dependence of luminescence characteristics of Lu2(1-x)Y2xSiO5: Ce3+ scintillator grown by the Czochralski method,” J. Appl. Phys.108(3), 033519–033524 (2010).
[CrossRef]

B. Han, H. B. Liang, Y. Huang, Y. Tao, and Q. Su, “Vacuum Ultraviolet-Visible Spectroscopic Properties of Tb3+ in Li(Y, Gd)(PO3)4: Tunable Emission, Quantum Cutting, and Energy Transfer,” J. Phys. Chem. C114(14), 6770–6777 (2010).
[CrossRef]

2009 (7)

E. Coetsee, J. J. Terblans, O. M. Ntwaeaborwa, and H. C. Swart, “Luminescent mechanism of Y2SiO5:Ce phosphor powder,” Physica B404(22), 4426–4430 (2009).
[CrossRef]

X. Y. Huang, D. C. Yu, and Q. Y. Zhang, “Enhanced near-infrared quantum cutting in GdBO3:Tb3+,Yb3+ phosphors by Ce3+ codoping,” J. Appl. Phys.106(11), 113521 (2009).
[CrossRef]

B. M. van der Ende, L. Aarts, and A. Meijerink, “Near-Infrared Quantum Cutting for Photovoltaics,” Adv. Mater. (Deerfield Beach Fla.)21(30), 3073–3077 (2009).
[CrossRef]

B. M. van der Ende, L. Aarts, and A. Meijerink, “Lanthanide ions as spectral converters for solar cells,” Phys. Chem. Chem. Phys.11(47), 11081–11095 (2009).
[CrossRef] [PubMed]

Q. H. Zhang, J. Wang, G. G. Zhang, and Q. Su, “UV photon harvesting and enhanced near-infrared emission in novel quantum cutting Ca2BO3Cl:Ce3+,Tb3+,Yb3+ phosphor,” J. Mater. Chem.19(38), 7088–7092 (2009).
[CrossRef]

X. F. Liu, Y. Teng, Y. X. Zhuang, J. H. Xie, Y. B. Qiao, G. P. Dong, D. P. Chen, and J. R. Qiu, “Broadband conversion of visible light to near-infrared emission by Ce3+, Yb3+-codoped yttrium aluminum garnet,” Opt. Lett.34(22), 3565–3567 (2009).
[CrossRef] [PubMed]

J. Ueda and S. Tanabe, “Visible to near infrared conversion in Ce3+-Yb3+ Co-doped YAG ceramics,” J. Appl. Phys.106(4), 043101–043105 (2009).
[CrossRef]

2008 (1)

D. Q. Chen, Y. S. Wang, Y. L. Yu, P. Huang, and F. Y. Weng, “Quantum cutting downconversion by cooperative energy transfer from Ce3+ to Yb3+ in borate glasses,” J. Appl. Phys.104(11), 116105 (2008).
[CrossRef]

2007 (1)

A. Denoyer, S. Jandl, B. Viana, O. Guillot-Noel, P. Goldner, D. Pelenc, and F. Thibault, “Optical properties of Yb-doped Y2SiO5 thin films,” Opt. Mater.30(3), 416–422 (2007).
[CrossRef]

2006 (1)

L. Pidola, O. Guillot-Noëla, A. Kahn-Hararia, B. Viana, D. Pelencc, and D. Gouriera, “EPR study of Ce3+ ions in lutetium silicate scintillators Lu2Si2O7 and Lu2SiO5,” J. Phys. Chem. Solids67(4), 643–650 (2006).
[CrossRef]

2005 (3)

R. B. Jabbarova, C. Chartier, B. G. Tagieva, O. B. Tagiev, N. N. Musayeva, C. Barthou, and P. Benalloul, “Radiative properties of Eu2+ in BaGa2S4,” J. Phys. Chem. Solids66(6), 1049–1056 (2005).
[CrossRef]

S. Saha, P. S. Chowdhury, and A. Patra, “Luminescence of Ce3+ in Y2SiO5 nanocrystals: Role of crystal structure and crystal size,” J. Phys. Chem. B109(7), 2699–2702 (2005).
[CrossRef] [PubMed]

P. Vergeer, T. J. H. Vlugt, M. H. F. Kox, M. I. den Hertog, J. P. J. M. van der Eerden, and A. Meijerink, “Quantum cutting by cooperative energy transfer in YbxY1-xPO4: Tb3+,” Phys. Rev. B71(1), 014119–014129 (2005).
[CrossRef]

2004 (2)

S. Campos, A. Denoyer, S. Jandl, B. Viana, D. Vivien, P. Loiseau, and B. Ferrand, “Spectroscopic studies of Yb3+-doped rare earth orthosilicate crystals,” J. Phys-Condens. Mat.16, 4579–4590 (2004).

H. Jiao, F. H. Liao, S. J. Tian, and X. P. Jing, “Influence of rare earth Sc and La to the luminescent properties of FED blue phosphor Y2SiO5: Ce,” J. Electrochem. Soc.151(7), J39–J42 (2004).
[CrossRef]

2002 (1)

T. Trupke, M. A. Green, and P. Wurfel, “Improving solar cell efficiencies by down-conversion of high-energy photons,” J. Appl. Phys.92(3), 1668–1674 (2002).
[CrossRef]

2000 (1)

H. Matsui, C. N. Xu, Y. Liu, and T. Watanabe, “Optical Spectroscopy of Ce3+-Activated X2-Y2SiO5,” J. Ceram. Soc. Jpn.108(1263), 1003–1006 (2000).
[CrossRef]

1976 (1)

R. D. Shannon, “Revised Effective Ionic Radii and Systematic Studies of Interatomie Distances in Halides and Chaleogenides,” Acta Crystallogr. A32(5), 751–767 (1976).
[CrossRef]

1970 (1)

B. A. Maksimov, V. V. Ilyukhin, Y. A. Kharitonov, and N. V. Belov, “Crystal structure of yttrium oxyorthosilicate Y2O3SiO2 and Y2SiO5,” Kristallografiya15, 926–933 (1970).

1961 (1)

W. Shockley and H. J. Queisser, “Detailed Balance Limit of Efficiency of p-n Junction Solar Cells,” J. Appl. Phys.32(3), 510–519 (1961).
[CrossRef]

Aarts, L.

J. M. Meijer, L. Aarts, B. M. van der Ende, T. J. H. Vlugt, and A. Meijerink, “Downconversion for solar cells in YF3:Nd3+, Yb3+,” Phys. Rev. B81(3), 035107–035116 (2010).
[CrossRef]

L. Aarts, B. M. van der Ende, M. F. Reid, and A. Meijerink, “Downconversion for Solar Cells in YF3:Pr3+, Yb3+,” Spectrosc. Lett.43(5), 373–381 (2010).
[CrossRef]

B. M. van der Ende, L. Aarts, and A. Meijerink, “Near-Infrared Quantum Cutting for Photovoltaics,” Adv. Mater. (Deerfield Beach Fla.)21(30), 3073–3077 (2009).
[CrossRef]

B. M. van der Ende, L. Aarts, and A. Meijerink, “Lanthanide ions as spectral converters for solar cells,” Phys. Chem. Chem. Phys.11(47), 11081–11095 (2009).
[CrossRef] [PubMed]

Barthou, C.

R. B. Jabbarova, C. Chartier, B. G. Tagieva, O. B. Tagiev, N. N. Musayeva, C. Barthou, and P. Benalloul, “Radiative properties of Eu2+ in BaGa2S4,” J. Phys. Chem. Solids66(6), 1049–1056 (2005).
[CrossRef]

Beitlerova, A.

