Abstract

Surface laser damage limits the lifetime of optics for systems guiding high fluence pulses, particularly damage in silica optics used for inertial confinement fusion-class lasers (nanosecond-scale high energy pulses at 355 nm/3.5 eV). The density of damage precursors at low fluence has been measured using large beams (1-3 cm); higher fluences cannot be measured easily since the high density of resulting damage initiation sites results in clustering. We developed automated experiments and analysis that allow us to damage test thousands of sites with small beams (10-30 µm), and automatically image the test sites to determine if laser damage occurred. We developed an analysis method that provides a rigorous connection between these small beam damage test results of damage probability versus laser pulse energy and the large beam damage results of damage precursor densities versus fluence. We find that for uncoated and coated fused silica samples, the distribution of precursors nearly flattens at very high fluences, up to 150 J/cm2, providing important constraints on the physical distribution and nature of these precursors.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. E. Miller, J. D. Bude, T. I. Suratwala, N. Shen, T. A. Laurence, W. A. Steele, J. Menapace, M. D. Feit, and L. L. Wong, “Fracture-induced subbandgap absorption as a precursor to optical damage on fused silica surfaces,” Opt. Lett.35(16), 2702–2704 (2010).
    [CrossRef] [PubMed]
  2. P. E. Miller, T. I. Suratwala, J. D. Bude, T. A. Laurence, N. Shen, W. A. Steele, M. D. Feit, J. A. Menapace, and L. L. Wong, “Laser damage precursors in fused silica,” Proc. SPIE7504, (2009).
  3. T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, and L. L. Wong, “HF-based etching processes for improving laser damage resistance of fused silica optical surfaces,” J. Am. Ceram. Soc.94(2), 416–428 (2011).
    [CrossRef]
  4. T. A. Laurence, J. D. Bude, N. Shen, T. Feldman, P. E. Miller, W. A. Steele, and T. Suratwala, “Metallic-like photoluminescence and absorption in fused silica surface flaws,” Appl. Phys. Lett.94(15), 151114 (2009).
    [CrossRef]
  5. E. I. Moses, “The National Ignition Facility and the promise of inertial fusion energy,” Fusion Sci. Tech.60, 11–16 (2011).
  6. M. Dunne, E. I. Moses, P. Amendt, T. Anklam, A. Bayramian, E. Bliss, B. Debs, R. Deri, T. D. de la Rubia, B. El-Dasher, J. C. Farmer, D. Flowers, K. J. Kramer, L. Lagin, J. F. Latkowski, J. Lindl, W. Meier, R. Miles, G. A. Moses, S. Reyes, V. Roberts, R. Sawicki, M. Spaeth, and E. Storm, “Timely delivery of laser inertial fusion Energy (LIFE),” Fusion Sci. Tech.60, 19–27 (2011).
  7. C. W. Carr, D. A. Cross, M. A. Norton, and R. A. Negres, “The effect of laser pulse shape and duration on the size at which damage sites initiate and the implications to subsequent repair,” Opt. Express19(S4Suppl 4), A859–A864 (2011).
    [CrossRef] [PubMed]
  8. C. W. Carr, J. B. Trenholme, and M. L. Spaeth, “Effect of temporal pulse shape on optical damage,” Appl. Phys. Lett.90(4), 041110 (2007).
    [CrossRef]
  9. C. W. Carr, M. D. Feit, M. C. Nostrand, and J. J. Adams, “Techniques for qualitative and quantitative measurement of aspects of laser-induced damage important for laser beam propagation,” Meas. Sci. Technol.17(7), 1958–1962 (2006).
    [CrossRef]
  10. M. D. Feit, A. M. Rubenchik, M. R. Kozlowski, F. Y. Genin, S. Schwartz, and L. M. Sheehan, “Extrapolation of damage test data to predict performance of large-area NIF optics at 355 nm,” Proc. SPIE3578, 1–9 (1999).
  11. D. A. Cross and C. W. Carr, “Analysis of 1ω bulk laser damage in KDP,” Appl. Opt.50(22), D7–D11 (2011).
    [CrossRef] [PubMed]
  12. S. Schwartz, M. D. Feit, M. R. Kozlowski, and R. P. Mouser, “Current 3ω large optic test procedures and data analysis for the quality assurance of National Ignition Facility optics,” Proc. SPIE3578, 314–321 (1999).
    [CrossRef]
  13. Z. M. Liao, M. L. Spaeth, K. Manes, J. J. Adams, and C. W. Carr, “Predicting laser-induced bulk damage and conditioning for deuterated potassium dihydrogen phosphate crystals using an absorption distribution model,” Opt. Lett.35(15), 2538–2540 (2010).
    [CrossRef] [PubMed]
  14. L. Lamaignère, S. Bouillet, R. Courchinoux, T. Donval, M. Josse, J. C. Poncetta, and H. Bercegol, “An accurate, repeatable, and well characterized measurement of laser damage density of optical materials,” Rev. Sci. Instrum.78(10), 103105 (2007).
    [CrossRef] [PubMed]
  15. J. J. Adams, J. A. Jarboe, M. D. Feit, and R. P. Hackel, “Comparison between S/1 and R/1 tests and damage density vs. fluence (rho(Phi)) results for unconditioned and sub-nanosecond laser-conditioned KD 2PO 4 crystals,” Proc. SPIE6720, 672014 (2007).
    [CrossRef]
  16. M. Loiseau, L. Lamaignere, R. Courchinoux, G. Raze, C. Sudre, M. Josse, T. Donval, and H. Bercegol, “Automatic damage test benches: From samples to large-aperture optical components,” Proc. SPIE5252, 412–422 (2004).
    [CrossRef]
  17. D. C. Ness and A. D. Streater, “Automated system for laser damage testing of coated optics,” Proc. SPIE5991, 59912B, 59912B-9 (2005).
    [CrossRef]
  18. J. E. Wolfe and S. E. Schrauth, “Automated laser damage test system with real-time damage event imaging and detection,” Proc. SPIE6403, 640328 (2006).
    [CrossRef]
  19. M. C. Nostrand, T. L. Weiland, R. L. Luthi, J. L. Vickers, W. D. Sell, J. A. Stanley, J. Honig, J. Auerbach, R. P. Hackel, and P. J. Wegner, “A large aperture, high energy laser system for optics and optical component testing,” Proc. SPIE5273, 325–333 (2004).
    [CrossRef]
  20. A. V. Smith and B. T. Do, “Bulk and surface laser damage of silica by picosecond and nanosecond pulses at 1064 nm,” Appl. Opt.47(26), 4812–4832 (2008).
    [CrossRef] [PubMed]
  21. M. J. Matthews and M. D. Feit, “Effect of random clustering on surface damage density estimates,” Proc. SPIE6720, 67201J (2007).
    [CrossRef]
  22. L. B. Glebov, “Intrinsic laser-induced breakdown of silicate glasses,” Proc. SPIE4679, 321–331 (2002).
    [CrossRef]
  23. T. Suratwala, M. L. Hanna, and P. Whitman, “Effect of humidity during the coating of Stober silica sols,” J. Non-Cryst. Solids349, 368–376 (2004).
    [CrossRef]
  24. I. M. Thomas, “High laser damage threshold porous silica antireflective coating,” Appl. Opt.25(9), 1481–1483 (1986).
    [CrossRef] [PubMed]
  25. Y. R. Shen, “Self-focusing: experimental,” Prog. Quantum Electron.4, 1–34 (1975).
    [CrossRef]
  26. J. H. Marburger, “Self-focusing: theory,” Prog. Quantum Electron.4, 35–110 (1975).
    [CrossRef]
  27. D. Milam, “Review and assessment of measured values of the nonlinear refractive-index coefficient of fused silica,” Appl. Opt.37(3), 546–550 (1998).
    [CrossRef] [PubMed]
  28. B. Efron and R. Tibshirani, An introduction to the bootstrap, Monographs on statistics and applied probability (Chapman & Hall, New York, 1993).
  29. T. A. Laurence and B. A. Chromy, “Efficient maximum likelihood estimator fitting of histograms,” Nat. Methods7(5), 338–339 (2010).
    [CrossRef] [PubMed]
  30. W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in C: The Art of Scientific Computing, 2nd ed. (Cambridge University Press, Cambridge, U.K., 1992).
  31. D. W. Marquardt, “An algorithm for least-squares estimation of nonlinear parameters,” J. Soc. Ind. Appl. Math.11(2), 431–441 (1963).
    [CrossRef]
  32. D. S. Bunch, D. M. Gay, and R. E. Welsch, “Algorithm-717 subroutines for maximum-likelihood and quasi-likelihood estimation of parameters in nonlinear-regression models,” ACM Trans. Math. Softw.19(1), 109–130 (1993).
    [CrossRef]

