Abstract

Luminescent solar concentrators (LSC) are used in photovoltaic applications to concentrate direct and diffuse sunlight without tracking. We employed 2D FDTD simulations to investigate the concept of a photonic LSC (PLSC), where the luminescent material is embedded in a photonic crystal to mitigate the primary losses in LSCs: the escape cone and reabsorption. We obtain suppressed emission inside the photonic band gap, which can be utilized to reduce reabsorption. Furthermore, the efficiency of light guiding is strongly enhanced in a broad spectral range, reaching up to 99.7%. Our optimization of design parameters suggests emitting layers of sub-wavelength thickness.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Zastrow, “Physikalische Analyse der Energieverlustmechanismen im Fluoreszenzkollektor,” PdD thesis (Albert-Ludwigs-Universität Freiburg, Freiburg, 1981).
  2. R. Reisfeld and S. Neumann, “Planar solar energy converter and concentrator based on uranyl-doped glass,” Nature274(5667), 144–145 (1978).
    [CrossRef]
  3. S. J. Gallagher, B. Norton, and P. C. Eames, “Quantum dot solar concentrators: electrical conversion efficiencies and comparative concentrating factors of fabricated devices,” Sol. Energy81(6), 813–821 (2007).
    [CrossRef]
  4. W. H. Weber and J. Lambe, “Luminescent greenhouse collector for solar radiation,” Appl. Opt.15(10), 2299–2300 (1976).
    [CrossRef] [PubMed]
  5. A. Goetzberger and W. Greubel, “Solar energy conversion with fluorescent collectors,” Appl. Phys. A–Mater.14, 123–139 (1977).
  6. L. H. Slooff, E. E. Bende, A. R. Burgers, T. Budel, M. Pravettoni, R. P. Kenny, E. D. Dunlop, and A. Büchtemann, “A luminescent solar concentrator with 7.1% power conversion efficiency,” Phys. Status. Solidi Rapid Res. Lett.2, 257–259 (2008).
  7. G. Smestad, H. Ries, R. Winston, and E. Yablonovitch, “The thermodynamic limit of light concentrators,” Sol. Energy Mater.21(2–3), 99–111 (1990).
    [CrossRef]
  8. U. Rau, F. Einsele, and G. C. Glaeser, “Efficiency limits of photovoltaic fluorescent collectors,” Appl. Phys. Lett.87(17), 171101 (2005).
    [CrossRef]
  9. M. Peters, J. C. Goldschmidt, P. Löper, B. Bläsi, and A. Gombert, “The effect of photonic structures on the light guiding efficiency of fluorescent concentrators,” J. Appl. Phys.105(1), 014909 (2009).
    [CrossRef]
  10. B. S. Richards, A. Shalav, and R. Corkish, “A low escape-cone-loss luminescent solar concentrator,” in Proceedings of the 19th European Photovoltaic Solar Energy Conference, 2004, 113–116.
  11. D. K. G. de Boer, C.-W. Lin, M. P. Giesbers, H. J. Cornelissen, M. G. Debije, P. P. C. Verbunt, and D. J. Broer, “Polarization-independent filters for luminescent solar concentrators,” Appl. Phys. Lett.98(2), 021111 (2011).
    [CrossRef]
  12. J. C. Goldschmidt, M. Peters, L. Prönneke, L. Steidl, R. Zentel, B. Bläsi, A. Gombert, S. Glunz, G. Willeke, and U. Rau, “Theoretical and experimental analysis of photonic structures for fluorescent concentrators with increased efficiencies,” Phys. Status. Solidi A205(12), 2811–2821 (2008).
    [CrossRef]
  13. J. C. Goldschmidt, M. Peters, A. Bösch, H. Helmers, F. Dimroth, S. W. Glunz, and G. Willeke, “Increasing the efficiency of fluorescent concentrator systems,” Sol. Energy Mater. Sol. Cells93(2), 176–182 (2009).
    [CrossRef]
  14. J. C. Goldschmidt, M. Peters, J. Gutmann, L. Steidl, R. Zentel, B. Bläsi, and M. Hermle, “Increasing fluorescent concentrator light collection efficiency by restricting the angular emission characteristics of the incorporated luminescent material - the “nano-fluko” concept,” Proc. SPIE7725, 77250S, 77250S-11 (2010).
    [CrossRef]
  15. V. P. Bykov, “Spontaneous emission in a periodic structure,” Sov. Phys. JETP35, 269 (1972).
  16. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett.58(20), 2059–2062 (1987).
    [CrossRef] [PubMed]
  17. M. Carrascosa, S. Unamuno, and F. Agullo-Lopez, “Monte Carlo simulation of the performance of PMMA luminescent solar collectors,” Appl. Opt.22(20), 3236–3241 (1983).
    [CrossRef] [PubMed]
  18. S. J. Gallagher, P. C. Eames, and B. Norton, “Quantum dot solar concentrator behavior, predicted using a ray trace approach,” Int. J. Ambient Energ.25(1), 47–56 (2004).
    [CrossRef]
  19. K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media,” IEEE Trans. Antenn. Propag.14(3), 302–307 (1966).
    [CrossRef]
  20. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd ed. (Artech House, Norwood, MA, 2005).
  21. A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: a flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun.181(3), 687–702 (2010).
    [CrossRef]
  22. S. G. Johnson and J. D. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis,” Opt. Express8(3), 173–190 (2001).
    [CrossRef] [PubMed]
  23. H. A. Macleod, Thin-Film Optical Filters, 2nd ed. (Adam Hilger, 1986).
  24. Lumogen® Red specification sheet, Kremer Pigmente GmbH & Co. KG, http://www.kremer-pigmente.com/shop_veyton/media/files_public/94720.pdf .