H. Feng, V. Jary, E. Mihokova, D. Ding, M. Nikl, G. Ren, H. Li, S. Pan, A. Beitlerova, and R. Kucerkova, “Temperature dependence of luminescence characteristics of Lu2(1-x)Y2xSiO5: Ce3+ scintillator grown by the Czochralski method,” J. Appl. Phys.108(3), 033519–033524 (2010).
[CrossRef]

Belov, N. V.

B. A. Maksimov, V. V. Ilyukhin, Y. A. Kharitonov, and N. V. Belov, “Crystal structure of yttrium oxyorthosilicate Y2O3SiO2 and Y2SiO5,” Kristallografiya15, 926–933 (1970).

Benalloul, P.

R. B. Jabbarova, C. Chartier, B. G. Tagieva, O. B. Tagiev, N. N. Musayeva, C. Barthou, and P. Benalloul, “Radiative properties of Eu2+ in BaGa2S4,” J. Phys. Chem. Solids66(6), 1049–1056 (2005).
[CrossRef]

Campos, S.

S. Campos, A. Denoyer, S. Jandl, B. Viana, D. Vivien, P. Loiseau, and B. Ferrand, “Spectroscopic studies of Yb3+-doped rare earth orthosilicate crystals,” J. Phys-Condens. Mat.16, 4579–4590 (2004).

Chartier, C.

R. B. Jabbarova, C. Chartier, B. G. Tagieva, O. B. Tagiev, N. N. Musayeva, C. Barthou, and P. Benalloul, “Radiative properties of Eu2+ in BaGa2S4,” J. Phys. Chem. Solids66(6), 1049–1056 (2005).
[CrossRef]

Chen, D. P.

Chen, D. Q.

D. Q. Chen, Y. S. Wang, Y. L. Yu, P. Huang, and F. Y. Weng, “Quantum cutting downconversion by cooperative energy transfer from Ce3+ to Yb3+ in borate glasses,” J. Appl. Phys.104(11), 116105 (2008).
[CrossRef]

Chen, J. D.

J. D. Chen, H. Guo, Z. Q. Li, H. Zhang, and Y. X. Zhuang, “Near-infrared quantum cutting in Ce3+, Yb3+ co-doped YBO3 phosphors by cooperative energy transfer,” Opt. Mater.32(9), 998–1001 (2010).
[CrossRef]

Chowdhury, P. S.

S. Saha, P. S. Chowdhury, and A. Patra, “Luminescence of Ce3+ in Y2SiO5 nanocrystals: Role of crystal structure and crystal size,” J. Phys. Chem. B109(7), 2699–2702 (2005).
[CrossRef] [PubMed]

Coetsee, E.

E. Coetsee, J. J. Terblans, O. M. Ntwaeaborwa, and H. C. Swart, “Luminescent mechanism of Y2SiO5:Ce phosphor powder,” Physica B404(22), 4426–4430 (2009).
[CrossRef]

den Hertog, M. I.

P. Vergeer, T. J. H. Vlugt, M. H. F. Kox, M. I. den Hertog, J. P. J. M. van der Eerden, and A. Meijerink, “Quantum cutting by cooperative energy transfer in YbxY1-xPO4: Tb3+,” Phys. Rev. B71(1), 014119–014129 (2005).
[CrossRef]

Denoyer, A.

A. Denoyer, S. Jandl, B. Viana, O. Guillot-Noel, P. Goldner, D. Pelenc, and F. Thibault, “Optical properties of Yb-doped Y2SiO5 thin films,” Opt. Mater.30(3), 416–422 (2007).
[CrossRef]

S. Campos, A. Denoyer, S. Jandl, B. Viana, D. Vivien, P. Loiseau, and B. Ferrand, “Spectroscopic studies of Yb3+-doped rare earth orthosilicate crystals,” J. Phys-Condens. Mat.16, 4579–4590 (2004).

Ding, D.

H. Feng, V. Jary, E. Mihokova, D. Ding, M. Nikl, G. Ren, H. Li, S. Pan, A. Beitlerova, and R. Kucerkova, “Temperature dependence of luminescence characteristics of Lu2(1-x)Y2xSiO5: Ce3+ scintillator grown by the Czochralski method,” J. Appl. Phys.108(3), 033519–033524 (2010).
[CrossRef]

Dong, G. P.

Feng, H.

H. Feng, V. Jary, E. Mihokova, D. Ding, M. Nikl, G. Ren, H. Li, S. Pan, A. Beitlerova, and R. Kucerkova, “Temperature dependence of luminescence characteristics of Lu2(1-x)Y2xSiO5: Ce3+ scintillator grown by the Czochralski method,” J. Appl. Phys.108(3), 033519–033524 (2010).
[CrossRef]

Ferrand, B.

S. Campos, A. Denoyer, S. Jandl, B. Viana, D. Vivien, P. Loiseau, and B. Ferrand, “Spectroscopic studies of Yb3+-doped rare earth orthosilicate crystals,” J. Phys-Condens. Mat.16, 4579–4590 (2004).

Goldner, P.

A. Denoyer, S. Jandl, B. Viana, O. Guillot-Noel, P. Goldner, D. Pelenc, and F. Thibault, “Optical properties of Yb-doped Y2SiO5 thin films,” Opt. Mater.30(3), 416–422 (2007).
[CrossRef]

Gouriera, D.

L. Pidola, O. Guillot-Noëla, A. Kahn-Hararia, B. Viana, D. Pelencc, and D. Gouriera, “EPR study of Ce3+ ions in lutetium silicate scintillators Lu2Si2O7 and Lu2SiO5,” J. Phys. Chem. Solids67(4), 643–650 (2006).
[CrossRef]

Green, M. A.

T. Trupke, M. A. Green, and P. Wurfel, “Improving solar cell efficiencies by down-conversion of high-energy photons,” J. Appl. Phys.92(3), 1668–1674 (2002).
[CrossRef]

Guillot-Noel, O.

A. Denoyer, S. Jandl, B. Viana, O. Guillot-Noel, P. Goldner, D. Pelenc, and F. Thibault, “Optical properties of Yb-doped Y2SiO5 thin films,” Opt. Mater.30(3), 416–422 (2007).
[CrossRef]

Guillot-Noëla, O.

L. Pidola, O. Guillot-Noëla, A. Kahn-Hararia, B. Viana, D. Pelencc, and D. Gouriera, “EPR study of Ce3+ ions in lutetium silicate scintillators Lu2Si2O7 and Lu2SiO5,” J. Phys. Chem. Solids67(4), 643–650 (2006).
[CrossRef]

Guo, H.

J. D. Chen, H. Guo, Z. Q. Li, H. Zhang, and Y. X. Zhuang, “Near-infrared quantum cutting in Ce3+, Yb3+ co-doped YBO3 phosphors by cooperative energy transfer,” Opt. Mater.32(9), 998–1001 (2010).
[CrossRef]

Han, B.

B. Han, H. B. Liang, Y. Huang, Y. Tao, and Q. Su, “Vacuum Ultraviolet-Visible Spectroscopic Properties of Tb3+ in Li(Y, Gd)(PO3)4: Tunable Emission, Quantum Cutting, and Energy Transfer,” J. Phys. Chem. C114(14), 6770–6777 (2010).
[CrossRef]

Huang, P.

D. Q. Chen, Y. S. Wang, Y. L. Yu, P. Huang, and F. Y. Weng, “Quantum cutting downconversion by cooperative energy transfer from Ce3+ to Yb3+ in borate glasses,” J. Appl. Phys.104(11), 116105 (2008).
[CrossRef]

Huang, X. Y.