2011

E. I. Moses, “The National Ignition Facility and the promise of inertial fusion energy,” Fusion Sci. Tech.60, 11–16 (2011).

M. Dunne, E. I. Moses, P. Amendt, T. Anklam, A. Bayramian, E. Bliss, B. Debs, R. Deri, T. D. de la Rubia, B. El-Dasher, J. C. Farmer, D. Flowers, K. J. Kramer, L. Lagin, J. F. Latkowski, J. Lindl, W. Meier, R. Miles, G. A. Moses, S. Reyes, V. Roberts, R. Sawicki, M. Spaeth, and E. Storm, “Timely delivery of laser inertial fusion Energy (LIFE),” Fusion Sci. Tech.60, 19–27 (2011).

T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, and L. L. Wong, “HF-based etching processes for improving laser damage resistance of fused silica optical surfaces,” J. Am. Ceram. Soc.94(2), 416–428 (2011).
[CrossRef]

C. W. Carr, D. A. Cross, M. A. Norton, and R. A. Negres, “The effect of laser pulse shape and duration on the size at which damage sites initiate and the implications to subsequent repair,” Opt. Express19(S4Suppl 4), A859–A864 (2011).
[CrossRef] [PubMed]

D. A. Cross and C. W. Carr, “Analysis of 1ω bulk laser damage in KDP,” Appl. Opt.50(22), D7–D11 (2011).
[CrossRef] [PubMed]

2010

2009

T. A. Laurence, J. D. Bude, N. Shen, T. Feldman, P. E. Miller, W. A. Steele, and T. Suratwala, “Metallic-like photoluminescence and absorption in fused silica surface flaws,” Appl. Phys. Lett.94(15), 151114 (2009).
[CrossRef]

P. E. Miller, T. I. Suratwala, J. D. Bude, T. A. Laurence, N. Shen, W. A. Steele, M. D. Feit, J. A. Menapace, and L. L. Wong, “Laser damage precursors in fused silica,” Proc. SPIE7504, (2009).

