Abstract

SrTiO3 tubular structures co-doped with Cr and Ta were synthesized through a combination of solvothermal-hydrothermal processes. X-ray photoelectron spectroscopy (XPS) measurements of the oxidation state of Cr ions reveal that the formation of Cr6+ ions, which would serve as the non-radiative recombination centers for photogenerated electrons and holes, was suppressed without the process of high temperature hydrogen reduction. Compared to similar co-doped materials synthesized by solid-state reaction, (Cr, Ta) co-doped SrTiO3 tubular structures have significantly higher photocatalytic activity for hydrogen evolution as measured in an aqueous methanol solution under visible light irradiation.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Fujishima and K. Honda, “Electrochemical photolysis of water at a semiconductor electrode,” Nature238(5358), 37–38 (1972).
    [CrossRef] [PubMed]
  2. X. Chen, S. Shen, L. Guo, and S. S. Mao, “Semiconductor-based photocatalytic hydrogen generation,” Chem. Rev.110(11), 6503–6570 (2010).
    [CrossRef] [PubMed]
  3. S. Shen, J. Shi, P. Guo, and L. Guo, “Visible-light-driven photocatalytic water splitting on nanostructured semiconducting materials,” Int. J. Nanotechnology8(6/7), 523–591 (2011).
    [CrossRef]
  4. K. Juodkazis, J. Juodkazytė, E. Jelmakas, P. Kalinauskas, I. Valsiūnas, P. Mecinskas, and S. Juodkazis, “Photoelectrolysis of water: Solar hydrogen--achievements and perspectives,” Opt. Express18(S2Suppl 2), A147–A160 (2010).
    [CrossRef] [PubMed]
  5. X. Chen, L. Liu, P. Y. Yu, and S. S. Mao, “Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals,” Science331(6018), 746–750 (2011).
    [CrossRef] [PubMed]
  6. X. Chen and S. S. Mao, “Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications,” Chem. Rev.107(7), 2891–2959 (2007).
    [CrossRef] [PubMed]
  7. H. Li, Z. Bian, J. Zhu, D. Zhang, G. Li, Y. Huo, H. Li, and Y. Lu, “Mesoporous titania spheres with tunable chamber stucture and enhanced photocatalytic activity,” J. Am. Chem. Soc.129(27), 8406–8407 (2007).
    [CrossRef] [PubMed]
  8. J. H. Pan, G. Han, R. Zhou, and X. S. Zhao, “Hierarchical N-doped TiO2 hollow microspheres consisting of nanothorns with exposed anatase 101 facets,” Chem. Commun. (Camb.)47(24), 6942–6944 (2011).
    [CrossRef] [PubMed]
  9. G. Li, J. Liu, and G. Jiang, “Facile synthesis of spiny mesoporous titania tubes with enhanced photocatalytic activity,” Chem. Commun. (Camb.)47(26), 7443–7445 (2011).
    [CrossRef] [PubMed]
  10. R. Niishiro, H. Kato, and A. Kudo, “Nickel and either tantalum or niobium-codoped TiO2 and SrTiO3 photocatalysts with visible-light response for H2 or O2 evolution from aqueous solutions,” Phys. Chem. Chem. Phys.7(10), 2241–2245 (2005).
    [CrossRef] [PubMed]
  11. D. Wang, J. Ye, T. Kako, and T. Kimura, “Photophysical and photocatalytic properties of SrTiO3 doped with Cr cations on different sites,” J. Phys. Chem. B110(32), 15824–15830 (2006).
    [CrossRef] [PubMed]
  12. R. Konta, T. Ishii, H. Kato, and A. Kudo, “Photocatalytic activities of noble metal ion doped SrTiO3 under visible light irradiation,” J. Phys. Chem. B108(26), 8992–8995 (2004).
    [CrossRef]
  13. R. Niishiro, R. Konta, H. Kato, W. J. Chun, K. Asakura, and A. Kudo, “Photocatalytic O2 evolution of rhodium and antimony-codoped rutile-type TiO2 under visible light irradiation,” J. Phys. Chem. C111(46), 17420–17426 (2007).
    [CrossRef]
  14. K. Iwashina and A. Kudo, “Rh-doped SrTiO3 photocatalyst electrode showing cathodic photocurrent for water splitting under visible-light irradiation,” J. Am. Chem. Soc.133(34), 13272–13275 (2011).
    [CrossRef] [PubMed]
  15. H. Kato and A. Kudo, “Visible-light-response and photocatalytic activities of TiO2 and SrTiO3 photocatalysts codoped with antimony and chromium,” J. Phys. Chem. B106(19), 5029–5034 (2002).
    [CrossRef]
  16. T. Ishii, H. Kato, and A. Kudo, “H2 evolution from an aqueous methanol solution on SrTiO3 photocatalysts codoped with chromium and tantalum ions under visible light irradiation,” J. Photochem. Photobiol.163(1-2), 181–186 (2004).
    [CrossRef]
  17. Z. Zheng, B. Huang, X. Qin, X. Zhang, and Y. Dai, “Facile synthesis of SrTiO3 hollow microspheres built as assembly of nanocubes and their associated photocatalytic activity,” J. Colloid Interface Sci.358(1), 68–72 (2011).
    [CrossRef] [PubMed]
  18. D. K. Lee, I. S. Cho, D. K. Yim, J. H. Noh, K. S. Hong, and D. W. Kim, “Synthesis and photoactivity of hetero-nanostructured SrTiO3,” J. Ceram. Soc. Jpn.118(1382), 876–880 (2010).
    [CrossRef]
  19. J. Zhang, J. H. Bang, C. Tang, and P. V. Kamat, “Tailored TiO2-SrTiO3 heterostructure nanotube arrays for improved photoelectrochemical performance,” ACS Nano4(1), 387–395 (2010).
    [CrossRef] [PubMed]
  20. J. W. Liu, G. Chen, Z. H. Li, and Z. G. Zhang, “Electronic structure and visible light photocatalysis water splitting property of chromium-doped SrTiO3,” J. Solid State Chem.179(12), 3704–3708 (2006).
    [CrossRef]
  21. H. W. Kang and S. B. Park, “H2 evolution under visible light irradiation from aqueous methanol solution on SrTiO3:Cr/Ta prepared by spray pyrolysis from polymeric precursor,” Int. J. Hydrogen Energy36(16), 9496–9504 (2011).
    [CrossRef]
  22. S. W. Liu, C. Li, J. G. Yu, and Q. J. Xiang, “Improved visible-light photocatalytic activity of porous carbon self-doped ZnO nanosheet-assembled flowers,” CrystEngComm13(7), 2533–2541 (2011).
    [CrossRef]
  23. J. Shi, J. Ye, Z. Zhou, M. Li, and L. Guo, “Hydrothermal synthesis of Na(0.5)La(0.5)TiO3-LaCrO3 solid-solution single-crystal nanocubes for visible-light-driven photocatalytic H2 evolution,” Chemistry17(28), 7858–7867 (2011).
    [CrossRef] [PubMed]
  24. J. W. Liu, G. Chen, Z. H. Li, and Z. G. Zhang, “Hydrothermal synthesis and photocatalytic properties of ATaO3 and ANbO3 (A = Na and K),” Int. J. Hydrogen Energy32(13), 2269–2272 (2007).
    [CrossRef]
  25. Y. Lee, T. Watanabe, T. Takata, M. Hara, M. Yoshimura, and K. Domen, “Hydrothermal synthesis of fine NaTaO3 powder as a highly efficient photocatalyst for overall water splitting,” Bull. Chem. Soc. Jpn.80(2), 423–428 (2007).
    [CrossRef]