Q. Y. Zhang and X. Y. Huang, “Recent progress in quantum cutting phosphors,” Prog. Mater. Sci.55(5), 353–427 (2010).
[CrossRef]

X. Y. Huang, D. C. Yu, and Q. Y. Zhang, “Enhanced near-infrared quantum cutting in GdBO3:Tb3+,Yb3+ phosphors by Ce3+ codoping,” J. Appl. Phys.106(11), 113521 (2009).
[CrossRef]

Huang, Y.

B. Han, H. B. Liang, Y. Huang, Y. Tao, and Q. Su, “Vacuum Ultraviolet-Visible Spectroscopic Properties of Tb3+ in Li(Y, Gd)(PO3)4: Tunable Emission, Quantum Cutting, and Energy Transfer,” J. Phys. Chem. C114(14), 6770–6777 (2010).
[CrossRef]

Ilyukhin, V. V.

B. A. Maksimov, V. V. Ilyukhin, Y. A. Kharitonov, and N. V. Belov, “Crystal structure of yttrium oxyorthosilicate Y2O3SiO2 and Y2SiO5,” Kristallografiya15, 926–933 (1970).

Ishibashi, H.

H. Yokota, M. Yoshida, H. Ishibashi, T. Yano, H. Yamamoto, and S. Kikkawa, “Concentration effect of cerium in (Y0.9-xGd0.1Cex)2SiO5 blue phosphor,” J. Alloy. Comp.495(1), 162–166 (2010).
[CrossRef]

Jabbarova, R. B.

R. B. Jabbarova, C. Chartier, B. G. Tagieva, O. B. Tagiev, N. N. Musayeva, C. Barthou, and P. Benalloul, “Radiative properties of Eu2+ in BaGa2S4,” J. Phys. Chem. Solids66(6), 1049–1056 (2005).
[CrossRef]

Jandl, S.

A. Denoyer, S. Jandl, B. Viana, O. Guillot-Noel, P. Goldner, D. Pelenc, and F. Thibault, “Optical properties of Yb-doped Y2SiO5 thin films,” Opt. Mater.30(3), 416–422 (2007).
[CrossRef]

S. Campos, A. Denoyer, S. Jandl, B. Viana, D. Vivien, P. Loiseau, and B. Ferrand, “Spectroscopic studies of Yb3+-doped rare earth orthosilicate crystals,” J. Phys-Condens. Mat.16, 4579–4590 (2004).

Jary, V.

H. Feng, V. Jary, E. Mihokova, D. Ding, M. Nikl, G. Ren, H. Li, S. Pan, A. Beitlerova, and R. Kucerkova, “Temperature dependence of luminescence characteristics of Lu2(1-x)Y2xSiO5: Ce3+ scintillator grown by the Czochralski method,” J. Appl. Phys.108(3), 033519–033524 (2010).
[CrossRef]

Jiao, H.

H. Jiao, F. H. Liao, S. J. Tian, and X. P. Jing, “Influence of rare earth Sc and La to the luminescent properties of FED blue phosphor Y2SiO5: Ce,” J. Electrochem. Soc.151(7), J39–J42 (2004).
[CrossRef]

Jing, X. P.

H. Jiao, F. H. Liao, S. J. Tian, and X. P. Jing, “Influence of rare earth Sc and La to the luminescent properties of FED blue phosphor Y2SiO5: Ce,” J. Electrochem. Soc.151(7), J39–J42 (2004).
[CrossRef]

Kahn-Hararia, A.

L. Pidola, O. Guillot-Noëla, A. Kahn-Hararia, B. Viana, D. Pelencc, and D. Gouriera, “EPR study of Ce3+ ions in lutetium silicate scintillators Lu2Si2O7 and Lu2SiO5,” J. Phys. Chem. Solids67(4), 643–650 (2006).
[CrossRef]

Kharitonov, Y. A.

B. A. Maksimov, V. V. Ilyukhin, Y. A. Kharitonov, and N. V. Belov, “Crystal structure of yttrium oxyorthosilicate Y2O3SiO2 and Y2SiO5,” Kristallografiya15, 926–933 (1970).

Kikkawa, S.

H. Yokota, M. Yoshida, H. Ishibashi, T. Yano, H. Yamamoto, and S. Kikkawa, “Concentration effect of cerium in (Y0.9-xGd0.1Cex)2SiO5 blue phosphor,” J. Alloy. Comp.495(1), 162–166 (2010).
[CrossRef]

Kox, M. H. F.

P. Vergeer, T. J. H. Vlugt, M. H. F. Kox, M. I. den Hertog, J. P. J. M. van der Eerden, and A. Meijerink, “Quantum cutting by cooperative energy transfer in YbxY1-xPO4: Tb3+,” Phys. Rev. B71(1), 014119–014129 (2005).
[CrossRef]

Kuang, X. J.

G. G. Zhang, C. M. Liu, J. Wang, X. J. Kuang, and Q. Su, “A dual-mode solar spectral converter CaLaGa3S6O:Ce3+,Pr3+: UV-Vis-NIR luminescence properties and solar spectral converting mechanism,” J. Mater. Chem.22(5), 2226–2232 (2012).
[CrossRef]

Kucerkova, R.

H. Feng, V. Jary, E. Mihokova, D. Ding, M. Nikl, G. Ren, H. Li, S. Pan, A. Beitlerova, and R. Kucerkova, “Temperature dependence of luminescence characteristics of Lu2(1-x)Y2xSiO5: Ce3+ scintillator grown by the Czochralski method,” J. Appl. Phys.108(3), 033519–033524 (2010).
[CrossRef]

Li, H.

H. Feng, V. Jary, E. Mihokova, D. Ding, M. Nikl, G. Ren, H. Li, S. Pan, A. Beitlerova, and R. Kucerkova, “Temperature dependence of luminescence characteristics of Lu2(1-x)Y2xSiO5: Ce3+ scintillator grown by the Czochralski method,” J. Appl. Phys.108(3), 033519–033524 (2010).
[CrossRef]

Li, Z. Q.

J. D. Chen, H. Guo, Z. Q. Li, H. Zhang, and Y. X. Zhuang, “Near-infrared quantum cutting in Ce3+, Yb3+ co-doped YBO3 phosphors by cooperative energy transfer,” Opt. Mater.32(9), 998–1001 (2010).
[CrossRef]

Liang, H. B.

B. Han, H. B. Liang, Y. Huang, Y. Tao, and Q. Su, “Vacuum Ultraviolet-Visible Spectroscopic Properties of Tb3+ in Li(Y, Gd)(PO3)4: Tunable Emission, Quantum Cutting, and Energy Transfer,” J. Phys. Chem. C114(14), 6770–6777 (2010).
[CrossRef]

Liao, F. H.

H. Jiao, F. H. Liao, S. J. Tian, and X. P. Jing, “Influence of rare earth Sc and La to the luminescent properties of FED blue phosphor Y2SiO5: Ce,” J. Electrochem. Soc.151(7), J39–J42 (2004).
[CrossRef]

Lin, G.

J. J. Zhou, Y. Teng, G. Lin, X. Q. Xu, Z. J. Ma, and J. R. Qiu, “Broad-Band Excited Quantum Cutting in Eu2+-Yb3+ Co-doped Aluminosilicate Glasses,” J. Electrochem. Soc.157(8), B1146–B1148 (2010).
[CrossRef]

Liu, C. M.