2008

2007

M. J. Matthews and M. D. Feit, “Effect of random clustering on surface damage density estimates,” Proc. SPIE6720, 67201J (2007).
[CrossRef]

L. Lamaignère, S. Bouillet, R. Courchinoux, T. Donval, M. Josse, J. C. Poncetta, and H. Bercegol, “An accurate, repeatable, and well characterized measurement of laser damage density of optical materials,” Rev. Sci. Instrum.78(10), 103105 (2007).
[CrossRef] [PubMed]

J. J. Adams, J. A. Jarboe, M. D. Feit, and R. P. Hackel, “Comparison between S/1 and R/1 tests and damage density vs. fluence (rho(Phi)) results for unconditioned and sub-nanosecond laser-conditioned KD 2PO 4 crystals,” Proc. SPIE6720, 672014 (2007).
[CrossRef]

C. W. Carr, J. B. Trenholme, and M. L. Spaeth, “Effect of temporal pulse shape on optical damage,” Appl. Phys. Lett.90(4), 041110 (2007).
[CrossRef]

2006

C. W. Carr, M. D. Feit, M. C. Nostrand, and J. J. Adams, “Techniques for qualitative and quantitative measurement of aspects of laser-induced damage important for laser beam propagation,” Meas. Sci. Technol.17(7), 1958–1962 (2006).
[CrossRef]

J. E. Wolfe and S. E. Schrauth, “Automated laser damage test system with real-time damage event imaging and detection,” Proc. SPIE6403, 640328 (2006).
[CrossRef]

2005

D. C. Ness and A. D. Streater, “Automated system for laser damage testing of coated optics,” Proc. SPIE5991, 59912B, 59912B-9 (2005).
[CrossRef]

2004

M. C. Nostrand, T. L. Weiland, R. L. Luthi, J. L. Vickers, W. D. Sell, J. A. Stanley, J. Honig, J. Auerbach, R. P. Hackel, and P. J. Wegner, “A large aperture, high energy laser system for optics and optical component testing,” Proc. SPIE5273, 325–333 (2004).
[CrossRef]

T. Suratwala, M. L. Hanna, and P. Whitman, “Effect of humidity during the coating of Stober silica sols,” J. Non-Cryst. Solids349, 368–376 (2004).
[CrossRef]

M. Loiseau, L. Lamaignere, R. Courchinoux, G. Raze, C. Sudre, M. Josse, T. Donval, and H. Bercegol, “Automatic damage test benches: From samples to large-aperture optical components,” Proc. SPIE5252, 412–422 (2004).
[CrossRef]

2002

L. B. Glebov, “Intrinsic laser-induced breakdown of silicate glasses,” Proc. SPIE4679, 321–331 (2002).
[CrossRef]

1999

M. D. Feit, A. M. Rubenchik, M. R. Kozlowski, F. Y. Genin, S. Schwartz, and L. M. Sheehan, “Extrapolation of damage test data to predict performance of large-area NIF optics at 355 nm,” Proc. SPIE3578, 1–9 (1999).

S. Schwartz, M. D. Feit, M. R. Kozlowski, and R. P. Mouser, “Current 3ω large optic test procedures and data analysis for the quality assurance of National Ignition Facility optics,” Proc. SPIE3578, 314–321 (1999).
[CrossRef]

1998

1993

D. S. Bunch, D. M. Gay, and R. E. Welsch, “Algorithm-717 subroutines for maximum-likelihood and quasi-likelihood estimation of parameters in nonlinear-regression models,” ACM Trans. Math. Softw.19(1), 109–130 (1993).
[CrossRef]

1986

1975

Y. R. Shen, “Self-focusing: experimental,” Prog. Quantum Electron.4, 1–34 (1975).
[CrossRef]

J. H. Marburger, “Self-focusing: theory,” Prog. Quantum Electron.4, 35–110 (1975).
[CrossRef]

1963

D. W. Marquardt, “An algorithm for least-squares estimation of nonlinear parameters,” J. Soc. Ind. Appl. Math.11(2), 431–441 (1963).
[CrossRef]

Adams, J. J.

Z. M. Liao, M. L. Spaeth, K. Manes, J. J. Adams, and C. W. Carr, “Predicting laser-induced bulk damage and conditioning for deuterated potassium dihydrogen phosphate crystals using an absorption distribution model,” Opt. Lett.35(15), 2538–2540 (2010).
[CrossRef] [PubMed]

J. J. Adams, J. A. Jarboe, M. D. Feit, and R. P. Hackel, “Comparison between S/1 and R/1 tests and damage density vs. fluence (rho(Phi)) results for unconditioned and sub-nanosecond laser-conditioned KD 2PO 4 crystals,” Proc. SPIE6720, 672014 (2007).
[CrossRef]

C. W. Carr, M. D. Feit, M. C. Nostrand, and J. J. Adams, “Techniques for qualitative and quantitative measurement of aspects of laser-induced damage important for laser beam propagation,” Meas. Sci. Technol.17(7), 1958–1962 (2006).
[CrossRef]

Amendt, P.

M. Dunne, E. I. Moses, P. Amendt, T. Anklam, A. Bayramian, E. Bliss, B. Debs, R. Deri, T. D. de la Rubia, B. El-Dasher, J. C. Farmer, D. Flowers, K. J. Kramer, L. Lagin, J. F. Latkowski, J. Lindl, W. Meier, R. Miles, G. A. Moses, S. Reyes, V. Roberts, R. Sawicki, M. Spaeth, and E. Storm, “Timely delivery of laser inertial fusion Energy (LIFE),” Fusion Sci. Tech.60, 19–27 (2011).

Anklam, T.

M. Dunne, E. I. Moses, P. Amendt, T. Anklam, A. Bayramian, E. Bliss, B. Debs, R. Deri, T. D. de la Rubia, B. El-Dasher, J. C. Farmer, D. Flowers, K. J. Kramer, L. Lagin, J. F. Latkowski, J. Lindl, W. Meier, R. Miles, G. A. Moses, S. Reyes, V. Roberts, R. Sawicki, M. Spaeth, and E. Storm, “Timely delivery of laser inertial fusion Energy (LIFE),” Fusion Sci. Tech.60, 19–27 (2011).