2011 (9)

X. Chen, L. Liu, P. Y. Yu, and S. S. Mao, “Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals,” Science331(6018), 746–750 (2011).
[CrossRef] [PubMed]

J. H. Pan, G. Han, R. Zhou, and X. S. Zhao, “Hierarchical N-doped TiO2 hollow microspheres consisting of nanothorns with exposed anatase 101 facets,” Chem. Commun. (Camb.)47(24), 6942–6944 (2011).
[CrossRef] [PubMed]

G. Li, J. Liu, and G. Jiang, “Facile synthesis of spiny mesoporous titania tubes with enhanced photocatalytic activity,” Chem. Commun. (Camb.)47(26), 7443–7445 (2011).
[CrossRef] [PubMed]

K. Iwashina and A. Kudo, “Rh-doped SrTiO3 photocatalyst electrode showing cathodic photocurrent for water splitting under visible-light irradiation,” J. Am. Chem. Soc.133(34), 13272–13275 (2011).
[CrossRef] [PubMed]

Z. Zheng, B. Huang, X. Qin, X. Zhang, and Y. Dai, “Facile synthesis of SrTiO3 hollow microspheres built as assembly of nanocubes and their associated photocatalytic activity,” J. Colloid Interface Sci.358(1), 68–72 (2011).
[CrossRef] [PubMed]

H. W. Kang and S. B. Park, “H2 evolution under visible light irradiation from aqueous methanol solution on SrTiO3:Cr/Ta prepared by spray pyrolysis from polymeric precursor,” Int. J. Hydrogen Energy36(16), 9496–9504 (2011).
[CrossRef]

S. W. Liu, C. Li, J. G. Yu, and Q. J. Xiang, “Improved visible-light photocatalytic activity of porous carbon self-doped ZnO nanosheet-assembled flowers,” CrystEngComm13(7), 2533–2541 (2011).
[CrossRef]

J. Shi, J. Ye, Z. Zhou, M. Li, and L. Guo, “Hydrothermal synthesis of Na(0.5)La(0.5)TiO3-LaCrO3 solid-solution single-crystal nanocubes for visible-light-driven photocatalytic H2 evolution,” Chemistry17(28), 7858–7867 (2011).
[CrossRef] [PubMed]

S. Shen, J. Shi, P. Guo, and L. Guo, “Visible-light-driven photocatalytic water splitting on nanostructured semiconducting materials,” Int. J. Nanotechnology8(6/7), 523–591 (2011).
[CrossRef]

2010 (4)

K. Juodkazis, J. Juodkazytė, E. Jelmakas, P. Kalinauskas, I. Valsiūnas, P. Mecinskas, and S. Juodkazis, “Photoelectrolysis of water: Solar hydrogen--achievements and perspectives,” Opt. Express18(S2Suppl 2), A147–A160 (2010).
[CrossRef] [PubMed]

X. Chen, S. Shen, L. Guo, and S. S. Mao, “Semiconductor-based photocatalytic hydrogen generation,” Chem. Rev.110(11), 6503–6570 (2010).
[CrossRef] [PubMed]

D. K. Lee, I. S. Cho, D. K. Yim, J. H. Noh, K. S. Hong, and D. W. Kim, “Synthesis and photoactivity of hetero-nanostructured SrTiO3,” J. Ceram. Soc. Jpn.118(1382), 876–880 (2010).
[CrossRef]

J. Zhang, J. H. Bang, C. Tang, and P. V. Kamat, “Tailored TiO2-SrTiO3 heterostructure nanotube arrays for improved photoelectrochemical performance,” ACS Nano4(1), 387–395 (2010).
[CrossRef] [PubMed]

2007 (5)

J. W. Liu, G. Chen, Z. H. Li, and Z. G. Zhang, “Hydrothermal synthesis and photocatalytic properties of ATaO3 and ANbO3 (A = Na and K),” Int. J. Hydrogen Energy32(13), 2269–2272 (2007).
[CrossRef]

Y. Lee, T. Watanabe, T. Takata, M. Hara, M. Yoshimura, and K. Domen, “Hydrothermal synthesis of fine NaTaO3 powder as a highly efficient photocatalyst for overall water splitting,” Bull. Chem. Soc. Jpn.80(2), 423–428 (2007).
[CrossRef]

X. Chen and S. S. Mao, “Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications,” Chem. Rev.107(7), 2891–2959 (2007).
[CrossRef] [PubMed]

H. Li, Z. Bian, J. Zhu, D. Zhang, G. Li, Y. Huo, H. Li, and Y. Lu, “Mesoporous titania spheres with tunable chamber stucture and enhanced photocatalytic activity,” J. Am. Chem. Soc.129(27), 8406–8407 (2007).
[CrossRef] [PubMed]

R. Niishiro, R. Konta, H. Kato, W. J. Chun, K. Asakura, and A. Kudo, “Photocatalytic O2 evolution of rhodium and antimony-codoped rutile-type TiO2 under visible light irradiation,” J. Phys. Chem. C111(46), 17420–17426 (2007).
[CrossRef]

2006 (2)