G. G. Zhang, C. M. Liu, J. Wang, X. J. Kuang, and Q. Su, “A dual-mode solar spectral converter CaLaGa3S6O:Ce3+,Pr3+: UV-Vis-NIR luminescence properties and solar spectral converting mechanism,” J. Mater. Chem.22(5), 2226–2232 (2012).
[CrossRef]

Liu, X. F.

Liu, Y.

H. Matsui, C. N. Xu, Y. Liu, and T. Watanabe, “Optical Spectroscopy of Ce3+-Activated X2-Y2SiO5,” J. Ceram. Soc. Jpn.108(1263), 1003–1006 (2000).
[CrossRef]

Loiseau, P.

S. Campos, A. Denoyer, S. Jandl, B. Viana, D. Vivien, P. Loiseau, and B. Ferrand, “Spectroscopic studies of Yb3+-doped rare earth orthosilicate crystals,” J. Phys-Condens. Mat.16, 4579–4590 (2004).

Ma, Z. J.

J. J. Zhou, Y. Teng, G. Lin, X. Q. Xu, Z. J. Ma, and J. R. Qiu, “Broad-Band Excited Quantum Cutting in Eu2+-Yb3+ Co-doped Aluminosilicate Glasses,” J. Electrochem. Soc.157(8), B1146–B1148 (2010).
[CrossRef]

Maksimov, B. A.

B. A. Maksimov, V. V. Ilyukhin, Y. A. Kharitonov, and N. V. Belov, “Crystal structure of yttrium oxyorthosilicate Y2O3SiO2 and Y2SiO5,” Kristallografiya15, 926–933 (1970).

Matsui, H.

H. Matsui, C. N. Xu, Y. Liu, and T. Watanabe, “Optical Spectroscopy of Ce3+-Activated X2-Y2SiO5,” J. Ceram. Soc. Jpn.108(1263), 1003–1006 (2000).
[CrossRef]

Meijer, J. M.

J. M. Meijer, L. Aarts, B. M. van der Ende, T. J. H. Vlugt, and A. Meijerink, “Downconversion for solar cells in YF3:Nd3+, Yb3+,” Phys. Rev. B81(3), 035107–035116 (2010).
[CrossRef]

Meijerink, A.

J. T. van Wijngaarden, S. Scheidelaar, T. J. H. Vlugt, M. F. Reid, and A. Meijerink, “Energy transfer mechanism for downconversion in the (Pr3+, Yb3+) couple,” Phys. Rev. B81(15), 155112 (2010).
[CrossRef]

J. M. Meijer, L. Aarts, B. M. van der Ende, T. J. H. Vlugt, and A. Meijerink, “Downconversion for solar cells in YF3:Nd3+, Yb3+,” Phys. Rev. B81(3), 035107–035116 (2010).
[CrossRef]

L. Aarts, B. M. van der Ende, M. F. Reid, and A. Meijerink, “Downconversion for Solar Cells in YF3:Pr3+, Yb3+,” Spectrosc. Lett.43(5), 373–381 (2010).
[CrossRef]

B. M. van der Ende, L. Aarts, and A. Meijerink, “Near-Infrared Quantum Cutting for Photovoltaics,” Adv. Mater. (Deerfield Beach Fla.)21(30), 3073–3077 (2009).
[CrossRef]

B. M. van der Ende, L. Aarts, and A. Meijerink, “Lanthanide ions as spectral converters for solar cells,” Phys. Chem. Chem. Phys.11(47), 11081–11095 (2009).
[CrossRef] [PubMed]

P. Vergeer, T. J. H. Vlugt, M. H. F. Kox, M. I. den Hertog, J. P. J. M. van der Eerden, and A. Meijerink, “Quantum cutting by cooperative energy transfer in YbxY1-xPO4: Tb3+,” Phys. Rev. B71(1), 014119–014129 (2005).
[CrossRef]

Mihokova, E.

H. Feng, V. Jary, E. Mihokova, D. Ding, M. Nikl, G. Ren, H. Li, S. Pan, A. Beitlerova, and R. Kucerkova, “Temperature dependence of luminescence characteristics of Lu2(1-x)Y2xSiO5: Ce3+ scintillator grown by the Czochralski method,” J. Appl. Phys.108(3), 033519–033524 (2010).
[CrossRef]

Musayeva, N. N.

R. B. Jabbarova, C. Chartier, B. G. Tagieva, O. B. Tagiev, N. N. Musayeva, C. Barthou, and P. Benalloul, “Radiative properties of Eu2+ in BaGa2S4,” J. Phys. Chem. Solids66(6), 1049–1056 (2005).
[CrossRef]

Nikl, M.

H. Feng, V. Jary, E. Mihokova, D. Ding, M. Nikl, G. Ren, H. Li, S. Pan, A. Beitlerova, and R. Kucerkova, “Temperature dependence of luminescence characteristics of Lu2(1-x)Y2xSiO5: Ce3+ scintillator grown by the Czochralski method,” J. Appl. Phys.108(3), 033519–033524 (2010).
[CrossRef]

Ntwaeaborwa, O. M.

E. Coetsee, J. J. Terblans, O. M. Ntwaeaborwa, and H. C. Swart, “Luminescent mechanism of Y2SiO5:Ce phosphor powder,” Physica B404(22), 4426–4430 (2009).
[CrossRef]

Pan, S.

H. Feng, V. Jary, E. Mihokova, D. Ding, M. Nikl, G. Ren, H. Li, S. Pan, A. Beitlerova, and R. Kucerkova, “Temperature dependence of luminescence characteristics of Lu2(1-x)Y2xSiO5: Ce3+ scintillator grown by the Czochralski method,” J. Appl. Phys.108(3), 033519–033524 (2010).
[CrossRef]

Patra, A.

S. Saha, P. S. Chowdhury, and A. Patra, “Luminescence of Ce3+ in Y2SiO5 nanocrystals: Role of crystal structure and crystal size,” J. Phys. Chem. B109(7), 2699–2702 (2005).
[CrossRef] [PubMed]

Pelenc, D.

A. Denoyer, S. Jandl, B. Viana, O. Guillot-Noel, P. Goldner, D. Pelenc, and F. Thibault, “Optical properties of Yb-doped Y2SiO5 thin films,” Opt. Mater.30(3), 416–422 (2007).
[CrossRef]

Pelencc, D.

L. Pidola, O. Guillot-Noëla, A. Kahn-Hararia, B. Viana, D. Pelencc, and D. Gouriera, “EPR study of Ce3+ ions in lutetium silicate scintillators Lu2Si2O7 and Lu2SiO5,” J. Phys. Chem. Solids67(4), 643–650 (2006).
[CrossRef]

Pidola, L.

L. Pidola, O. Guillot-Noëla, A. Kahn-Hararia, B. Viana, D. Pelencc, and D. Gouriera, “EPR study of Ce3+ ions in lutetium silicate scintillators Lu2Si2O7 and Lu2SiO5,” J. Phys. Chem. Solids67(4), 643–650 (2006).
[CrossRef]

Qiao, Y. B.

Qiu, J. R.

J. J. Zhou, Y. Teng, G. Lin, X. Q. Xu, Z. J. Ma, and J. R. Qiu, “Broad-Band Excited Quantum Cutting in Eu2+-Yb3+ Co-doped Aluminosilicate Glasses,” J. Electrochem. Soc.157(8), B1146–B1148 (2010).
[CrossRef]

X. F. Liu, Y. Teng, Y. X. Zhuang, J. H. Xie, Y. B. Qiao, G. P. Dong, D. P. Chen, and J. R. Qiu, “Broadband conversion of visible light to near-infrared emission by Ce3+, Yb3+-codoped yttrium aluminum garnet,” Opt. Lett.34(22), 3565–3567 (2009).
[CrossRef] [PubMed]

Queisser, H. J.