2011 (1)

D. K. G. de Boer, C.-W. Lin, M. P. Giesbers, H. J. Cornelissen, M. G. Debije, P. P. C. Verbunt, and D. J. Broer, “Polarization-independent filters for luminescent solar concentrators,” Appl. Phys. Lett.98(2), 021111 (2011).
[CrossRef]

2010 (2)

J. C. Goldschmidt, M. Peters, J. Gutmann, L. Steidl, R. Zentel, B. Bläsi, and M. Hermle, “Increasing fluorescent concentrator light collection efficiency by restricting the angular emission characteristics of the incorporated luminescent material - the “nano-fluko” concept,” Proc. SPIE7725, 77250S, 77250S-11 (2010).
[CrossRef]

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: a flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun.181(3), 687–702 (2010).
[CrossRef]

2009 (2)

M. Peters, J. C. Goldschmidt, P. Löper, B. Bläsi, and A. Gombert, “The effect of photonic structures on the light guiding efficiency of fluorescent concentrators,” J. Appl. Phys.105(1), 014909 (2009).
[CrossRef]

J. C. Goldschmidt, M. Peters, A. Bösch, H. Helmers, F. Dimroth, S. W. Glunz, and G. Willeke, “Increasing the efficiency of fluorescent concentrator systems,” Sol. Energy Mater. Sol. Cells93(2), 176–182 (2009).
[CrossRef]

2008 (2)

J. C. Goldschmidt, M. Peters, L. Prönneke, L. Steidl, R. Zentel, B. Bläsi, A. Gombert, S. Glunz, G. Willeke, and U. Rau, “Theoretical and experimental analysis of photonic structures for fluorescent concentrators with increased efficiencies,” Phys. Status. Solidi A205(12), 2811–2821 (2008).
[CrossRef]

L. H. Slooff, E. E. Bende, A. R. Burgers, T. Budel, M. Pravettoni, R. P. Kenny, E. D. Dunlop, and A. Büchtemann, “A luminescent solar concentrator with 7.1% power conversion efficiency,” Phys. Status. Solidi Rapid Res. Lett.2, 257–259 (2008).

2007 (1)

S. J. Gallagher, B. Norton, and P. C. Eames, “Quantum dot solar concentrators: electrical conversion efficiencies and comparative concentrating factors of fabricated devices,” Sol. Energy81(6), 813–821 (2007).
[CrossRef]

2005 (1)

U. Rau, F. Einsele, and G. C. Glaeser, “Efficiency limits of photovoltaic fluorescent collectors,” Appl. Phys. Lett.87(17), 171101 (2005).
[CrossRef]

2004 (1)

S. J. Gallagher, P. C. Eames, and B. Norton, “Quantum dot solar concentrator behavior, predicted using a ray trace approach,” Int. J. Ambient Energ.25(1), 47–56 (2004).
[CrossRef]

2001 (1)

1990 (1)

G. Smestad, H. Ries, R. Winston, and E. Yablonovitch, “The thermodynamic limit of light concentrators,” Sol. Energy Mater.21(2–3), 99–111 (1990).
[CrossRef]

1987 (1)

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett.58(20), 2059–2062 (1987).
[CrossRef] [PubMed]

1983 (1)

1978 (1)

R. Reisfeld and S. Neumann, “Planar solar energy converter and concentrator based on uranyl-doped glass,” Nature274(5667), 144–145 (1978).
[CrossRef]

1977 (1)

A. Goetzberger and W. Greubel, “Solar energy conversion with fluorescent collectors,” Appl. Phys. A–Mater.14, 123–139 (1977).

1976 (1)

1972 (1)

V. P. Bykov, “Spontaneous emission in a periodic structure,” Sov. Phys. JETP35, 269 (1972).

1966 (1)

K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media,” IEEE Trans. Antenn. Propag.14(3), 302–307 (1966).
[CrossRef]

Agullo-Lopez, F.

Bende, E. E.

L. H. Slooff, E. E. Bende, A. R. Burgers, T. Budel, M. Pravettoni, R. P. Kenny, E. D. Dunlop, and A. Büchtemann, “A luminescent solar concentrator with 7.1% power conversion efficiency,” Phys. Status. Solidi Rapid Res. Lett.2, 257–259 (2008).