D. Wang, J. Ye, T. Kako, and T. Kimura, “Photophysical and photocatalytic properties of SrTiO3 doped with Cr cations on different sites,” J. Phys. Chem. B110(32), 15824–15830 (2006).
[CrossRef] [PubMed]

J. W. Liu, G. Chen, Z. H. Li, and Z. G. Zhang, “Electronic structure and visible light photocatalysis water splitting property of chromium-doped SrTiO3,” J. Solid State Chem.179(12), 3704–3708 (2006).
[CrossRef]

2005 (1)

R. Niishiro, H. Kato, and A. Kudo, “Nickel and either tantalum or niobium-codoped TiO2 and SrTiO3 photocatalysts with visible-light response for H2 or O2 evolution from aqueous solutions,” Phys. Chem. Chem. Phys.7(10), 2241–2245 (2005).
[CrossRef] [PubMed]

2004 (2)

R. Konta, T. Ishii, H. Kato, and A. Kudo, “Photocatalytic activities of noble metal ion doped SrTiO3 under visible light irradiation,” J. Phys. Chem. B108(26), 8992–8995 (2004).
[CrossRef]

T. Ishii, H. Kato, and A. Kudo, “H2 evolution from an aqueous methanol solution on SrTiO3 photocatalysts codoped with chromium and tantalum ions under visible light irradiation,” J. Photochem. Photobiol.163(1-2), 181–186 (2004).
[CrossRef]

2002 (1)

H. Kato and A. Kudo, “Visible-light-response and photocatalytic activities of TiO2 and SrTiO3 photocatalysts codoped with antimony and chromium,” J. Phys. Chem. B106(19), 5029–5034 (2002).
[CrossRef]

1972 (1)

A. Fujishima and K. Honda, “Electrochemical photolysis of water at a semiconductor electrode,” Nature238(5358), 37–38 (1972).
[CrossRef] [PubMed]

Asakura, K.

R. Niishiro, R. Konta, H. Kato, W. J. Chun, K. Asakura, and A. Kudo, “Photocatalytic O2 evolution of rhodium and antimony-codoped rutile-type TiO2 under visible light irradiation,” J. Phys. Chem. C111(46), 17420–17426 (2007).
[CrossRef]

Bang, J. H.

J. Zhang, J. H. Bang, C. Tang, and P. V. Kamat, “Tailored TiO2-SrTiO3 heterostructure nanotube arrays for improved photoelectrochemical performance,” ACS Nano4(1), 387–395 (2010).
[CrossRef] [PubMed]

Bian, Z.

H. Li, Z. Bian, J. Zhu, D. Zhang, G. Li, Y. Huo, H. Li, and Y. Lu, “Mesoporous titania spheres with tunable chamber stucture and enhanced photocatalytic activity,” J. Am. Chem. Soc.129(27), 8406–8407 (2007).
[CrossRef] [PubMed]

Chen, G.

J. W. Liu, G. Chen, Z. H. Li, and Z. G. Zhang, “Hydrothermal synthesis and photocatalytic properties of ATaO3 and ANbO3 (A = Na and K),” Int. J. Hydrogen Energy32(13), 2269–2272 (2007).
[CrossRef]

J. W. Liu, G. Chen, Z. H. Li, and Z. G. Zhang, “Electronic structure and visible light photocatalysis water splitting property of chromium-doped SrTiO3,” J. Solid State Chem.179(12), 3704–3708 (2006).
[CrossRef]

Chen, X.

X. Chen, L. Liu, P. Y. Yu, and S. S. Mao, “Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals,” Science331(6018), 746–750 (2011).
[CrossRef] [PubMed]

X. Chen, S. Shen, L. Guo, and S. S. Mao, “Semiconductor-based photocatalytic hydrogen generation,” Chem. Rev.110(11), 6503–6570 (2010).
[CrossRef] [PubMed]

X. Chen and S. S. Mao, “Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications,” Chem. Rev.107(7), 2891–2959 (2007).
[CrossRef] [PubMed]

Cho, I. S.

D. K. Lee, I. S. Cho, D. K. Yim, J. H. Noh, K. S. Hong, and D. W. Kim, “Synthesis and photoactivity of hetero-nanostructured SrTiO3,” J. Ceram. Soc. Jpn.118(1382), 876–880 (2010).
[CrossRef]

Chun, W. J.

R. Niishiro, R. Konta, H. Kato, W. J. Chun, K. Asakura, and A. Kudo, “Photocatalytic O2 evolution of rhodium and antimony-codoped rutile-type TiO2 under visible light irradiation,” J. Phys. Chem. C111(46), 17420–17426 (2007).
[CrossRef]

Dai, Y.

Z. Zheng, B. Huang, X. Qin, X. Zhang, and Y. Dai, “Facile synthesis of SrTiO3 hollow microspheres built as assembly of nanocubes and their associated photocatalytic activity,” J. Colloid Interface Sci.358(1), 68–72 (2011).
[CrossRef] [PubMed]

Domen, K.

Y. Lee, T. Watanabe, T. Takata, M. Hara, M. Yoshimura, and K. Domen, “Hydrothermal synthesis of fine NaTaO3 powder as a highly efficient photocatalyst for overall water splitting,” Bull. Chem. Soc. Jpn.80(2), 423–428 (2007).
[CrossRef]

Fujishima, A.

A. Fujishima and K. Honda, “Electrochemical photolysis of water at a semiconductor electrode,” Nature238(5358), 37–38 (1972).
[CrossRef] [PubMed]

Guo, L.

J. Shi, J. Ye, Z. Zhou, M. Li, and L. Guo, “Hydrothermal synthesis of Na(0.5)La(0.5)TiO3-LaCrO3 solid-solution single-crystal nanocubes for visible-light-driven photocatalytic H2 evolution,” Chemistry17(28), 7858–7867 (2011).
[CrossRef] [PubMed]

S. Shen, J. Shi, P. Guo, and L. Guo, “Visible-light-driven photocatalytic water splitting on nanostructured semiconducting materials,” Int. J. Nanotechnology8(6/7), 523–591 (2011).
[CrossRef]

X. Chen, S. Shen, L. Guo, and S. S. Mao, “Semiconductor-based photocatalytic hydrogen generation,” Chem. Rev.110(11), 6503–6570 (2010).
[CrossRef] [PubMed]

Guo, P.