Auerbach, J.

M. C. Nostrand, T. L. Weiland, R. L. Luthi, J. L. Vickers, W. D. Sell, J. A. Stanley, J. Honig, J. Auerbach, R. P. Hackel, and P. J. Wegner, “A large aperture, high energy laser system for optics and optical component testing,” Proc. SPIE5273, 325–333 (2004).
[CrossRef]

Bayramian, A.

M. Dunne, E. I. Moses, P. Amendt, T. Anklam, A. Bayramian, E. Bliss, B. Debs, R. Deri, T. D. de la Rubia, B. El-Dasher, J. C. Farmer, D. Flowers, K. J. Kramer, L. Lagin, J. F. Latkowski, J. Lindl, W. Meier, R. Miles, G. A. Moses, S. Reyes, V. Roberts, R. Sawicki, M. Spaeth, and E. Storm, “Timely delivery of laser inertial fusion Energy (LIFE),” Fusion Sci. Tech.60, 19–27 (2011).

Bercegol, H.

L. Lamaignère, S. Bouillet, R. Courchinoux, T. Donval, M. Josse, J. C. Poncetta, and H. Bercegol, “An accurate, repeatable, and well characterized measurement of laser damage density of optical materials,” Rev. Sci. Instrum.78(10), 103105 (2007).
[CrossRef] [PubMed]

M. Loiseau, L. Lamaignere, R. Courchinoux, G. Raze, C. Sudre, M. Josse, T. Donval, and H. Bercegol, “Automatic damage test benches: From samples to large-aperture optical components,” Proc. SPIE5252, 412–422 (2004).
[CrossRef]

Bliss, E.

M. Dunne, E. I. Moses, P. Amendt, T. Anklam, A. Bayramian, E. Bliss, B. Debs, R. Deri, T. D. de la Rubia, B. El-Dasher, J. C. Farmer, D. Flowers, K. J. Kramer, L. Lagin, J. F. Latkowski, J. Lindl, W. Meier, R. Miles, G. A. Moses, S. Reyes, V. Roberts, R. Sawicki, M. Spaeth, and E. Storm, “Timely delivery of laser inertial fusion Energy (LIFE),” Fusion Sci. Tech.60, 19–27 (2011).

Bouillet, S.

L. Lamaignère, S. Bouillet, R. Courchinoux, T. Donval, M. Josse, J. C. Poncetta, and H. Bercegol, “An accurate, repeatable, and well characterized measurement of laser damage density of optical materials,” Rev. Sci. Instrum.78(10), 103105 (2007).
[CrossRef] [PubMed]

Bude, J. D.

T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, and L. L. Wong, “HF-based etching processes for improving laser damage resistance of fused silica optical surfaces,” J. Am. Ceram. Soc.94(2), 416–428 (2011).
[CrossRef]

P. E. Miller, J. D. Bude, T. I. Suratwala, N. Shen, T. A. Laurence, W. A. Steele, J. Menapace, M. D. Feit, and L. L. Wong, “Fracture-induced subbandgap absorption as a precursor to optical damage on fused silica surfaces,” Opt. Lett.35(16), 2702–2704 (2010).
[CrossRef] [PubMed]

P. E. Miller, T. I. Suratwala, J. D. Bude, T. A. Laurence, N. Shen, W. A. Steele, M. D. Feit, J. A. Menapace, and L. L. Wong, “Laser damage precursors in fused silica,” Proc. SPIE7504, (2009).

T. A. Laurence, J. D. Bude, N. Shen, T. Feldman, P. E. Miller, W. A. Steele, and T. Suratwala, “Metallic-like photoluminescence and absorption in fused silica surface flaws,” Appl. Phys. Lett.94(15), 151114 (2009).
[CrossRef]

Bunch, D. S.

D. S. Bunch, D. M. Gay, and R. E. Welsch, “Algorithm-717 subroutines for maximum-likelihood and quasi-likelihood estimation of parameters in nonlinear-regression models,” ACM Trans. Math. Softw.19(1), 109–130 (1993).
[CrossRef]

Carr, C. W.

D. A. Cross and C. W. Carr, “Analysis of 1ω bulk laser damage in KDP,” Appl. Opt.50(22), D7–D11 (2011).
[CrossRef] [PubMed]

C. W. Carr, D. A. Cross, M. A. Norton, and R. A. Negres, “The effect of laser pulse shape and duration on the size at which damage sites initiate and the implications to subsequent repair,” Opt. Express19(S4Suppl 4), A859–A864 (2011).
[CrossRef] [PubMed]

T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, and L. L. Wong, “HF-based etching processes for improving laser damage resistance of fused silica optical surfaces,” J. Am. Ceram. Soc.94(2), 416–428 (2011).
[CrossRef]

Z. M. Liao, M. L. Spaeth, K. Manes, J. J. Adams, and C. W. Carr, “Predicting laser-induced bulk damage and conditioning for deuterated potassium dihydrogen phosphate crystals using an absorption distribution model,” Opt. Lett.35(15), 2538–2540 (2010).
[CrossRef] [PubMed]

C. W. Carr, J. B. Trenholme, and M. L. Spaeth, “Effect of temporal pulse shape on optical damage,” Appl. Phys. Lett.90(4), 041110 (2007).
[CrossRef]

C. W. Carr, M. D. Feit, M. C. Nostrand, and J. J. Adams, “Techniques for qualitative and quantitative measurement of aspects of laser-induced damage important for laser beam propagation,” Meas. Sci. Technol.17(7), 1958–1962 (2006).
[CrossRef]

Chromy, B. A.