Bermel, P.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: a flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun.181(3), 687–702 (2010).
[CrossRef]

Bläsi, B.

J. C. Goldschmidt, M. Peters, J. Gutmann, L. Steidl, R. Zentel, B. Bläsi, and M. Hermle, “Increasing fluorescent concentrator light collection efficiency by restricting the angular emission characteristics of the incorporated luminescent material - the “nano-fluko” concept,” Proc. SPIE7725, 77250S, 77250S-11 (2010).
[CrossRef]

M. Peters, J. C. Goldschmidt, P. Löper, B. Bläsi, and A. Gombert, “The effect of photonic structures on the light guiding efficiency of fluorescent concentrators,” J. Appl. Phys.105(1), 014909 (2009).
[CrossRef]

J. C. Goldschmidt, M. Peters, L. Prönneke, L. Steidl, R. Zentel, B. Bläsi, A. Gombert, S. Glunz, G. Willeke, and U. Rau, “Theoretical and experimental analysis of photonic structures for fluorescent concentrators with increased efficiencies,” Phys. Status. Solidi A205(12), 2811–2821 (2008).
[CrossRef]

Bösch, A.

J. C. Goldschmidt, M. Peters, A. Bösch, H. Helmers, F. Dimroth, S. W. Glunz, and G. Willeke, “Increasing the efficiency of fluorescent concentrator systems,” Sol. Energy Mater. Sol. Cells93(2), 176–182 (2009).
[CrossRef]

Broer, D. J.

D. K. G. de Boer, C.-W. Lin, M. P. Giesbers, H. J. Cornelissen, M. G. Debije, P. P. C. Verbunt, and D. J. Broer, “Polarization-independent filters for luminescent solar concentrators,” Appl. Phys. Lett.98(2), 021111 (2011).
[CrossRef]

Büchtemann, A.

L. H. Slooff, E. E. Bende, A. R. Burgers, T. Budel, M. Pravettoni, R. P. Kenny, E. D. Dunlop, and A. Büchtemann, “A luminescent solar concentrator with 7.1% power conversion efficiency,” Phys. Status. Solidi Rapid Res. Lett.2, 257–259 (2008).

Budel, T.

L. H. Slooff, E. E. Bende, A. R. Burgers, T. Budel, M. Pravettoni, R. P. Kenny, E. D. Dunlop, and A. Büchtemann, “A luminescent solar concentrator with 7.1% power conversion efficiency,” Phys. Status. Solidi Rapid Res. Lett.2, 257–259 (2008).

Burgers, A. R.

L. H. Slooff, E. E. Bende, A. R. Burgers, T. Budel, M. Pravettoni, R. P. Kenny, E. D. Dunlop, and A. Büchtemann, “A luminescent solar concentrator with 7.1% power conversion efficiency,” Phys. Status. Solidi Rapid Res. Lett.2, 257–259 (2008).

Bykov, V. P.

V. P. Bykov, “Spontaneous emission in a periodic structure,” Sov. Phys. JETP35, 269 (1972).

Carrascosa, M.

Cornelissen, H. J.

D. K. G. de Boer, C.-W. Lin, M. P. Giesbers, H. J. Cornelissen, M. G. Debije, P. P. C. Verbunt, and D. J. Broer, “Polarization-independent filters for luminescent solar concentrators,” Appl. Phys. Lett.98(2), 021111 (2011).
[CrossRef]

de Boer, D. K. G.

D. K. G. de Boer, C.-W. Lin, M. P. Giesbers, H. J. Cornelissen, M. G. Debije, P. P. C. Verbunt, and D. J. Broer, “Polarization-independent filters for luminescent solar concentrators,” Appl. Phys. Lett.98(2), 021111 (2011).
[CrossRef]

Debije, M. G.

D. K. G. de Boer, C.-W. Lin, M. P. Giesbers, H. J. Cornelissen, M. G. Debije, P. P. C. Verbunt, and D. J. Broer, “Polarization-independent filters for luminescent solar concentrators,” Appl. Phys. Lett.98(2), 021111 (2011).
[CrossRef]

Dimroth, F.

J. C. Goldschmidt, M. Peters, A. Bösch, H. Helmers, F. Dimroth, S. W. Glunz, and G. Willeke, “Increasing the efficiency of fluorescent concentrator systems,” Sol. Energy Mater. Sol. Cells93(2), 176–182 (2009).
[CrossRef]

Dunlop, E. D.

L. H. Slooff, E. E. Bende, A. R. Burgers, T. Budel, M. Pravettoni, R. P. Kenny, E. D. Dunlop, and A. Büchtemann, “A luminescent solar concentrator with 7.1% power conversion efficiency,” Phys. Status. Solidi Rapid Res. Lett.2, 257–259 (2008).