S. Shen, J. Shi, P. Guo, and L. Guo, “Visible-light-driven photocatalytic water splitting on nanostructured semiconducting materials,” Int. J. Nanotechnology8(6/7), 523–591 (2011).
[CrossRef]

Han, G.

J. H. Pan, G. Han, R. Zhou, and X. S. Zhao, “Hierarchical N-doped TiO2 hollow microspheres consisting of nanothorns with exposed anatase 101 facets,” Chem. Commun. (Camb.)47(24), 6942–6944 (2011).
[CrossRef] [PubMed]

Hara, M.

Y. Lee, T. Watanabe, T. Takata, M. Hara, M. Yoshimura, and K. Domen, “Hydrothermal synthesis of fine NaTaO3 powder as a highly efficient photocatalyst for overall water splitting,” Bull. Chem. Soc. Jpn.80(2), 423–428 (2007).
[CrossRef]

Honda, K.

A. Fujishima and K. Honda, “Electrochemical photolysis of water at a semiconductor electrode,” Nature238(5358), 37–38 (1972).
[CrossRef] [PubMed]

Hong, K. S.

D. K. Lee, I. S. Cho, D. K. Yim, J. H. Noh, K. S. Hong, and D. W. Kim, “Synthesis and photoactivity of hetero-nanostructured SrTiO3,” J. Ceram. Soc. Jpn.118(1382), 876–880 (2010).
[CrossRef]

Huang, B.

Z. Zheng, B. Huang, X. Qin, X. Zhang, and Y. Dai, “Facile synthesis of SrTiO3 hollow microspheres built as assembly of nanocubes and their associated photocatalytic activity,” J. Colloid Interface Sci.358(1), 68–72 (2011).
[CrossRef] [PubMed]

Huo, Y.

H. Li, Z. Bian, J. Zhu, D. Zhang, G. Li, Y. Huo, H. Li, and Y. Lu, “Mesoporous titania spheres with tunable chamber stucture and enhanced photocatalytic activity,” J. Am. Chem. Soc.129(27), 8406–8407 (2007).
[CrossRef] [PubMed]

Ishii, T.

T. Ishii, H. Kato, and A. Kudo, “H2 evolution from an aqueous methanol solution on SrTiO3 photocatalysts codoped with chromium and tantalum ions under visible light irradiation,” J. Photochem. Photobiol.163(1-2), 181–186 (2004).
[CrossRef]

R. Konta, T. Ishii, H. Kato, and A. Kudo, “Photocatalytic activities of noble metal ion doped SrTiO3 under visible light irradiation,” J. Phys. Chem. B108(26), 8992–8995 (2004).
[CrossRef]

Iwashina, K.

K. Iwashina and A. Kudo, “Rh-doped SrTiO3 photocatalyst electrode showing cathodic photocurrent for water splitting under visible-light irradiation,” J. Am. Chem. Soc.133(34), 13272–13275 (2011).
[CrossRef] [PubMed]

Jelmakas, E.

Jiang, G.

G. Li, J. Liu, and G. Jiang, “Facile synthesis of spiny mesoporous titania tubes with enhanced photocatalytic activity,” Chem. Commun. (Camb.)47(26), 7443–7445 (2011).
[CrossRef] [PubMed]

Juodkazis, K.

Juodkazis, S.

Juodkazyte, J.

Kako, T.

D. Wang, J. Ye, T. Kako, and T. Kimura, “Photophysical and photocatalytic properties of SrTiO3 doped with Cr cations on different sites,” J. Phys. Chem. B110(32), 15824–15830 (2006).
[CrossRef] [PubMed]

Kalinauskas, P.

Kamat, P. V.

J. Zhang, J. H. Bang, C. Tang, and P. V. Kamat, “Tailored TiO2-SrTiO3 heterostructure nanotube arrays for improved photoelectrochemical performance,” ACS Nano4(1), 387–395 (2010).
[CrossRef] [PubMed]

Kang, H. W.

H. W. Kang and S. B. Park, “H2 evolution under visible light irradiation from aqueous methanol solution on SrTiO3:Cr/Ta prepared by spray pyrolysis from polymeric precursor,” Int. J. Hydrogen Energy36(16), 9496–9504 (2011).
[CrossRef]

Kato, H.

R. Niishiro, R. Konta, H. Kato, W. J. Chun, K. Asakura, and A. Kudo, “Photocatalytic O2 evolution of rhodium and antimony-codoped rutile-type TiO2 under visible light irradiation,” J. Phys. Chem. C111(46), 17420–17426 (2007).
[CrossRef]

R. Niishiro, H. Kato, and A. Kudo, “Nickel and either tantalum or niobium-codoped TiO2 and SrTiO3 photocatalysts with visible-light response for H2 or O2 evolution from aqueous solutions,” Phys. Chem. Chem. Phys.7(10), 2241–2245 (2005).
[CrossRef] [PubMed]

R. Konta, T. Ishii, H. Kato, and A. Kudo, “Photocatalytic activities of noble metal ion doped SrTiO3 under visible light irradiation,” J. Phys. Chem. B108(26), 8992–8995 (2004).
[CrossRef]

T. Ishii, H. Kato, and A. Kudo, “H2 evolution from an aqueous methanol solution on SrTiO3 photocatalysts codoped with chromium and tantalum ions under visible light irradiation,” J. Photochem. Photobiol.163(1-2), 181–186 (2004).
[CrossRef]

H. Kato and A. Kudo, “Visible-light-response and photocatalytic activities of TiO2 and SrTiO3 photocatalysts codoped with antimony and chromium,” J. Phys. Chem. B106(19), 5029–5034 (2002).
[CrossRef]

Kim, D. W.

D. K. Lee, I. S. Cho, D. K. Yim, J. H. Noh, K. S. Hong, and D. W. Kim, “Synthesis and photoactivity of hetero-nanostructured SrTiO3,” J. Ceram. Soc. Jpn.118(1382), 876–880 (2010).
[CrossRef]

Kimura, T.

D. Wang, J. Ye, T. Kako, and T. Kimura, “Photophysical and photocatalytic properties of SrTiO3 doped with Cr cations on different sites,” J. Phys. Chem. B110(32), 15824–15830 (2006).
[CrossRef] [PubMed]

Konta, R.