T. A. Laurence and B. A. Chromy, “Efficient maximum likelihood estimator fitting of histograms,” Nat. Methods7(5), 338–339 (2010).
[CrossRef] [PubMed]

Courchinoux, R.

L. Lamaignère, S. Bouillet, R. Courchinoux, T. Donval, M. Josse, J. C. Poncetta, and H. Bercegol, “An accurate, repeatable, and well characterized measurement of laser damage density of optical materials,” Rev. Sci. Instrum.78(10), 103105 (2007).
[CrossRef] [PubMed]

M. Loiseau, L. Lamaignere, R. Courchinoux, G. Raze, C. Sudre, M. Josse, T. Donval, and H. Bercegol, “Automatic damage test benches: From samples to large-aperture optical components,” Proc. SPIE5252, 412–422 (2004).
[CrossRef]

Cross, D. A.

de la Rubia, T. D.

M. Dunne, E. I. Moses, P. Amendt, T. Anklam, A. Bayramian, E. Bliss, B. Debs, R. Deri, T. D. de la Rubia, B. El-Dasher, J. C. Farmer, D. Flowers, K. J. Kramer, L. Lagin, J. F. Latkowski, J. Lindl, W. Meier, R. Miles, G. A. Moses, S. Reyes, V. Roberts, R. Sawicki, M. Spaeth, and E. Storm, “Timely delivery of laser inertial fusion Energy (LIFE),” Fusion Sci. Tech.60, 19–27 (2011).

Debs, B.

M. Dunne, E. I. Moses, P. Amendt, T. Anklam, A. Bayramian, E. Bliss, B. Debs, R. Deri, T. D. de la Rubia, B. El-Dasher, J. C. Farmer, D. Flowers, K. J. Kramer, L. Lagin, J. F. Latkowski, J. Lindl, W. Meier, R. Miles, G. A. Moses, S. Reyes, V. Roberts, R. Sawicki, M. Spaeth, and E. Storm, “Timely delivery of laser inertial fusion Energy (LIFE),” Fusion Sci. Tech.60, 19–27 (2011).

Deri, R.

M. Dunne, E. I. Moses, P. Amendt, T. Anklam, A. Bayramian, E. Bliss, B. Debs, R. Deri, T. D. de la Rubia, B. El-Dasher, J. C. Farmer, D. Flowers, K. J. Kramer, L. Lagin, J. F. Latkowski, J. Lindl, W. Meier, R. Miles, G. A. Moses, S. Reyes, V. Roberts, R. Sawicki, M. Spaeth, and E. Storm, “Timely delivery of laser inertial fusion Energy (LIFE),” Fusion Sci. Tech.60, 19–27 (2011).

Do, B. T.

Donval, T.

L. Lamaignère, S. Bouillet, R. Courchinoux, T. Donval, M. Josse, J. C. Poncetta, and H. Bercegol, “An accurate, repeatable, and well characterized measurement of laser damage density of optical materials,” Rev. Sci. Instrum.78(10), 103105 (2007).
[CrossRef] [PubMed]

M. Loiseau, L. Lamaignere, R. Courchinoux, G. Raze, C. Sudre, M. Josse, T. Donval, and H. Bercegol, “Automatic damage test benches: From samples to large-aperture optical components,” Proc. SPIE5252, 412–422 (2004).
[CrossRef]

Dunne, M.

M. Dunne, E. I. Moses, P. Amendt, T. Anklam, A. Bayramian, E. Bliss, B. Debs, R. Deri, T. D. de la Rubia, B. El-Dasher, J. C. Farmer, D. Flowers, K. J. Kramer, L. Lagin, J. F. Latkowski, J. Lindl, W. Meier, R. Miles, G. A. Moses, S. Reyes, V. Roberts, R. Sawicki, M. Spaeth, and E. Storm, “Timely delivery of laser inertial fusion Energy (LIFE),” Fusion Sci. Tech.60, 19–27 (2011).

El-Dasher, B.

M. Dunne, E. I. Moses, P. Amendt, T. Anklam, A. Bayramian, E. Bliss, B. Debs, R. Deri, T. D. de la Rubia, B. El-Dasher, J. C. Farmer, D. Flowers, K. J. Kramer, L. Lagin, J. F. Latkowski, J. Lindl, W. Meier, R. Miles, G. A. Moses, S. Reyes, V. Roberts, R. Sawicki, M. Spaeth, and E. Storm, “Timely delivery of laser inertial fusion Energy (LIFE),” Fusion Sci. Tech.60, 19–27 (2011).

Farmer, J. C.

M. Dunne, E. I. Moses, P. Amendt, T. Anklam, A. Bayramian, E. Bliss, B. Debs, R. Deri, T. D. de la Rubia, B. El-Dasher, J. C. Farmer, D. Flowers, K. J. Kramer, L. Lagin, J. F. Latkowski, J. Lindl, W. Meier, R. Miles, G. A. Moses, S. Reyes, V. Roberts, R. Sawicki, M. Spaeth, and E. Storm, “Timely delivery of laser inertial fusion Energy (LIFE),” Fusion Sci. Tech.60, 19–27 (2011).

Feit, M. D.

T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, and L. L. Wong, “HF-based etching processes for improving laser damage resistance of fused silica optical surfaces,” J. Am. Ceram. Soc.94(2), 416–428 (2011).
[CrossRef]

P. E. Miller, J. D. Bude, T. I. Suratwala, N. Shen, T. A. Laurence, W. A. Steele, J. Menapace, M. D. Feit, and L. L. Wong, “Fracture-induced subbandgap absorption as a precursor to optical damage on fused silica surfaces,” Opt. Lett.35(16), 2702–2704 (2010).
[CrossRef] [PubMed]

P. E. Miller, T. I. Suratwala, J. D. Bude, T. A. Laurence, N. Shen, W. A. Steele, M. D. Feit, J. A. Menapace, and L. L. Wong, “Laser damage precursors in fused silica,” Proc. SPIE7504, (2009).