Eames, P. C.

S. J. Gallagher, B. Norton, and P. C. Eames, “Quantum dot solar concentrators: electrical conversion efficiencies and comparative concentrating factors of fabricated devices,” Sol. Energy81(6), 813–821 (2007).
[CrossRef]

S. J. Gallagher, P. C. Eames, and B. Norton, “Quantum dot solar concentrator behavior, predicted using a ray trace approach,” Int. J. Ambient Energ.25(1), 47–56 (2004).
[CrossRef]

Einsele, F.

U. Rau, F. Einsele, and G. C. Glaeser, “Efficiency limits of photovoltaic fluorescent collectors,” Appl. Phys. Lett.87(17), 171101 (2005).
[CrossRef]

Gallagher, S. J.

S. J. Gallagher, B. Norton, and P. C. Eames, “Quantum dot solar concentrators: electrical conversion efficiencies and comparative concentrating factors of fabricated devices,” Sol. Energy81(6), 813–821 (2007).
[CrossRef]

S. J. Gallagher, P. C. Eames, and B. Norton, “Quantum dot solar concentrator behavior, predicted using a ray trace approach,” Int. J. Ambient Energ.25(1), 47–56 (2004).
[CrossRef]

Giesbers, M. P.

D. K. G. de Boer, C.-W. Lin, M. P. Giesbers, H. J. Cornelissen, M. G. Debije, P. P. C. Verbunt, and D. J. Broer, “Polarization-independent filters for luminescent solar concentrators,” Appl. Phys. Lett.98(2), 021111 (2011).
[CrossRef]

Glaeser, G. C.

U. Rau, F. Einsele, and G. C. Glaeser, “Efficiency limits of photovoltaic fluorescent collectors,” Appl. Phys. Lett.87(17), 171101 (2005).
[CrossRef]

Glunz, S.

J. C. Goldschmidt, M. Peters, L. Prönneke, L. Steidl, R. Zentel, B. Bläsi, A. Gombert, S. Glunz, G. Willeke, and U. Rau, “Theoretical and experimental analysis of photonic structures for fluorescent concentrators with increased efficiencies,” Phys. Status. Solidi A205(12), 2811–2821 (2008).
[CrossRef]

Glunz, S. W.

J. C. Goldschmidt, M. Peters, A. Bösch, H. Helmers, F. Dimroth, S. W. Glunz, and G. Willeke, “Increasing the efficiency of fluorescent concentrator systems,” Sol. Energy Mater. Sol. Cells93(2), 176–182 (2009).
[CrossRef]

Goetzberger, A.

A. Goetzberger and W. Greubel, “Solar energy conversion with fluorescent collectors,” Appl. Phys. A–Mater.14, 123–139 (1977).

Goldschmidt, J. C.

J. C. Goldschmidt, M. Peters, J. Gutmann, L. Steidl, R. Zentel, B. Bläsi, and M. Hermle, “Increasing fluorescent concentrator light collection efficiency by restricting the angular emission characteristics of the incorporated luminescent material - the “nano-fluko” concept,” Proc. SPIE7725, 77250S, 77250S-11 (2010).
[CrossRef]

J. C. Goldschmidt, M. Peters, A. Bösch, H. Helmers, F. Dimroth, S. W. Glunz, and G. Willeke, “Increasing the efficiency of fluorescent concentrator systems,” Sol. Energy Mater. Sol. Cells93(2), 176–182 (2009).
[CrossRef]

M. Peters, J. C. Goldschmidt, P. Löper, B. Bläsi, and A. Gombert, “The effect of photonic structures on the light guiding efficiency of fluorescent concentrators,” J. Appl. Phys.105(1), 014909 (2009).
[CrossRef]

J. C. Goldschmidt, M. Peters, L. Prönneke, L. Steidl, R. Zentel, B. Bläsi, A. Gombert, S. Glunz, G. Willeke, and U. Rau, “Theoretical and experimental analysis of photonic structures for fluorescent concentrators with increased efficiencies,” Phys. Status. Solidi A205(12), 2811–2821 (2008).
[CrossRef]

Gombert, A.

M. Peters, J. C. Goldschmidt, P. Löper, B. Bläsi, and A. Gombert, “The effect of photonic structures on the light guiding efficiency of fluorescent concentrators,” J. Appl. Phys.105(1), 014909 (2009).
[CrossRef]

J. C. Goldschmidt, M. Peters, L. Prönneke, L. Steidl, R. Zentel, B. Bläsi, A. Gombert, S. Glunz, G. Willeke, and U. Rau, “Theoretical and experimental analysis of photonic structures for fluorescent concentrators with increased efficiencies,” Phys. Status. Solidi A205(12), 2811–2821 (2008).
[CrossRef]

Greubel, W.

A. Goetzberger and W. Greubel, “Solar energy conversion with fluorescent collectors,” Appl. Phys. A–Mater.14, 123–139 (1977).

Gutmann, J.