R. Niishiro, R. Konta, H. Kato, W. J. Chun, K. Asakura, and A. Kudo, “Photocatalytic O2 evolution of rhodium and antimony-codoped rutile-type TiO2 under visible light irradiation,” J. Phys. Chem. C111(46), 17420–17426 (2007).
[CrossRef]

R. Konta, T. Ishii, H. Kato, and A. Kudo, “Photocatalytic activities of noble metal ion doped SrTiO3 under visible light irradiation,” J. Phys. Chem. B108(26), 8992–8995 (2004).
[CrossRef]

Kudo, A.

K. Iwashina and A. Kudo, “Rh-doped SrTiO3 photocatalyst electrode showing cathodic photocurrent for water splitting under visible-light irradiation,” J. Am. Chem. Soc.133(34), 13272–13275 (2011).
[CrossRef] [PubMed]

R. Niishiro, R. Konta, H. Kato, W. J. Chun, K. Asakura, and A. Kudo, “Photocatalytic O2 evolution of rhodium and antimony-codoped rutile-type TiO2 under visible light irradiation,” J. Phys. Chem. C111(46), 17420–17426 (2007).
[CrossRef]

R. Niishiro, H. Kato, and A. Kudo, “Nickel and either tantalum or niobium-codoped TiO2 and SrTiO3 photocatalysts with visible-light response for H2 or O2 evolution from aqueous solutions,” Phys. Chem. Chem. Phys.7(10), 2241–2245 (2005).
[CrossRef] [PubMed]

R. Konta, T. Ishii, H. Kato, and A. Kudo, “Photocatalytic activities of noble metal ion doped SrTiO3 under visible light irradiation,” J. Phys. Chem. B108(26), 8992–8995 (2004).
[CrossRef]

T. Ishii, H. Kato, and A. Kudo, “H2 evolution from an aqueous methanol solution on SrTiO3 photocatalysts codoped with chromium and tantalum ions under visible light irradiation,” J. Photochem. Photobiol.163(1-2), 181–186 (2004).
[CrossRef]

H. Kato and A. Kudo, “Visible-light-response and photocatalytic activities of TiO2 and SrTiO3 photocatalysts codoped with antimony and chromium,” J. Phys. Chem. B106(19), 5029–5034 (2002).
[CrossRef]

Lee, D. K.

D. K. Lee, I. S. Cho, D. K. Yim, J. H. Noh, K. S. Hong, and D. W. Kim, “Synthesis and photoactivity of hetero-nanostructured SrTiO3,” J. Ceram. Soc. Jpn.118(1382), 876–880 (2010).
[CrossRef]

Lee, Y.

Y. Lee, T. Watanabe, T. Takata, M. Hara, M. Yoshimura, and K. Domen, “Hydrothermal synthesis of fine NaTaO3 powder as a highly efficient photocatalyst for overall water splitting,” Bull. Chem. Soc. Jpn.80(2), 423–428 (2007).
[CrossRef]

Li, C.

S. W. Liu, C. Li, J. G. Yu, and Q. J. Xiang, “Improved visible-light photocatalytic activity of porous carbon self-doped ZnO nanosheet-assembled flowers,” CrystEngComm13(7), 2533–2541 (2011).
[CrossRef]

Li, G.

G. Li, J. Liu, and G. Jiang, “Facile synthesis of spiny mesoporous titania tubes with enhanced photocatalytic activity,” Chem. Commun. (Camb.)47(26), 7443–7445 (2011).
[CrossRef] [PubMed]

H. Li, Z. Bian, J. Zhu, D. Zhang, G. Li, Y. Huo, H. Li, and Y. Lu, “Mesoporous titania spheres with tunable chamber stucture and enhanced photocatalytic activity,” J. Am. Chem. Soc.129(27), 8406–8407 (2007).
[CrossRef] [PubMed]

Li, H.

H. Li, Z. Bian, J. Zhu, D. Zhang, G. Li, Y. Huo, H. Li, and Y. Lu, “Mesoporous titania spheres with tunable chamber stucture and enhanced photocatalytic activity,” J. Am. Chem. Soc.129(27), 8406–8407 (2007).
[CrossRef] [PubMed]

H. Li, Z. Bian, J. Zhu, D. Zhang, G. Li, Y. Huo, H. Li, and Y. Lu, “Mesoporous titania spheres with tunable chamber stucture and enhanced photocatalytic activity,” J. Am. Chem. Soc.129(27), 8406–8407 (2007).
[CrossRef] [PubMed]

Li, M.

J. Shi, J. Ye, Z. Zhou, M. Li, and L. Guo, “Hydrothermal synthesis of Na(0.5)La(0.5)TiO3-LaCrO3 solid-solution single-crystal nanocubes for visible-light-driven photocatalytic H2 evolution,” Chemistry17(28), 7858–7867 (2011).
[CrossRef] [PubMed]

Li, Z. H.

J. W. Liu, G. Chen, Z. H. Li, and Z. G. Zhang, “Hydrothermal synthesis and photocatalytic properties of ATaO3 and ANbO3 (A = Na and K),” Int. J. Hydrogen Energy32(13), 2269–2272 (2007).
[CrossRef]

J. W. Liu, G. Chen, Z. H. Li, and Z. G. Zhang, “Electronic structure and visible light photocatalysis water splitting property of chromium-doped SrTiO3,” J. Solid State Chem.179(12), 3704–3708 (2006).
[CrossRef]

Liu, J.

G. Li, J. Liu, and G. Jiang, “Facile synthesis of spiny mesoporous titania tubes with enhanced photocatalytic activity,” Chem. Commun. (Camb.)47(26), 7443–7445 (2011).
[CrossRef] [PubMed]

Liu, J. W.

J. W. Liu, G. Chen, Z. H. Li, and Z. G. Zhang, “Hydrothermal synthesis and photocatalytic properties of ATaO3 and ANbO3 (A = Na and K),” Int. J. Hydrogen Energy32(13), 2269–2272 (2007).
[CrossRef]

J. W. Liu, G. Chen, Z. H. Li, and Z. G. Zhang, “Electronic structure and visible light photocatalysis water splitting property of chromium-doped SrTiO3,” J. Solid State Chem.179(12), 3704–3708 (2006).
[CrossRef]

Liu, L.

X. Chen, L. Liu, P. Y. Yu, and S. S. Mao, “Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals,” Science331(6018), 746–750 (2011).
[CrossRef] [PubMed]

Liu, S. W.

S. W. Liu, C. Li, J. G. Yu, and Q. J. Xiang, “Improved visible-light photocatalytic activity of porous carbon self-doped ZnO nanosheet-assembled flowers,” CrystEngComm13(7), 2533–2541 (2011).
[CrossRef]

Lu, Y.