J. J. Adams, J. A. Jarboe, M. D. Feit, and R. P. Hackel, “Comparison between S/1 and R/1 tests and damage density vs. fluence (rho(Phi)) results for unconditioned and sub-nanosecond laser-conditioned KD 2PO 4 crystals,” Proc. SPIE6720, 672014 (2007).
[CrossRef]

M. J. Matthews and M. D. Feit, “Effect of random clustering on surface damage density estimates,” Proc. SPIE6720, 67201J (2007).
[CrossRef]

C. W. Carr, M. D. Feit, M. C. Nostrand, and J. J. Adams, “Techniques for qualitative and quantitative measurement of aspects of laser-induced damage important for laser beam propagation,” Meas. Sci. Technol.17(7), 1958–1962 (2006).
[CrossRef]

S. Schwartz, M. D. Feit, M. R. Kozlowski, and R. P. Mouser, “Current 3ω large optic test procedures and data analysis for the quality assurance of National Ignition Facility optics,” Proc. SPIE3578, 314–321 (1999).
[CrossRef]

M. D. Feit, A. M. Rubenchik, M. R. Kozlowski, F. Y. Genin, S. Schwartz, and L. M. Sheehan, “Extrapolation of damage test data to predict performance of large-area NIF optics at 355 nm,” Proc. SPIE3578, 1–9 (1999).

Feldman, T.

T. A. Laurence, J. D. Bude, N. Shen, T. Feldman, P. E. Miller, W. A. Steele, and T. Suratwala, “Metallic-like photoluminescence and absorption in fused silica surface flaws,” Appl. Phys. Lett.94(15), 151114 (2009).
[CrossRef]

Flowers, D.

M. Dunne, E. I. Moses, P. Amendt, T. Anklam, A. Bayramian, E. Bliss, B. Debs, R. Deri, T. D. de la Rubia, B. El-Dasher, J. C. Farmer, D. Flowers, K. J. Kramer, L. Lagin, J. F. Latkowski, J. Lindl, W. Meier, R. Miles, G. A. Moses, S. Reyes, V. Roberts, R. Sawicki, M. Spaeth, and E. Storm, “Timely delivery of laser inertial fusion Energy (LIFE),” Fusion Sci. Tech.60, 19–27 (2011).

Gay, D. M.

D. S. Bunch, D. M. Gay, and R. E. Welsch, “Algorithm-717 subroutines for maximum-likelihood and quasi-likelihood estimation of parameters in nonlinear-regression models,” ACM Trans. Math. Softw.19(1), 109–130 (1993).
[CrossRef]

Genin, F. Y.

M. D. Feit, A. M. Rubenchik, M. R. Kozlowski, F. Y. Genin, S. Schwartz, and L. M. Sheehan, “Extrapolation of damage test data to predict performance of large-area NIF optics at 355 nm,” Proc. SPIE3578, 1–9 (1999).

Glebov, L. B.

L. B. Glebov, “Intrinsic laser-induced breakdown of silicate glasses,” Proc. SPIE4679, 321–331 (2002).
[CrossRef]

Hackel, R. P.

J. J. Adams, J. A. Jarboe, M. D. Feit, and R. P. Hackel, “Comparison between S/1 and R/1 tests and damage density vs. fluence (rho(Phi)) results for unconditioned and sub-nanosecond laser-conditioned KD 2PO 4 crystals,” Proc. SPIE6720, 672014 (2007).
[CrossRef]

M. C. Nostrand, T. L. Weiland, R. L. Luthi, J. L. Vickers, W. D. Sell, J. A. Stanley, J. Honig, J. Auerbach, R. P. Hackel, and P. J. Wegner, “A large aperture, high energy laser system for optics and optical component testing,” Proc. SPIE5273, 325–333 (2004).
[CrossRef]

Hanna, M. L.

T. Suratwala, M. L. Hanna, and P. Whitman, “Effect of humidity during the coating of Stober silica sols,” J. Non-Cryst. Solids349, 368–376 (2004).
[CrossRef]

Honig, J.

M. C. Nostrand, T. L. Weiland, R. L. Luthi, J. L. Vickers, W. D. Sell, J. A. Stanley, J. Honig, J. Auerbach, R. P. Hackel, and P. J. Wegner, “A large aperture, high energy laser system for optics and optical component testing,” Proc. SPIE5273, 325–333 (2004).
[CrossRef]

Jarboe, J. A.

J. J. Adams, J. A. Jarboe, M. D. Feit, and R. P. Hackel, “Comparison between S/1 and R/1 tests and damage density vs. fluence (rho(Phi)) results for unconditioned and sub-nanosecond laser-conditioned KD 2PO 4 crystals,” Proc. SPIE6720, 672014 (2007).
[CrossRef]

Josse, M.

L. Lamaignère, S. Bouillet, R. Courchinoux, T. Donval, M. Josse, J. C. Poncetta, and H. Bercegol, “An accurate, repeatable, and well characterized measurement of laser damage density of optical materials,” Rev. Sci. Instrum.78(10), 103105 (2007).
[CrossRef] [PubMed]

M. Loiseau, L. Lamaignere, R. Courchinoux, G. Raze, C. Sudre, M. Josse, T. Donval, and H. Bercegol, “Automatic damage test benches: From samples to large-aperture optical components,” Proc. SPIE5252, 412–422 (2004).
[CrossRef]

Kozlowski, M. R.