W. Shockley and H. J. Queisser, “Detailed Balance Limit of Efficiency of p-n Junction Solar Cells,” J. Appl. Phys.32(3), 510–519 (1961).
[CrossRef]

Reid, M. F.

L. Aarts, B. M. van der Ende, M. F. Reid, and A. Meijerink, “Downconversion for Solar Cells in YF3:Pr3+, Yb3+,” Spectrosc. Lett.43(5), 373–381 (2010).
[CrossRef]

J. T. van Wijngaarden, S. Scheidelaar, T. J. H. Vlugt, M. F. Reid, and A. Meijerink, “Energy transfer mechanism for downconversion in the (Pr3+, Yb3+) couple,” Phys. Rev. B81(15), 155112 (2010).
[CrossRef]

Ren, G.

H. Feng, V. Jary, E. Mihokova, D. Ding, M. Nikl, G. Ren, H. Li, S. Pan, A. Beitlerova, and R. Kucerkova, “Temperature dependence of luminescence characteristics of Lu2(1-x)Y2xSiO5: Ce3+ scintillator grown by the Czochralski method,” J. Appl. Phys.108(3), 033519–033524 (2010).
[CrossRef]

Saha, S.

S. Saha, P. S. Chowdhury, and A. Patra, “Luminescence of Ce3+ in Y2SiO5 nanocrystals: Role of crystal structure and crystal size,” J. Phys. Chem. B109(7), 2699–2702 (2005).
[CrossRef] [PubMed]

Scheidelaar, S.

J. T. van Wijngaarden, S. Scheidelaar, T. J. H. Vlugt, M. F. Reid, and A. Meijerink, “Energy transfer mechanism for downconversion in the (Pr3+, Yb3+) couple,” Phys. Rev. B81(15), 155112 (2010).
[CrossRef]

Shannon, R. D.

R. D. Shannon, “Revised Effective Ionic Radii and Systematic Studies of Interatomie Distances in Halides and Chaleogenides,” Acta Crystallogr. A32(5), 751–767 (1976).
[CrossRef]

Shockley, W.

W. Shockley and H. J. Queisser, “Detailed Balance Limit of Efficiency of p-n Junction Solar Cells,” J. Appl. Phys.32(3), 510–519 (1961).
[CrossRef]

Su, Q.

G. G. Zhang, C. M. Liu, J. Wang, X. J. Kuang, and Q. Su, “A dual-mode solar spectral converter CaLaGa3S6O:Ce3+,Pr3+: UV-Vis-NIR luminescence properties and solar spectral converting mechanism,” J. Mater. Chem.22(5), 2226–2232 (2012).
[CrossRef]

B. Han, H. B. Liang, Y. Huang, Y. Tao, and Q. Su, “Vacuum Ultraviolet-Visible Spectroscopic Properties of Tb3+ in Li(Y, Gd)(PO3)4: Tunable Emission, Quantum Cutting, and Energy Transfer,” J. Phys. Chem. C114(14), 6770–6777 (2010).
[CrossRef]

Q. H. Zhang, J. Wang, G. G. Zhang, and Q. Su, “UV photon harvesting and enhanced near-infrared emission in novel quantum cutting Ca2BO3Cl:Ce3+,Tb3+,Yb3+ phosphor,” J. Mater. Chem.19(38), 7088–7092 (2009).
[CrossRef]

Swart, H. C.

E. Coetsee, J. J. Terblans, O. M. Ntwaeaborwa, and H. C. Swart, “Luminescent mechanism of Y2SiO5:Ce phosphor powder,” Physica B404(22), 4426–4430 (2009).
[CrossRef]

Tagiev, O. B.

R. B. Jabbarova, C. Chartier, B. G. Tagieva, O. B. Tagiev, N. N. Musayeva, C. Barthou, and P. Benalloul, “Radiative properties of Eu2+ in BaGa2S4,” J. Phys. Chem. Solids66(6), 1049–1056 (2005).
[CrossRef]

Tagieva, B. G.

R. B. Jabbarova, C. Chartier, B. G. Tagieva, O. B. Tagiev, N. N. Musayeva, C. Barthou, and P. Benalloul, “Radiative properties of Eu2+ in BaGa2S4,” J. Phys. Chem. Solids66(6), 1049–1056 (2005).
[CrossRef]

Tanabe, S.

J. Ueda and S. Tanabe, “Visible to near infrared conversion in Ce3+-Yb3+ Co-doped YAG ceramics,” J. Appl. Phys.106(4), 043101–043105 (2009).
[CrossRef]

Tao, Y.

B. Han, H. B. Liang, Y. Huang, Y. Tao, and Q. Su, “Vacuum Ultraviolet-Visible Spectroscopic Properties of Tb3+ in Li(Y, Gd)(PO3)4: Tunable Emission, Quantum Cutting, and Energy Transfer,” J. Phys. Chem. C114(14), 6770–6777 (2010).
[CrossRef]

Teng, Y.

J. J. Zhou, Y. Teng, G. Lin, X. Q. Xu, Z. J. Ma, and J. R. Qiu, “Broad-Band Excited Quantum Cutting in Eu2+-Yb3+ Co-doped Aluminosilicate Glasses,” J. Electrochem. Soc.157(8), B1146–B1148 (2010).
[CrossRef]

X. F. Liu, Y. Teng, Y. X. Zhuang, J. H. Xie, Y. B. Qiao, G. P. Dong, D. P. Chen, and J. R. Qiu, “Broadband conversion of visible light to near-infrared emission by Ce3+, Yb3+-codoped yttrium aluminum garnet,” Opt. Lett.34(22), 3565–3567 (2009).
[CrossRef] [PubMed]

Terblans, J. J.

E. Coetsee, J. J. Terblans, O. M. Ntwaeaborwa, and H. C. Swart, “Luminescent mechanism of Y2SiO5:Ce phosphor powder,” Physica B404(22), 4426–4430 (2009).
[CrossRef]

Thibault, F.

A. Denoyer, S. Jandl, B. Viana, O. Guillot-Noel, P. Goldner, D. Pelenc, and F. Thibault, “Optical properties of Yb-doped Y2SiO5 thin films,” Opt. Mater.30(3), 416–422 (2007).
[CrossRef]

Tian, S. J.

H. Jiao, F. H. Liao, S. J. Tian, and X. P. Jing, “Influence of rare earth Sc and La to the luminescent properties of FED blue phosphor Y2SiO5: Ce,” J. Electrochem. Soc.151(7), J39–J42 (2004).
[CrossRef]

Trupke, T.

T. Trupke, M. A. Green, and P. Wurfel, “Improving solar cell efficiencies by down-conversion of high-energy photons,” J. Appl. Phys.92(3), 1668–1674 (2002).
[CrossRef]

Ueda, J.

J. Ueda and S. Tanabe, “Visible to near infrared conversion in Ce3+-Yb3+ Co-doped YAG ceramics,” J. Appl. Phys.106(4), 043101–043105 (2009).
[CrossRef]

van der Eerden, J. P. J. M.

P. Vergeer, T. J. H. Vlugt, M. H. F. Kox, M. I. den Hertog, J. P. J. M. van der Eerden, and A. Meijerink, “Quantum cutting by cooperative energy transfer in YbxY1-xPO4: Tb3+,” Phys. Rev. B71(1), 014119–014129 (2005).
[CrossRef]

van der Ende, B. M.