H. Li, Z. Bian, J. Zhu, D. Zhang, G. Li, Y. Huo, H. Li, and Y. Lu, “Mesoporous titania spheres with tunable chamber stucture and enhanced photocatalytic activity,” J. Am. Chem. Soc.129(27), 8406–8407 (2007).
[CrossRef] [PubMed]

Mao, S. S.

X. Chen, L. Liu, P. Y. Yu, and S. S. Mao, “Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals,” Science331(6018), 746–750 (2011).
[CrossRef] [PubMed]

X. Chen, S. Shen, L. Guo, and S. S. Mao, “Semiconductor-based photocatalytic hydrogen generation,” Chem. Rev.110(11), 6503–6570 (2010).
[CrossRef] [PubMed]

X. Chen and S. S. Mao, “Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications,” Chem. Rev.107(7), 2891–2959 (2007).
[CrossRef] [PubMed]

Mecinskas, P.

Niishiro, R.

R. Niishiro, R. Konta, H. Kato, W. J. Chun, K. Asakura, and A. Kudo, “Photocatalytic O2 evolution of rhodium and antimony-codoped rutile-type TiO2 under visible light irradiation,” J. Phys. Chem. C111(46), 17420–17426 (2007).
[CrossRef]

R. Niishiro, H. Kato, and A. Kudo, “Nickel and either tantalum or niobium-codoped TiO2 and SrTiO3 photocatalysts with visible-light response for H2 or O2 evolution from aqueous solutions,” Phys. Chem. Chem. Phys.7(10), 2241–2245 (2005).
[CrossRef] [PubMed]

Noh, J. H.

D. K. Lee, I. S. Cho, D. K. Yim, J. H. Noh, K. S. Hong, and D. W. Kim, “Synthesis and photoactivity of hetero-nanostructured SrTiO3,” J. Ceram. Soc. Jpn.118(1382), 876–880 (2010).
[CrossRef]

Pan, J. H.

J. H. Pan, G. Han, R. Zhou, and X. S. Zhao, “Hierarchical N-doped TiO2 hollow microspheres consisting of nanothorns with exposed anatase 101 facets,” Chem. Commun. (Camb.)47(24), 6942–6944 (2011).
[CrossRef] [PubMed]

Park, S. B.

H. W. Kang and S. B. Park, “H2 evolution under visible light irradiation from aqueous methanol solution on SrTiO3:Cr/Ta prepared by spray pyrolysis from polymeric precursor,” Int. J. Hydrogen Energy36(16), 9496–9504 (2011).
[CrossRef]

Qin, X.

Z. Zheng, B. Huang, X. Qin, X. Zhang, and Y. Dai, “Facile synthesis of SrTiO3 hollow microspheres built as assembly of nanocubes and their associated photocatalytic activity,” J. Colloid Interface Sci.358(1), 68–72 (2011).
[CrossRef] [PubMed]

Shen, S.

S. Shen, J. Shi, P. Guo, and L. Guo, “Visible-light-driven photocatalytic water splitting on nanostructured semiconducting materials,” Int. J. Nanotechnology8(6/7), 523–591 (2011).
[CrossRef]

X. Chen, S. Shen, L. Guo, and S. S. Mao, “Semiconductor-based photocatalytic hydrogen generation,” Chem. Rev.110(11), 6503–6570 (2010).
[CrossRef] [PubMed]

Shi, J.

S. Shen, J. Shi, P. Guo, and L. Guo, “Visible-light-driven photocatalytic water splitting on nanostructured semiconducting materials,” Int. J. Nanotechnology8(6/7), 523–591 (2011).
[CrossRef]

J. Shi, J. Ye, Z. Zhou, M. Li, and L. Guo, “Hydrothermal synthesis of Na(0.5)La(0.5)TiO3-LaCrO3 solid-solution single-crystal nanocubes for visible-light-driven photocatalytic H2 evolution,” Chemistry17(28), 7858–7867 (2011).
[CrossRef] [PubMed]

Takata, T.

Y. Lee, T. Watanabe, T. Takata, M. Hara, M. Yoshimura, and K. Domen, “Hydrothermal synthesis of fine NaTaO3 powder as a highly efficient photocatalyst for overall water splitting,” Bull. Chem. Soc. Jpn.80(2), 423–428 (2007).
[CrossRef]

Tang, C.

J. Zhang, J. H. Bang, C. Tang, and P. V. Kamat, “Tailored TiO2-SrTiO3 heterostructure nanotube arrays for improved photoelectrochemical performance,” ACS Nano4(1), 387–395 (2010).
[CrossRef] [PubMed]

Valsiunas, I.

Wang, D.

D. Wang, J. Ye, T. Kako, and T. Kimura, “Photophysical and photocatalytic properties of SrTiO3 doped with Cr cations on different sites,” J. Phys. Chem. B110(32), 15824–15830 (2006).
[CrossRef] [PubMed]

Watanabe, T.

Y. Lee, T. Watanabe, T. Takata, M. Hara, M. Yoshimura, and K. Domen, “Hydrothermal synthesis of fine NaTaO3 powder as a highly efficient photocatalyst for overall water splitting,” Bull. Chem. Soc. Jpn.80(2), 423–428 (2007).
[CrossRef]

Xiang, Q. J.

S. W. Liu, C. Li, J. G. Yu, and Q. J. Xiang, “Improved visible-light photocatalytic activity of porous carbon self-doped ZnO nanosheet-assembled flowers,” CrystEngComm13(7), 2533–2541 (2011).
[CrossRef]

Ye, J.

J. Shi, J. Ye, Z. Zhou, M. Li, and L. Guo, “Hydrothermal synthesis of Na(0.5)La(0.5)TiO3-LaCrO3 solid-solution single-crystal nanocubes for visible-light-driven photocatalytic H2 evolution,” Chemistry17(28), 7858–7867 (2011).
[CrossRef] [PubMed]

D. Wang, J. Ye, T. Kako, and T. Kimura, “Photophysical and photocatalytic properties of SrTiO3 doped with Cr cations on different sites,” J. Phys. Chem. B110(32), 15824–15830 (2006).
[CrossRef] [PubMed]

Yim, D. K.