J. C. Goldschmidt, M. Peters, J. Gutmann, L. Steidl, R. Zentel, B. Bläsi, and M. Hermle, “Increasing fluorescent concentrator light collection efficiency by restricting the angular emission characteristics of the incorporated luminescent material - the “nano-fluko” concept,” Proc. SPIE7725, 77250S, 77250S-11 (2010).
[CrossRef]

Helmers, H.

J. C. Goldschmidt, M. Peters, A. Bösch, H. Helmers, F. Dimroth, S. W. Glunz, and G. Willeke, “Increasing the efficiency of fluorescent concentrator systems,” Sol. Energy Mater. Sol. Cells93(2), 176–182 (2009).
[CrossRef]

Hermle, M.

J. C. Goldschmidt, M. Peters, J. Gutmann, L. Steidl, R. Zentel, B. Bläsi, and M. Hermle, “Increasing fluorescent concentrator light collection efficiency by restricting the angular emission characteristics of the incorporated luminescent material - the “nano-fluko” concept,” Proc. SPIE7725, 77250S, 77250S-11 (2010).
[CrossRef]

Ibanescu, M.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: a flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun.181(3), 687–702 (2010).
[CrossRef]

Joannopoulos, J. D.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: a flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun.181(3), 687–702 (2010).
[CrossRef]

S. G. Johnson and J. D. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis,” Opt. Express8(3), 173–190 (2001).
[CrossRef] [PubMed]

Johnson, S. G.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: a flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun.181(3), 687–702 (2010).
[CrossRef]

S. G. Johnson and J. D. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis,” Opt. Express8(3), 173–190 (2001).
[CrossRef] [PubMed]

Kenny, R. P.

L. H. Slooff, E. E. Bende, A. R. Burgers, T. Budel, M. Pravettoni, R. P. Kenny, E. D. Dunlop, and A. Büchtemann, “A luminescent solar concentrator with 7.1% power conversion efficiency,” Phys. Status. Solidi Rapid Res. Lett.2, 257–259 (2008).

Lambe, J.

Lin, C.-W.

D. K. G. de Boer, C.-W. Lin, M. P. Giesbers, H. J. Cornelissen, M. G. Debije, P. P. C. Verbunt, and D. J. Broer, “Polarization-independent filters for luminescent solar concentrators,” Appl. Phys. Lett.98(2), 021111 (2011).
[CrossRef]

Löper, P.

M. Peters, J. C. Goldschmidt, P. Löper, B. Bläsi, and A. Gombert, “The effect of photonic structures on the light guiding efficiency of fluorescent concentrators,” J. Appl. Phys.105(1), 014909 (2009).
[CrossRef]

Neumann, S.

R. Reisfeld and S. Neumann, “Planar solar energy converter and concentrator based on uranyl-doped glass,” Nature274(5667), 144–145 (1978).
[CrossRef]

Norton, B.

S. J. Gallagher, B. Norton, and P. C. Eames, “Quantum dot solar concentrators: electrical conversion efficiencies and comparative concentrating factors of fabricated devices,” Sol. Energy81(6), 813–821 (2007).
[CrossRef]

S. J. Gallagher, P. C. Eames, and B. Norton, “Quantum dot solar concentrator behavior, predicted using a ray trace approach,” Int. J. Ambient Energ.25(1), 47–56 (2004).
[CrossRef]

Oskooi, A. F.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: a flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun.181(3), 687–702 (2010).
[CrossRef]

Peters, M.

J. C. Goldschmidt, M. Peters, J. Gutmann, L. Steidl, R. Zentel, B. Bläsi, and M. Hermle, “Increasing fluorescent concentrator light collection efficiency by restricting the angular emission characteristics of the incorporated luminescent material - the “nano-fluko” concept,” Proc. SPIE7725, 77250S, 77250S-11 (2010).
[CrossRef]

J. C. Goldschmidt, M. Peters, A. Bösch, H. Helmers, F. Dimroth, S. W. Glunz, and G. Willeke, “Increasing the efficiency of fluorescent concentrator systems,” Sol. Energy Mater. Sol. Cells93(2), 176–182 (2009).
[CrossRef]

M. Peters, J. C. Goldschmidt, P. Löper, B. Bläsi, and A. Gombert, “The effect of photonic structures on the light guiding efficiency of fluorescent concentrators,” J. Appl. Phys.105(1), 014909 (2009).
[CrossRef]

J. C. Goldschmidt, M. Peters, L. Prönneke, L. Steidl, R. Zentel, B. Bläsi, A. Gombert, S. Glunz, G. Willeke, and U. Rau, “Theoretical and experimental analysis of photonic structures for fluorescent concentrators with increased efficiencies,” Phys. Status. Solidi A205(12), 2811–2821 (2008).
[CrossRef]

Pravettoni, M.