J. M. Meijer, L. Aarts, B. M. van der Ende, T. J. H. Vlugt, and A. Meijerink, “Downconversion for solar cells in YF3:Nd3+, Yb3+,” Phys. Rev. B81(3), 035107–035116 (2010).
[CrossRef]

L. Aarts, B. M. van der Ende, M. F. Reid, and A. Meijerink, “Downconversion for Solar Cells in YF3:Pr3+, Yb3+,” Spectrosc. Lett.43(5), 373–381 (2010).
[CrossRef]

B. M. van der Ende, L. Aarts, and A. Meijerink, “Lanthanide ions as spectral converters for solar cells,” Phys. Chem. Chem. Phys.11(47), 11081–11095 (2009).
[CrossRef] [PubMed]

B. M. van der Ende, L. Aarts, and A. Meijerink, “Near-Infrared Quantum Cutting for Photovoltaics,” Adv. Mater. (Deerfield Beach Fla.)21(30), 3073–3077 (2009).
[CrossRef]

van Wijngaarden, J. T.

J. T. van Wijngaarden, S. Scheidelaar, T. J. H. Vlugt, M. F. Reid, and A. Meijerink, “Energy transfer mechanism for downconversion in the (Pr3+, Yb3+) couple,” Phys. Rev. B81(15), 155112 (2010).
[CrossRef]

Vergeer, P.

P. Vergeer, T. J. H. Vlugt, M. H. F. Kox, M. I. den Hertog, J. P. J. M. van der Eerden, and A. Meijerink, “Quantum cutting by cooperative energy transfer in YbxY1-xPO4: Tb3+,” Phys. Rev. B71(1), 014119–014129 (2005).
[CrossRef]

Viana, B.

A. Denoyer, S. Jandl, B. Viana, O. Guillot-Noel, P. Goldner, D. Pelenc, and F. Thibault, “Optical properties of Yb-doped Y2SiO5 thin films,” Opt. Mater.30(3), 416–422 (2007).
[CrossRef]

L. Pidola, O. Guillot-Noëla, A. Kahn-Hararia, B. Viana, D. Pelencc, and D. Gouriera, “EPR study of Ce3+ ions in lutetium silicate scintillators Lu2Si2O7 and Lu2SiO5,” J. Phys. Chem. Solids67(4), 643–650 (2006).
[CrossRef]

S. Campos, A. Denoyer, S. Jandl, B. Viana, D. Vivien, P. Loiseau, and B. Ferrand, “Spectroscopic studies of Yb3+-doped rare earth orthosilicate crystals,” J. Phys-Condens. Mat.16, 4579–4590 (2004).

Vivien, D.

S. Campos, A. Denoyer, S. Jandl, B. Viana, D. Vivien, P. Loiseau, and B. Ferrand, “Spectroscopic studies of Yb3+-doped rare earth orthosilicate crystals,” J. Phys-Condens. Mat.16, 4579–4590 (2004).

Vlugt, T. J. H.

J. T. van Wijngaarden, S. Scheidelaar, T. J. H. Vlugt, M. F. Reid, and A. Meijerink, “Energy transfer mechanism for downconversion in the (Pr3+, Yb3+) couple,” Phys. Rev. B81(15), 155112 (2010).
[CrossRef]

J. M. Meijer, L. Aarts, B. M. van der Ende, T. J. H. Vlugt, and A. Meijerink, “Downconversion for solar cells in YF3:Nd3+, Yb3+,” Phys. Rev. B81(3), 035107–035116 (2010).
[CrossRef]

P. Vergeer, T. J. H. Vlugt, M. H. F. Kox, M. I. den Hertog, J. P. J. M. van der Eerden, and A. Meijerink, “Quantum cutting by cooperative energy transfer in YbxY1-xPO4: Tb3+,” Phys. Rev. B71(1), 014119–014129 (2005).
[CrossRef]

Wang, J.

G. G. Zhang, C. M. Liu, J. Wang, X. J. Kuang, and Q. Su, “A dual-mode solar spectral converter CaLaGa3S6O:Ce3+,Pr3+: UV-Vis-NIR luminescence properties and solar spectral converting mechanism,” J. Mater. Chem.22(5), 2226–2232 (2012).
[CrossRef]

Q. H. Zhang, J. Wang, G. G. Zhang, and Q. Su, “UV photon harvesting and enhanced near-infrared emission in novel quantum cutting Ca2BO3Cl:Ce3+,Tb3+,Yb3+ phosphor,” J. Mater. Chem.19(38), 7088–7092 (2009).
[CrossRef]

Wang, Y. S.

D. Q. Chen, Y. S. Wang, Y. L. Yu, P. Huang, and F. Y. Weng, “Quantum cutting downconversion by cooperative energy transfer from Ce3+ to Yb3+ in borate glasses,” J. Appl. Phys.104(11), 116105 (2008).
[CrossRef]

Watanabe, T.

H. Matsui, C. N. Xu, Y. Liu, and T. Watanabe, “Optical Spectroscopy of Ce3+-Activated X2-Y2SiO5,” J. Ceram. Soc. Jpn.108(1263), 1003–1006 (2000).
[CrossRef]

Weng, F. Y.

D. Q. Chen, Y. S. Wang, Y. L. Yu, P. Huang, and F. Y. Weng, “Quantum cutting downconversion by cooperative energy transfer from Ce3+ to Yb3+ in borate glasses,” J. Appl. Phys.104(11), 116105 (2008).
[CrossRef]

Wurfel, P.

T. Trupke, M. A. Green, and P. Wurfel, “Improving solar cell efficiencies by down-conversion of high-energy photons,” J. Appl. Phys.92(3), 1668–1674 (2002).
[CrossRef]

Xie, J. H.

Xu, C. N.

H. Matsui, C. N. Xu, Y. Liu, and T. Watanabe, “Optical Spectroscopy of Ce3+-Activated X2-Y2SiO5,” J. Ceram. Soc. Jpn.108(1263), 1003–1006 (2000).
[CrossRef]

Xu, X. Q.

J. J. Zhou, Y. Teng, G. Lin, X. Q. Xu, Z. J. Ma, and J. R. Qiu, “Broad-Band Excited Quantum Cutting in Eu2+-Yb3+ Co-doped Aluminosilicate Glasses,” J. Electrochem. Soc.157(8), B1146–B1148 (2010).
[CrossRef]

Yamamoto, H.

H. Yokota, M. Yoshida, H. Ishibashi, T. Yano, H. Yamamoto, and S. Kikkawa, “Concentration effect of cerium in (Y0.9-xGd0.1Cex)2SiO5 blue phosphor,” J. Alloy. Comp.495(1), 162–166 (2010).
[CrossRef]

Yano, T.

H. Yokota, M. Yoshida, H. Ishibashi, T. Yano, H. Yamamoto, and S. Kikkawa, “Concentration effect of cerium in (Y0.9-xGd0.1Cex)2SiO5 blue phosphor,” J. Alloy. Comp.495(1), 162–166 (2010).
[CrossRef]

Yokota, H.

H. Yokota, M. Yoshida, H. Ishibashi, T. Yano, H. Yamamoto, and S. Kikkawa, “Concentration effect of cerium in (Y0.9-xGd0.1Cex)2SiO5 blue phosphor,” J. Alloy. Comp.495(1), 162–166 (2010).
[CrossRef]

Yoshida, M.

H. Yokota, M. Yoshida, H. Ishibashi, T. Yano, H. Yamamoto, and S. Kikkawa, “Concentration effect of cerium in (Y0.9-xGd0.1Cex)2SiO5 blue phosphor,” J. Alloy. Comp.495(1), 162–166 (2010).
[CrossRef]

Yu, D. C.