D. K. Lee, I. S. Cho, D. K. Yim, J. H. Noh, K. S. Hong, and D. W. Kim, “Synthesis and photoactivity of hetero-nanostructured SrTiO3,” J. Ceram. Soc. Jpn.118(1382), 876–880 (2010).
[CrossRef]

Yoshimura, M.

Y. Lee, T. Watanabe, T. Takata, M. Hara, M. Yoshimura, and K. Domen, “Hydrothermal synthesis of fine NaTaO3 powder as a highly efficient photocatalyst for overall water splitting,” Bull. Chem. Soc. Jpn.80(2), 423–428 (2007).
[CrossRef]

Yu, J. G.

S. W. Liu, C. Li, J. G. Yu, and Q. J. Xiang, “Improved visible-light photocatalytic activity of porous carbon self-doped ZnO nanosheet-assembled flowers,” CrystEngComm13(7), 2533–2541 (2011).
[CrossRef]

Yu, P. Y.

X. Chen, L. Liu, P. Y. Yu, and S. S. Mao, “Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals,” Science331(6018), 746–750 (2011).
[CrossRef] [PubMed]

Zhang, D.

H. Li, Z. Bian, J. Zhu, D. Zhang, G. Li, Y. Huo, H. Li, and Y. Lu, “Mesoporous titania spheres with tunable chamber stucture and enhanced photocatalytic activity,” J. Am. Chem. Soc.129(27), 8406–8407 (2007).
[CrossRef] [PubMed]

Zhang, J.

J. Zhang, J. H. Bang, C. Tang, and P. V. Kamat, “Tailored TiO2-SrTiO3 heterostructure nanotube arrays for improved photoelectrochemical performance,” ACS Nano4(1), 387–395 (2010).
[CrossRef] [PubMed]

Zhang, X.

Z. Zheng, B. Huang, X. Qin, X. Zhang, and Y. Dai, “Facile synthesis of SrTiO3 hollow microspheres built as assembly of nanocubes and their associated photocatalytic activity,” J. Colloid Interface Sci.358(1), 68–72 (2011).
[CrossRef] [PubMed]

Zhang, Z. G.

J. W. Liu, G. Chen, Z. H. Li, and Z. G. Zhang, “Hydrothermal synthesis and photocatalytic properties of ATaO3 and ANbO3 (A = Na and K),” Int. J. Hydrogen Energy32(13), 2269–2272 (2007).
[CrossRef]

J. W. Liu, G. Chen, Z. H. Li, and Z. G. Zhang, “Electronic structure and visible light photocatalysis water splitting property of chromium-doped SrTiO3,” J. Solid State Chem.179(12), 3704–3708 (2006).
[CrossRef]

Zhao, X. S.

J. H. Pan, G. Han, R. Zhou, and X. S. Zhao, “Hierarchical N-doped TiO2 hollow microspheres consisting of nanothorns with exposed anatase 101 facets,” Chem. Commun. (Camb.)47(24), 6942–6944 (2011).
[CrossRef] [PubMed]

Zheng, Z.

Z. Zheng, B. Huang, X. Qin, X. Zhang, and Y. Dai, “Facile synthesis of SrTiO3 hollow microspheres built as assembly of nanocubes and their associated photocatalytic activity,” J. Colloid Interface Sci.358(1), 68–72 (2011).
[CrossRef] [PubMed]

Zhou, R.

J. H. Pan, G. Han, R. Zhou, and X. S. Zhao, “Hierarchical N-doped TiO2 hollow microspheres consisting of nanothorns with exposed anatase 101 facets,” Chem. Commun. (Camb.)47(24), 6942–6944 (2011).
[CrossRef] [PubMed]

Zhou, Z.

J. Shi, J. Ye, Z. Zhou, M. Li, and L. Guo, “Hydrothermal synthesis of Na(0.5)La(0.5)TiO3-LaCrO3 solid-solution single-crystal nanocubes for visible-light-driven photocatalytic H2 evolution,” Chemistry17(28), 7858–7867 (2011).
[CrossRef] [PubMed]

Zhu, J.

H. Li, Z. Bian, J. Zhu, D. Zhang, G. Li, Y. Huo, H. Li, and Y. Lu, “Mesoporous titania spheres with tunable chamber stucture and enhanced photocatalytic activity,” J. Am. Chem. Soc.129(27), 8406–8407 (2007).
[CrossRef] [PubMed]

ACS Nano (1)

J. Zhang, J. H. Bang, C. Tang, and P. V. Kamat, “Tailored TiO2-SrTiO3 heterostructure nanotube arrays for improved photoelectrochemical performance,” ACS Nano4(1), 387–395 (2010).
[CrossRef] [PubMed]

Bull. Chem. Soc. Jpn. (1)

Y. Lee, T. Watanabe, T. Takata, M. Hara, M. Yoshimura, and K. Domen, “Hydrothermal synthesis of fine NaTaO3 powder as a highly efficient photocatalyst for overall water splitting,” Bull. Chem. Soc. Jpn.80(2), 423–428 (2007).
[CrossRef]

Chem. Commun. (Camb.) (2)

J. H. Pan, G. Han, R. Zhou, and X. S. Zhao, “Hierarchical N-doped TiO2 hollow microspheres consisting of nanothorns with exposed anatase 101 facets,” Chem. Commun. (Camb.)47(24), 6942–6944 (2011).
[CrossRef] [PubMed]

G. Li, J. Liu, and G. Jiang, “Facile synthesis of spiny mesoporous titania tubes with enhanced photocatalytic activity,” Chem. Commun. (Camb.)47(26), 7443–7445 (2011).
[CrossRef] [PubMed]

Chem. Rev. (2)

X. Chen and S. S. Mao, “Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications,” Chem. Rev.107(7), 2891–2959 (2007).
[CrossRef] [PubMed]

X. Chen, S. Shen, L. Guo, and S. S. Mao, “Semiconductor-based photocatalytic hydrogen generation,” Chem. Rev.110(11), 6503–6570 (2010).
[CrossRef] [PubMed]

Chemistry (1)

J. Shi, J. Ye, Z. Zhou, M. Li, and L. Guo, “Hydrothermal synthesis of Na(0.5)La(0.5)TiO3-LaCrO3 solid-solution single-crystal nanocubes for visible-light-driven photocatalytic H2 evolution,” Chemistry17(28), 7858–7867 (2011).
[CrossRef] [PubMed]

CrystEngComm (1)