M. D. Feit, A. M. Rubenchik, M. R. Kozlowski, F. Y. Genin, S. Schwartz, and L. M. Sheehan, “Extrapolation of damage test data to predict performance of large-area NIF optics at 355 nm,” Proc. SPIE3578, 1–9 (1999).

S. Schwartz, M. D. Feit, M. R. Kozlowski, and R. P. Mouser, “Current 3ω large optic test procedures and data analysis for the quality assurance of National Ignition Facility optics,” Proc. SPIE3578, 314–321 (1999).
[CrossRef]

Kramer, K. J.

M. Dunne, E. I. Moses, P. Amendt, T. Anklam, A. Bayramian, E. Bliss, B. Debs, R. Deri, T. D. de la Rubia, B. El-Dasher, J. C. Farmer, D. Flowers, K. J. Kramer, L. Lagin, J. F. Latkowski, J. Lindl, W. Meier, R. Miles, G. A. Moses, S. Reyes, V. Roberts, R. Sawicki, M. Spaeth, and E. Storm, “Timely delivery of laser inertial fusion Energy (LIFE),” Fusion Sci. Tech.60, 19–27 (2011).

Lagin, L.

M. Dunne, E. I. Moses, P. Amendt, T. Anklam, A. Bayramian, E. Bliss, B. Debs, R. Deri, T. D. de la Rubia, B. El-Dasher, J. C. Farmer, D. Flowers, K. J. Kramer, L. Lagin, J. F. Latkowski, J. Lindl, W. Meier, R. Miles, G. A. Moses, S. Reyes, V. Roberts, R. Sawicki, M. Spaeth, and E. Storm, “Timely delivery of laser inertial fusion Energy (LIFE),” Fusion Sci. Tech.60, 19–27 (2011).

Lamaignere, L.

M. Loiseau, L. Lamaignere, R. Courchinoux, G. Raze, C. Sudre, M. Josse, T. Donval, and H. Bercegol, “Automatic damage test benches: From samples to large-aperture optical components,” Proc. SPIE5252, 412–422 (2004).
[CrossRef]

Lamaignère, L.

L. Lamaignère, S. Bouillet, R. Courchinoux, T. Donval, M. Josse, J. C. Poncetta, and H. Bercegol, “An accurate, repeatable, and well characterized measurement of laser damage density of optical materials,” Rev. Sci. Instrum.78(10), 103105 (2007).
[CrossRef] [PubMed]

Latkowski, J. F.

M. Dunne, E. I. Moses, P. Amendt, T. Anklam, A. Bayramian, E. Bliss, B. Debs, R. Deri, T. D. de la Rubia, B. El-Dasher, J. C. Farmer, D. Flowers, K. J. Kramer, L. Lagin, J. F. Latkowski, J. Lindl, W. Meier, R. Miles, G. A. Moses, S. Reyes, V. Roberts, R. Sawicki, M. Spaeth, and E. Storm, “Timely delivery of laser inertial fusion Energy (LIFE),” Fusion Sci. Tech.60, 19–27 (2011).

Laurence, T. A.

T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, and L. L. Wong, “HF-based etching processes for improving laser damage resistance of fused silica optical surfaces,” J. Am. Ceram. Soc.94(2), 416–428 (2011).
[CrossRef]

P. E. Miller, J. D. Bude, T. I. Suratwala, N. Shen, T. A. Laurence, W. A. Steele, J. Menapace, M. D. Feit, and L. L. Wong, “Fracture-induced subbandgap absorption as a precursor to optical damage on fused silica surfaces,” Opt. Lett.35(16), 2702–2704 (2010).
[CrossRef] [PubMed]

T. A. Laurence and B. A. Chromy, “Efficient maximum likelihood estimator fitting of histograms,” Nat. Methods7(5), 338–339 (2010).
[CrossRef] [PubMed]

T. A. Laurence, J. D. Bude, N. Shen, T. Feldman, P. E. Miller, W. A. Steele, and T. Suratwala, “Metallic-like photoluminescence and absorption in fused silica surface flaws,” Appl. Phys. Lett.94(15), 151114 (2009).
[CrossRef]

P. E. Miller, T. I. Suratwala, J. D. Bude, T. A. Laurence, N. Shen, W. A. Steele, M. D. Feit, J. A. Menapace, and L. L. Wong, “Laser damage precursors in fused silica,” Proc. SPIE7504, (2009).

Liao, Z. M.

Lindl, J.

M. Dunne, E. I. Moses, P. Amendt, T. Anklam, A. Bayramian, E. Bliss, B. Debs, R. Deri, T. D. de la Rubia, B. El-Dasher, J. C. Farmer, D. Flowers, K. J. Kramer, L. Lagin, J. F. Latkowski, J. Lindl, W. Meier, R. Miles, G. A. Moses, S. Reyes, V. Roberts, R. Sawicki, M. Spaeth, and E. Storm, “Timely delivery of laser inertial fusion Energy (LIFE),” Fusion Sci. Tech.60, 19–27 (2011).

Loiseau, M.

M. Loiseau, L. Lamaignere, R. Courchinoux, G. Raze, C. Sudre, M. Josse, T. Donval, and H. Bercegol, “Automatic damage test benches: From samples to large-aperture optical components,” Proc. SPIE5252, 412–422 (2004).
[CrossRef]

Luthi, R. L.

M. C. Nostrand, T. L. Weiland, R. L. Luthi, J. L. Vickers, W. D. Sell, J. A. Stanley, J. Honig, J. Auerbach, R. P. Hackel, and P. J. Wegner, “A large aperture, high energy laser system for optics and optical component testing,” Proc. SPIE5273, 325–333 (2004).
[CrossRef]

Manes, K.

Marburger, J. H.