X. Y. Huang, D. C. Yu, and Q. Y. Zhang, “Enhanced near-infrared quantum cutting in GdBO3:Tb3+,Yb3+ phosphors by Ce3+ codoping,” J. Appl. Phys.106(11), 113521 (2009).
[CrossRef]

Yu, Y. L.

D. Q. Chen, Y. S. Wang, Y. L. Yu, P. Huang, and F. Y. Weng, “Quantum cutting downconversion by cooperative energy transfer from Ce3+ to Yb3+ in borate glasses,” J. Appl. Phys.104(11), 116105 (2008).
[CrossRef]

Zhang, G. G.

G. G. Zhang, C. M. Liu, J. Wang, X. J. Kuang, and Q. Su, “A dual-mode solar spectral converter CaLaGa3S6O:Ce3+,Pr3+: UV-Vis-NIR luminescence properties and solar spectral converting mechanism,” J. Mater. Chem.22(5), 2226–2232 (2012).
[CrossRef]

Q. H. Zhang, J. Wang, G. G. Zhang, and Q. Su, “UV photon harvesting and enhanced near-infrared emission in novel quantum cutting Ca2BO3Cl:Ce3+,Tb3+,Yb3+ phosphor,” J. Mater. Chem.19(38), 7088–7092 (2009).
[CrossRef]

Zhang, H.

J. D. Chen, H. Guo, Z. Q. Li, H. Zhang, and Y. X. Zhuang, “Near-infrared quantum cutting in Ce3+, Yb3+ co-doped YBO3 phosphors by cooperative energy transfer,” Opt. Mater.32(9), 998–1001 (2010).
[CrossRef]

Zhang, Q. H.

Q. H. Zhang, J. Wang, G. G. Zhang, and Q. Su, “UV photon harvesting and enhanced near-infrared emission in novel quantum cutting Ca2BO3Cl:Ce3+,Tb3+,Yb3+ phosphor,” J. Mater. Chem.19(38), 7088–7092 (2009).
[CrossRef]

Zhang, Q. Y.

Q. Y. Zhang and X. Y. Huang, “Recent progress in quantum cutting phosphors,” Prog. Mater. Sci.55(5), 353–427 (2010).
[CrossRef]

X. Y. Huang, D. C. Yu, and Q. Y. Zhang, “Enhanced near-infrared quantum cutting in GdBO3:Tb3+,Yb3+ phosphors by Ce3+ codoping,” J. Appl. Phys.106(11), 113521 (2009).
[CrossRef]

Zhou, J. J.

J. J. Zhou, Y. Teng, G. Lin, X. Q. Xu, Z. J. Ma, and J. R. Qiu, “Broad-Band Excited Quantum Cutting in Eu2+-Yb3+ Co-doped Aluminosilicate Glasses,” J. Electrochem. Soc.157(8), B1146–B1148 (2010).
[CrossRef]

Zhuang, Y. X.

J. D. Chen, H. Guo, Z. Q. Li, H. Zhang, and Y. X. Zhuang, “Near-infrared quantum cutting in Ce3+, Yb3+ co-doped YBO3 phosphors by cooperative energy transfer,” Opt. Mater.32(9), 998–1001 (2010).
[CrossRef]

X. F. Liu, Y. Teng, Y. X. Zhuang, J. H. Xie, Y. B. Qiao, G. P. Dong, D. P. Chen, and J. R. Qiu, “Broadband conversion of visible light to near-infrared emission by Ce3+, Yb3+-codoped yttrium aluminum garnet,” Opt. Lett.34(22), 3565–3567 (2009).
[CrossRef] [PubMed]

Acta Crystallogr. A (1)

R. D. Shannon, “Revised Effective Ionic Radii and Systematic Studies of Interatomie Distances in Halides and Chaleogenides,” Acta Crystallogr. A32(5), 751–767 (1976).
[CrossRef]

Adv. Mater. (Deerfield Beach Fla.) (1)

B. M. van der Ende, L. Aarts, and A. Meijerink, “Near-Infrared Quantum Cutting for Photovoltaics,” Adv. Mater. (Deerfield Beach Fla.)21(30), 3073–3077 (2009).
[CrossRef]

J. Alloy. Comp. (1)

H. Yokota, M. Yoshida, H. Ishibashi, T. Yano, H. Yamamoto, and S. Kikkawa, “Concentration effect of cerium in (Y0.9-xGd0.1Cex)2SiO5 blue phosphor,” J. Alloy. Comp.495(1), 162–166 (2010).
[CrossRef]

J. Appl. Phys. (6)

H. Feng, V. Jary, E. Mihokova, D. Ding, M. Nikl, G. Ren, H. Li, S. Pan, A. Beitlerova, and R. Kucerkova, “Temperature dependence of luminescence characteristics of Lu2(1-x)Y2xSiO5: Ce3+ scintillator grown by the Czochralski method,” J. Appl. Phys.108(3), 033519–033524 (2010).
[CrossRef]

W. Shockley and H. J. Queisser, “Detailed Balance Limit of Efficiency of p-n Junction Solar Cells,” J. Appl. Phys.32(3), 510–519 (1961).
[CrossRef]

T. Trupke, M. A. Green, and P. Wurfel, “Improving solar cell efficiencies by down-conversion of high-energy photons,” J. Appl. Phys.92(3), 1668–1674 (2002).
[CrossRef]

X. Y. Huang, D. C. Yu, and Q. Y. Zhang, “Enhanced near-infrared quantum cutting in GdBO3:Tb3+,Yb3+ phosphors by Ce3+ codoping,” J. Appl. Phys.106(11), 113521 (2009).
[CrossRef]

J. Ueda and S. Tanabe, “Visible to near infrared conversion in Ce3+-Yb3+ Co-doped YAG ceramics,” J. Appl. Phys.106(4), 043101–043105 (2009).
[CrossRef]

D. Q. Chen, Y. S. Wang, Y. L. Yu, P. Huang, and F. Y. Weng, “Quantum cutting downconversion by cooperative energy transfer from Ce3+ to Yb3+ in borate glasses,” J. Appl. Phys.104(11), 116105 (2008).
[CrossRef]

J. Ceram. Soc. Jpn. (1)

H. Matsui, C. N. Xu, Y. Liu, and T. Watanabe, “Optical Spectroscopy of Ce3+-Activated X2-Y2SiO5,” J. Ceram. Soc. Jpn.108(1263), 1003–1006 (2000).
[CrossRef]

J. Electrochem. Soc. (2)

H. Jiao, F. H. Liao, S. J. Tian, and X. P. Jing, “Influence of rare earth Sc and La to the luminescent properties of FED blue phosphor Y2SiO5: Ce,” J. Electrochem. Soc.151(7), J39–J42 (2004).
[CrossRef]

J. J. Zhou, Y. Teng, G. Lin, X. Q. Xu, Z. J. Ma, and J. R. Qiu, “Broad-Band Excited Quantum Cutting in Eu2+-Yb3+ Co-doped Aluminosilicate Glasses,” J. Electrochem. Soc.157(8), B1146–B1148 (2010).
[CrossRef]

J. Mater. Chem. (2)

Q. H. Zhang, J. Wang, G. G. Zhang, and Q. Su, “UV photon harvesting and enhanced near-infrared emission in novel quantum cutting Ca2BO3Cl:Ce3+,Tb3+,Yb3+ phosphor,” J. Mater. Chem.19(38), 7088–7092 (2009).
[CrossRef]

G. G. Zhang, C. M. Liu, J. Wang, X. J. Kuang, and Q. Su, “A dual-mode solar spectral converter CaLaGa3S6O:Ce3+,Pr3+: UV-Vis-NIR luminescence properties and solar spectral converting mechanism,” J. Mater. Chem.22(5), 2226–2232 (2012).
[CrossRef]

J. Phys-Condens. Mat. (1)

S. Campos, A. Denoyer, S. Jandl, B. Viana, D. Vivien, P. Loiseau, and B. Ferrand, “Spectroscopic studies of Yb3+-doped rare earth orthosilicate crystals,” J. Phys-Condens. Mat.16, 4579–4590 (2004).