S. W. Liu, C. Li, J. G. Yu, and Q. J. Xiang, “Improved visible-light photocatalytic activity of porous carbon self-doped ZnO nanosheet-assembled flowers,” CrystEngComm13(7), 2533–2541 (2011).
[CrossRef]

Int. J. Hydrogen Energy (2)

H. W. Kang and S. B. Park, “H2 evolution under visible light irradiation from aqueous methanol solution on SrTiO3:Cr/Ta prepared by spray pyrolysis from polymeric precursor,” Int. J. Hydrogen Energy36(16), 9496–9504 (2011).
[CrossRef]

J. W. Liu, G. Chen, Z. H. Li, and Z. G. Zhang, “Hydrothermal synthesis and photocatalytic properties of ATaO3 and ANbO3 (A = Na and K),” Int. J. Hydrogen Energy32(13), 2269–2272 (2007).
[CrossRef]

Int. J. Nanotechnology (1)

S. Shen, J. Shi, P. Guo, and L. Guo, “Visible-light-driven photocatalytic water splitting on nanostructured semiconducting materials,” Int. J. Nanotechnology8(6/7), 523–591 (2011).
[CrossRef]

J. Am. Chem. Soc. (2)

H. Li, Z. Bian, J. Zhu, D. Zhang, G. Li, Y. Huo, H. Li, and Y. Lu, “Mesoporous titania spheres with tunable chamber stucture and enhanced photocatalytic activity,” J. Am. Chem. Soc.129(27), 8406–8407 (2007).
[CrossRef] [PubMed]

K. Iwashina and A. Kudo, “Rh-doped SrTiO3 photocatalyst electrode showing cathodic photocurrent for water splitting under visible-light irradiation,” J. Am. Chem. Soc.133(34), 13272–13275 (2011).
[CrossRef] [PubMed]

J. Ceram. Soc. Jpn. (1)

D. K. Lee, I. S. Cho, D. K. Yim, J. H. Noh, K. S. Hong, and D. W. Kim, “Synthesis and photoactivity of hetero-nanostructured SrTiO3,” J. Ceram. Soc. Jpn.118(1382), 876–880 (2010).
[CrossRef]

J. Colloid Interface Sci. (1)

Z. Zheng, B. Huang, X. Qin, X. Zhang, and Y. Dai, “Facile synthesis of SrTiO3 hollow microspheres built as assembly of nanocubes and their associated photocatalytic activity,” J. Colloid Interface Sci.358(1), 68–72 (2011).
[CrossRef] [PubMed]

J. Photochem. Photobiol. (1)

T. Ishii, H. Kato, and A. Kudo, “H2 evolution from an aqueous methanol solution on SrTiO3 photocatalysts codoped with chromium and tantalum ions under visible light irradiation,” J. Photochem. Photobiol.163(1-2), 181–186 (2004).
[CrossRef]

J. Phys. Chem. B (3)

H. Kato and A. Kudo, “Visible-light-response and photocatalytic activities of TiO2 and SrTiO3 photocatalysts codoped with antimony and chromium,” J. Phys. Chem. B106(19), 5029–5034 (2002).
[CrossRef]

D. Wang, J. Ye, T. Kako, and T. Kimura, “Photophysical and photocatalytic properties of SrTiO3 doped with Cr cations on different sites,” J. Phys. Chem. B110(32), 15824–15830 (2006).
[CrossRef] [PubMed]

R. Konta, T. Ishii, H. Kato, and A. Kudo, “Photocatalytic activities of noble metal ion doped SrTiO3 under visible light irradiation,” J. Phys. Chem. B108(26), 8992–8995 (2004).
[CrossRef]

J. Phys. Chem. C (1)

R. Niishiro, R. Konta, H. Kato, W. J. Chun, K. Asakura, and A. Kudo, “Photocatalytic O2 evolution of rhodium and antimony-codoped rutile-type TiO2 under visible light irradiation,” J. Phys. Chem. C111(46), 17420–17426 (2007).
[CrossRef]

J. Solid State Chem. (1)

J. W. Liu, G. Chen, Z. H. Li, and Z. G. Zhang, “Electronic structure and visible light photocatalysis water splitting property of chromium-doped SrTiO3,” J. Solid State Chem.179(12), 3704–3708 (2006).
[CrossRef]

Nature (1)

A. Fujishima and K. Honda, “Electrochemical photolysis of water at a semiconductor electrode,” Nature238(5358), 37–38 (1972).
[CrossRef] [PubMed]

Opt. Express (1)

Phys. Chem. Chem. Phys. (1)

R. Niishiro, H. Kato, and A. Kudo, “Nickel and either tantalum or niobium-codoped TiO2 and SrTiO3 photocatalysts with visible-light response for H2 or O2 evolution from aqueous solutions,” Phys. Chem. Chem. Phys.7(10), 2241–2245 (2005).
[CrossRef] [PubMed]

Science (1)

X. Chen, L. Liu, P. Y. Yu, and S. S. Mao, “Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals,” Science331(6018), 746–750 (2011).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

SEM images of crystallized tubular (Cr, Ta)-codoped TiO2, (a,b) T-550 and (c,d) T-900.

Fig. 2
Fig. 2

SEM images of the final tubular (Cr, Ta)-codoped SrTiO3 products, (a,b) ST-01, (c,d) ST-02, and (e,f) ST-03.

Fig. 3
Fig. 3

XRD patterns of crystallized tubular (Cr, Ta)-codoped TiO2 (T-550 and T-900), and tubular (Cr, Ta)-codoped SrTiO3 (ST-01, ST-02, and ST-03).

Fig. 4
Fig. 4

UV-Vis spectra of the final tubular (Cr, Ta)-codoped SrTiO3 (ST-01, ST-02, and ST-03) products and (Cr, Ta)-codoped SrTiO3 as reference (ST-SSR).

Fig. 5
Fig. 5

XPS spectra of Cr 2p of tubular (Cr, Ta)-codoped SrTiO3 (ST-01, ST-02, and ST-03).

Fig. 6
Fig. 6

Time courses of visible-light-driven H2 evolution over tubular (Cr, Ta)-codoped SrTiO3 (ST-01, ST-02, and ST-03) and (Cr, Ta)-codoped SrTiO3 as reference (ST-SSR).

Tables (1)

Tables Icon

Table 1 Information of the Final Tubular (Cr, Ta) Co-Doped SrTiO3 Products (ST-01, ST-02 and ST-03).

Metrics