L. H. Slooff, E. E. Bende, A. R. Burgers, T. Budel, M. Pravettoni, R. P. Kenny, E. D. Dunlop, and A. Büchtemann, “A luminescent solar concentrator with 7.1% power conversion efficiency,” Phys. Status. Solidi Rapid Res. Lett.2, 257–259 (2008).

Prönneke, L.

J. C. Goldschmidt, M. Peters, L. Prönneke, L. Steidl, R. Zentel, B. Bläsi, A. Gombert, S. Glunz, G. Willeke, and U. Rau, “Theoretical and experimental analysis of photonic structures for fluorescent concentrators with increased efficiencies,” Phys. Status. Solidi A205(12), 2811–2821 (2008).
[CrossRef]

Rau, U.

J. C. Goldschmidt, M. Peters, L. Prönneke, L. Steidl, R. Zentel, B. Bläsi, A. Gombert, S. Glunz, G. Willeke, and U. Rau, “Theoretical and experimental analysis of photonic structures for fluorescent concentrators with increased efficiencies,” Phys. Status. Solidi A205(12), 2811–2821 (2008).
[CrossRef]

U. Rau, F. Einsele, and G. C. Glaeser, “Efficiency limits of photovoltaic fluorescent collectors,” Appl. Phys. Lett.87(17), 171101 (2005).
[CrossRef]

Reisfeld, R.

R. Reisfeld and S. Neumann, “Planar solar energy converter and concentrator based on uranyl-doped glass,” Nature274(5667), 144–145 (1978).
[CrossRef]

Ries, H.

G. Smestad, H. Ries, R. Winston, and E. Yablonovitch, “The thermodynamic limit of light concentrators,” Sol. Energy Mater.21(2–3), 99–111 (1990).
[CrossRef]

Roundy, D.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: a flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun.181(3), 687–702 (2010).
[CrossRef]

Slooff, L. H.

L. H. Slooff, E. E. Bende, A. R. Burgers, T. Budel, M. Pravettoni, R. P. Kenny, E. D. Dunlop, and A. Büchtemann, “A luminescent solar concentrator with 7.1% power conversion efficiency,” Phys. Status. Solidi Rapid Res. Lett.2, 257–259 (2008).

Smestad, G.

G. Smestad, H. Ries, R. Winston, and E. Yablonovitch, “The thermodynamic limit of light concentrators,” Sol. Energy Mater.21(2–3), 99–111 (1990).
[CrossRef]

Steidl, L.

J. C. Goldschmidt, M. Peters, J. Gutmann, L. Steidl, R. Zentel, B. Bläsi, and M. Hermle, “Increasing fluorescent concentrator light collection efficiency by restricting the angular emission characteristics of the incorporated luminescent material - the “nano-fluko” concept,” Proc. SPIE7725, 77250S, 77250S-11 (2010).
[CrossRef]

J. C. Goldschmidt, M. Peters, L. Prönneke, L. Steidl, R. Zentel, B. Bläsi, A. Gombert, S. Glunz, G. Willeke, and U. Rau, “Theoretical and experimental analysis of photonic structures for fluorescent concentrators with increased efficiencies,” Phys. Status. Solidi A205(12), 2811–2821 (2008).
[CrossRef]

Unamuno, S.

Verbunt, P. P. C.

D. K. G. de Boer, C.-W. Lin, M. P. Giesbers, H. J. Cornelissen, M. G. Debije, P. P. C. Verbunt, and D. J. Broer, “Polarization-independent filters for luminescent solar concentrators,” Appl. Phys. Lett.98(2), 021111 (2011).
[CrossRef]

Weber, W. H.

Willeke, G.

J. C. Goldschmidt, M. Peters, A. Bösch, H. Helmers, F. Dimroth, S. W. Glunz, and G. Willeke, “Increasing the efficiency of fluorescent concentrator systems,” Sol. Energy Mater. Sol. Cells93(2), 176–182 (2009).
[CrossRef]

J. C. Goldschmidt, M. Peters, L. Prönneke, L. Steidl, R. Zentel, B. Bläsi, A. Gombert, S. Glunz, G. Willeke, and U. Rau, “Theoretical and experimental analysis of photonic structures for fluorescent concentrators with increased efficiencies,” Phys. Status. Solidi A205(12), 2811–2821 (2008).
[CrossRef]

Winston, R.

G. Smestad, H. Ries, R. Winston, and E. Yablonovitch, “The thermodynamic limit of light concentrators,” Sol. Energy Mater.21(2–3), 99–111 (1990).
[CrossRef]

Yablonovitch, E.

G. Smestad, H. Ries, R. Winston, and E. Yablonovitch, “The thermodynamic limit of light concentrators,” Sol. Energy Mater.21(2–3), 99–111 (1990).
[CrossRef]

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett.58(20), 2059–2062 (1987).
[CrossRef] [PubMed]

Yee, K. S.

K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media,” IEEE Trans. Antenn. Propag.14(3), 302–307 (1966).
[CrossRef]

Zentel, R.