J. Phys. Chem. B (1)

S. Saha, P. S. Chowdhury, and A. Patra, “Luminescence of Ce3+ in Y2SiO5 nanocrystals: Role of crystal structure and crystal size,” J. Phys. Chem. B109(7), 2699–2702 (2005).
[CrossRef] [PubMed]

J. Phys. Chem. C (1)

B. Han, H. B. Liang, Y. Huang, Y. Tao, and Q. Su, “Vacuum Ultraviolet-Visible Spectroscopic Properties of Tb3+ in Li(Y, Gd)(PO3)4: Tunable Emission, Quantum Cutting, and Energy Transfer,” J. Phys. Chem. C114(14), 6770–6777 (2010).
[CrossRef]

J. Phys. Chem. Solids (2)

R. B. Jabbarova, C. Chartier, B. G. Tagieva, O. B. Tagiev, N. N. Musayeva, C. Barthou, and P. Benalloul, “Radiative properties of Eu2+ in BaGa2S4,” J. Phys. Chem. Solids66(6), 1049–1056 (2005).
[CrossRef]

L. Pidola, O. Guillot-Noëla, A. Kahn-Hararia, B. Viana, D. Pelencc, and D. Gouriera, “EPR study of Ce3+ ions in lutetium silicate scintillators Lu2Si2O7 and Lu2SiO5,” J. Phys. Chem. Solids67(4), 643–650 (2006).
[CrossRef]

Kristallografiya (1)

B. A. Maksimov, V. V. Ilyukhin, Y. A. Kharitonov, and N. V. Belov, “Crystal structure of yttrium oxyorthosilicate Y2O3SiO2 and Y2SiO5,” Kristallografiya15, 926–933 (1970).

Opt. Lett. (1)

Opt. Mater. (2)

A. Denoyer, S. Jandl, B. Viana, O. Guillot-Noel, P. Goldner, D. Pelenc, and F. Thibault, “Optical properties of Yb-doped Y2SiO5 thin films,” Opt. Mater.30(3), 416–422 (2007).
[CrossRef]

J. D. Chen, H. Guo, Z. Q. Li, H. Zhang, and Y. X. Zhuang, “Near-infrared quantum cutting in Ce3+, Yb3+ co-doped YBO3 phosphors by cooperative energy transfer,” Opt. Mater.32(9), 998–1001 (2010).
[CrossRef]

Phys. Chem. Chem. Phys. (1)

B. M. van der Ende, L. Aarts, and A. Meijerink, “Lanthanide ions as spectral converters for solar cells,” Phys. Chem. Chem. Phys.11(47), 11081–11095 (2009).
[CrossRef] [PubMed]

Phys. Rev. B (3)

J. M. Meijer, L. Aarts, B. M. van der Ende, T. J. H. Vlugt, and A. Meijerink, “Downconversion for solar cells in YF3:Nd3+, Yb3+,” Phys. Rev. B81(3), 035107–035116 (2010).
[CrossRef]

J. T. van Wijngaarden, S. Scheidelaar, T. J. H. Vlugt, M. F. Reid, and A. Meijerink, “Energy transfer mechanism for downconversion in the (Pr3+, Yb3+) couple,” Phys. Rev. B81(15), 155112 (2010).
[CrossRef]

P. Vergeer, T. J. H. Vlugt, M. H. F. Kox, M. I. den Hertog, J. P. J. M. van der Eerden, and A. Meijerink, “Quantum cutting by cooperative energy transfer in YbxY1-xPO4: Tb3+,” Phys. Rev. B71(1), 014119–014129 (2005).
[CrossRef]

Physica B (1)

E. Coetsee, J. J. Terblans, O. M. Ntwaeaborwa, and H. C. Swart, “Luminescent mechanism of Y2SiO5:Ce phosphor powder,” Physica B404(22), 4426–4430 (2009).
[CrossRef]

Prog. Mater. Sci. (1)

Q. Y. Zhang and X. Y. Huang, “Recent progress in quantum cutting phosphors,” Prog. Mater. Sci.55(5), 353–427 (2010).
[CrossRef]

Spectrosc. Lett. (1)

L. Aarts, B. M. van der Ende, M. F. Reid, and A. Meijerink, “Downconversion for Solar Cells in YF3:Pr3+, Yb3+,” Spectrosc. Lett.43(5), 373–381 (2010).
[CrossRef]

Other (1)

A. A. Coelho, TOPAS ACADEMIC. Brisbane: Australia, 2005, version 4.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic energy level diagram on QC process of Tb3+-Yb3+ and Ce3+-Yb3+ couples in some specific systems: (a) borate glasses; (b) YBO3 phosphor and (c) YAG ceramics.

Fig. 2
Fig. 2

Experimental (crosses) and calculated (red solid line) XRD patterns and their difference (blue solid line) for Y1.64Ce0.3Yb0.06SiO5. One set of tick mark shows the Bragg reflection positions of the phase Y1.64Ce0.3Yb0.06SiO5. Inset: the crystal structure of corresponding unit cell.

Fig. 3
Fig. 3

(a), (c) Excitation, (b), (d) UV-vis and NIR emission spectra of Y1.998-yCe0.002SiO5: yYb3+ and Y1.7-yCe0.3SiO5: yYb3+. The visible and NIR emission intensities are not plotted on the same scale.

Fig. 4
Fig. 4

Dependences of the integrated NIR and Vis emission intensity of (a) Y1.998-yCe0.002SiO5: yYb3+ex = 356 nm) and (b) Y1.7-yCe0.3SiO5: yYb3+ex = 372 nm) on the concentration (y) of Yb3+. The integrated visible and NIR emission intensities are not plotted on the same scale.

Fig. 5
Fig. 5

Schematic energy level and cooperative energy transfer (CET) mechanism of Ce3+ and Yb3+ in Y2SiO5 host

Fig. 6
Fig. 6

Decay curves of (a) Y1.998-yCe0.002SiO5: yYb3+ phosphor (y = 0 and 0.2) and (b) Y1.7-yCe0.3SiO5: yYb3+ phosphor (y = 0 and 0.06)

Fig. 7
Fig. 7

(a) Decay lifetime (τ) of Ce3+, (b) nonradiative energy-transfer rate (KCe→Yb), (c) CET efficiency (ηCET) and (d) quantum efficiency (ηQE) as a function of Yb3+ concentration (y) in Y1.998-yCe0.002SiO5: yYb3+ [Ce3+(1)] and Y1.7-yCe0.3SiO5: yYb3+ [Ce3+(2)], respectively.

Tables (1)

Tables Icon

Table 1 Final Refined Structural Parameters for Y1.64Ce0.3Yb0.06SiO5 a

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

d N Ce dt = N Ce τ 0 K CeYb N Ce =( 1 τ 0 + K CeYb ) N Ce = N Ce τ 0
K CeYb = 1 τ 1 τ 0
η CET =1 τ τ 0
η QE = η Ce ( 1 η CET )+2 η Yb η CET

Metrics