J. C. Goldschmidt, M. Peters, J. Gutmann, L. Steidl, R. Zentel, B. Bläsi, and M. Hermle, “Increasing fluorescent concentrator light collection efficiency by restricting the angular emission characteristics of the incorporated luminescent material - the “nano-fluko” concept,” Proc. SPIE7725, 77250S, 77250S-11 (2010).
[CrossRef]

J. C. Goldschmidt, M. Peters, L. Prönneke, L. Steidl, R. Zentel, B. Bläsi, A. Gombert, S. Glunz, G. Willeke, and U. Rau, “Theoretical and experimental analysis of photonic structures for fluorescent concentrators with increased efficiencies,” Phys. Status. Solidi A205(12), 2811–2821 (2008).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. A–Mater. (1)

A. Goetzberger and W. Greubel, “Solar energy conversion with fluorescent collectors,” Appl. Phys. A–Mater.14, 123–139 (1977).

Appl. Phys. Lett. (2)

U. Rau, F. Einsele, and G. C. Glaeser, “Efficiency limits of photovoltaic fluorescent collectors,” Appl. Phys. Lett.87(17), 171101 (2005).
[CrossRef]

D. K. G. de Boer, C.-W. Lin, M. P. Giesbers, H. J. Cornelissen, M. G. Debije, P. P. C. Verbunt, and D. J. Broer, “Polarization-independent filters for luminescent solar concentrators,” Appl. Phys. Lett.98(2), 021111 (2011).
[CrossRef]

Comput. Phys. Commun. (1)

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: a flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun.181(3), 687–702 (2010).
[CrossRef]

IEEE Trans. Antenn. Propag. (1)

K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media,” IEEE Trans. Antenn. Propag.14(3), 302–307 (1966).
[CrossRef]

Int. J. Ambient Energ. (1)

S. J. Gallagher, P. C. Eames, and B. Norton, “Quantum dot solar concentrator behavior, predicted using a ray trace approach,” Int. J. Ambient Energ.25(1), 47–56 (2004).
[CrossRef]

J. Appl. Phys. (1)

M. Peters, J. C. Goldschmidt, P. Löper, B. Bläsi, and A. Gombert, “The effect of photonic structures on the light guiding efficiency of fluorescent concentrators,” J. Appl. Phys.105(1), 014909 (2009).
[CrossRef]

Nature (1)

R. Reisfeld and S. Neumann, “Planar solar energy converter and concentrator based on uranyl-doped glass,” Nature274(5667), 144–145 (1978).
[CrossRef]

Opt. Express (1)

Phys. Rev. Lett. (1)

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett.58(20), 2059–2062 (1987).
[CrossRef] [PubMed]

Phys. Status. Solidi A (1)

J. C. Goldschmidt, M. Peters, L. Prönneke, L. Steidl, R. Zentel, B. Bläsi, A. Gombert, S. Glunz, G. Willeke, and U. Rau, “Theoretical and experimental analysis of photonic structures for fluorescent concentrators with increased efficiencies,” Phys. Status. Solidi A205(12), 2811–2821 (2008).
[CrossRef]

Phys. Status. Solidi Rapid Res. Lett. (1)

L. H. Slooff, E. E. Bende, A. R. Burgers, T. Budel, M. Pravettoni, R. P. Kenny, E. D. Dunlop, and A. Büchtemann, “A luminescent solar concentrator with 7.1% power conversion efficiency,” Phys. Status. Solidi Rapid Res. Lett.2, 257–259 (2008).

Proc. SPIE (1)

J. C. Goldschmidt, M. Peters, J. Gutmann, L. Steidl, R. Zentel, B. Bläsi, and M. Hermle, “Increasing fluorescent concentrator light collection efficiency by restricting the angular emission characteristics of the incorporated luminescent material - the “nano-fluko” concept,” Proc. SPIE7725, 77250S, 77250S-11 (2010).
[CrossRef]

Sol. Energy (1)

S. J. Gallagher, B. Norton, and P. C. Eames, “Quantum dot solar concentrators: electrical conversion efficiencies and comparative concentrating factors of fabricated devices,” Sol. Energy81(6), 813–821 (2007).
[CrossRef]

Sol. Energy Mater. (1)

G. Smestad, H. Ries, R. Winston, and E. Yablonovitch, “The thermodynamic limit of light concentrators,” Sol. Energy Mater.21(2–3), 99–111 (1990).
[CrossRef]

Sol. Energy Mater. Sol. Cells (1)

J. C. Goldschmidt, M. Peters, A. Bösch, H. Helmers, F. Dimroth, S. W. Glunz, and G. Willeke, “Increasing the efficiency of fluorescent concentrator systems,” Sol. Energy Mater. Sol. Cells93(2), 176–182 (2009).
[CrossRef]

Sov. Phys. JETP (1)

V. P. Bykov, “Spontaneous emission in a periodic structure,” Sov. Phys. JETP35, 269 (1972).

Other (5)

B. S. Richards, A. Shalav, and R. Corkish, “A low escape-cone-loss luminescent solar concentrator,” in Proceedings of the 19th European Photovoltaic Solar Energy Conference, 2004, 113–116.

A. Zastrow, “Physikalische Analyse der Energieverlustmechanismen im Fluoreszenzkollektor,” PdD thesis (Albert-Ludwigs-Universität Freiburg, Freiburg, 1981).

A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd ed. (Artech House, Norwood, MA, 2005).

H. A. Macleod, Thin-Film Optical Filters, 2nd ed. (Adam Hilger, 1986).

Lumogen® Red specification sheet, Kremer Pigmente GmbH & Co. KG, http://www.kremer-pigmente.com/shop_veyton/media/files_public/94720.pdf .

Supplementary Material (1)

» Media 1: MOV (3055 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

(a) Cross-section of a conventional luminescent solar concentrator (LSC) that consists of a macroscopic plate doped with luminescent material that absorbs incoming light and emits at longer wavelengths. Most of the emitted light is trapped inside the plate and guided to solar cells at the edges. (b) The concept of the photonic luminescent solar concentrator (PLSC), where the luminescent material is embedded in a photonic structure to improve light guiding to the edges by mitigating escape cone and reabsorption losses.

Fig. 2
Fig. 2

Sketch of the three simulation setups (not to scale): (a) the reference setup with homogeneous medium (n = 1.5), (b) the slab setup corresponding to a microscopic LSC and (c) the PLSC setup, comprising an emitting layer sandwiched between Bragg stacks. Detector planes at the edges and top and bottom surfaces keep track of the energy fluxes to obtain the total emitted flux and the relative amount of flux guided to the edges. The position of the point-dipole source was varied in the y-direction to study the position dependent emission.

Fig. 3
Fig. 3

Relative emission Erel of slab and PLSC (a) averaged over sy and (c) as a function of source position sy. The small variation in the slab case is caused by waveguide modes due to the wavelength-sized thickness. Similar effects are seen for the PLSC, however, the relative emission in this case is dominated by suppression inside the photonic band gap (PBG). The band structure of an ideal (i.e. infinite) Bragg stack along its density of states, that is zero inside the PBG, is shown in (b) (calculated with the MPB Package [22]).

Fig. 4
Fig. 4

(a) Light guiding efficiency LGE of slab and PLSC simulation setup averaged over different source positions sy. The LGE of the slab varies little around the expected value for 2D TIR due to coherence effects. For the PLSC, strongly enhanced light guiding is obtained for frequencies slightly larger than the design frequency f0 due to the angular reflection characteristic of the Bragg stack shown in (b).

Fig. 5
Fig. 5

Energy density pattern obtained by monochromatic emission in the PLSC (ts = 2λ0) with (a) f = f0, (b) f = 1.075 f0, and (c) f = 0.75 f0. While for f = f0 perfect suppression is obtained in directions normal to the surface, the angle of guided light is larger for f = 1.075 f0, satisfying the TIR condition and thus resulting in optimum LGE. For f = 1.075 f0, light can also propagate in the escape cone, which results in reduced LGE in the range of 2D TIR.

Fig. 6
Fig. 6

Light guiding efficiency LGE of slab and PLSC setup as a function of source position sy. Modes inside the slab cause deviations from the 2D TIR limit. For the PLSC, the LGE is dominated by the strong enhancement of the Bragg stack that overlays the mode pattern.

Fig. 7
Fig. 7

The effect of the number of Bragg bi-layers on (a) the relative emission Erel, (b) the light guiding efficiency LGE and (c) the mean LGE inside the PBG. Saturation is observed for more than 20 bi-layers.

Fig. 8
Fig. 8

Investigation of (a) relative emission, (b) light guiding efficiency and (c) mean LGE inside the PBG as a function of the active layer thickness ts. This design parameter significantly influences the relative emission, whereas no strong impact on the light guiding is observed.

Fig. 9
Fig. 9

Combined qualitative evaluation of Erel and LGE by calculating the ratio of the integral LGE in range A to Erel integrated over range B. (a) shows example spectra of Erel and LGE for ts = ¼ λ0/ns with the integral ranges A and B. (b) plots the ratio of the integrals vs. the active layer thickness ts. Thus, thin ts are beneficial for the PLSC application.

Fig. 10
Fig. 10

(a) The relative emission is plotted together with the absorption (Abs) and emission (Em) spectra of the organic dye Lumogen® Red (using λ0 = 650nm). (b) shows the transmission T of the investigated Bragg stack from the outside to the luminescent layer along with the Lumogen® Red spectra. The reflection sidelobes in the absorption range cause severe losses which shows the need for photonic structures optimized for high transmission in the absorption range.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

E rel = total flux emitted in investigated setup total flux emitted in reference setup .
LGE= flux through edge detector planes total emission flux .

Metrics