J. H. Marburger, “Self-focusing: theory,” Prog. Quantum Electron.4, 35–110 (1975).
[CrossRef]

Marquardt, D. W.

D. W. Marquardt, “An algorithm for least-squares estimation of nonlinear parameters,” J. Soc. Ind. Appl. Math.11(2), 431–441 (1963).
[CrossRef]

Matthews, M. J.

M. J. Matthews and M. D. Feit, “Effect of random clustering on surface damage density estimates,” Proc. SPIE6720, 67201J (2007).
[CrossRef]

Meier, W.

M. Dunne, E. I. Moses, P. Amendt, T. Anklam, A. Bayramian, E. Bliss, B. Debs, R. Deri, T. D. de la Rubia, B. El-Dasher, J. C. Farmer, D. Flowers, K. J. Kramer, L. Lagin, J. F. Latkowski, J. Lindl, W. Meier, R. Miles, G. A. Moses, S. Reyes, V. Roberts, R. Sawicki, M. Spaeth, and E. Storm, “Timely delivery of laser inertial fusion Energy (LIFE),” Fusion Sci. Tech.60, 19–27 (2011).

Menapace, J.

Menapace, J. A.

P. E. Miller, T. I. Suratwala, J. D. Bude, T. A. Laurence, N. Shen, W. A. Steele, M. D. Feit, J. A. Menapace, and L. L. Wong, “Laser damage precursors in fused silica,” Proc. SPIE7504, (2009).

Milam, D.

Miles, R.

M. Dunne, E. I. Moses, P. Amendt, T. Anklam, A. Bayramian, E. Bliss, B. Debs, R. Deri, T. D. de la Rubia, B. El-Dasher, J. C. Farmer, D. Flowers, K. J. Kramer, L. Lagin, J. F. Latkowski, J. Lindl, W. Meier, R. Miles, G. A. Moses, S. Reyes, V. Roberts, R. Sawicki, M. Spaeth, and E. Storm, “Timely delivery of laser inertial fusion Energy (LIFE),” Fusion Sci. Tech.60, 19–27 (2011).

Miller, P. E.

T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, and L. L. Wong, “HF-based etching processes for improving laser damage resistance of fused silica optical surfaces,” J. Am. Ceram. Soc.94(2), 416–428 (2011).
[CrossRef]

P. E. Miller, J. D. Bude, T. I. Suratwala, N. Shen, T. A. Laurence, W. A. Steele, J. Menapace, M. D. Feit, and L. L. Wong, “Fracture-induced subbandgap absorption as a precursor to optical damage on fused silica surfaces,” Opt. Lett.35(16), 2702–2704 (2010).
[CrossRef] [PubMed]

P. E. Miller, T. I. Suratwala, J. D. Bude, T. A. Laurence, N. Shen, W. A. Steele, M. D. Feit, J. A. Menapace, and L. L. Wong, “Laser damage precursors in fused silica,” Proc. SPIE7504, (2009).

T. A. Laurence, J. D. Bude, N. Shen, T. Feldman, P. E. Miller, W. A. Steele, and T. Suratwala, “Metallic-like photoluminescence and absorption in fused silica surface flaws,” Appl. Phys. Lett.94(15), 151114 (2009).
[CrossRef]

Monticelli, M. V.

T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, and L. L. Wong, “HF-based etching processes for improving laser damage resistance of fused silica optical surfaces,” J. Am. Ceram. Soc.94(2), 416–428 (2011).
[CrossRef]

Moses, E. I.

E. I. Moses, “The National Ignition Facility and the promise of inertial fusion energy,” Fusion Sci. Tech.60, 11–16 (2011).

M. Dunne, E. I. Moses, P. Amendt, T. Anklam, A. Bayramian, E. Bliss, B. Debs, R. Deri, T. D. de la Rubia, B. El-Dasher, J. C. Farmer, D. Flowers, K. J. Kramer, L. Lagin, J. F. Latkowski, J. Lindl, W. Meier, R. Miles, G. A. Moses, S. Reyes, V. Roberts, R. Sawicki, M. Spaeth, and E. Storm, “Timely delivery of laser inertial fusion Energy (LIFE),” Fusion Sci. Tech.60, 19–27 (2011).

Moses, G. A.

M. Dunne, E. I. Moses, P. Amendt, T. Anklam, A. Bayramian, E. Bliss, B. Debs, R. Deri, T. D. de la Rubia, B. El-Dasher, J. C. Farmer, D. Flowers, K. J. Kramer, L. Lagin, J. F. Latkowski, J. Lindl, W. Meier, R. Miles, G. A. Moses, S. Reyes, V. Roberts, R. Sawicki, M. Spaeth, and E. Storm, “Timely delivery of laser inertial fusion Energy (LIFE),” Fusion Sci. Tech.60, 19–27 (2011).

Mouser, R. P.

S. Schwartz, M. D. Feit, M. R. Kozlowski, and R. P. Mouser, “Current 3ω large optic test procedures and data analysis for the quality assurance of National Ignition Facility optics,” Proc. SPIE3578, 314–321 (1999).
[CrossRef]

Negres, R. A.

Ness, D. C.

D. C. Ness and A. D. Streater, “Automated system for laser damage testing of coated optics,” Proc. SPIE5991, 59912B, 59912B-9 (2005).
[CrossRef]

Norton, M. A.

C. W. Carr, D. A. Cross, M. A. Norton, and R. A. Negres, “The effect of laser pulse shape and duration on the size at which damage sites initiate and the implications to subsequent repair,” Opt. Express19(S4Suppl 4), A859–A864 (2011).
[CrossRef] [PubMed]

T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, and L. L. Wong, “HF-based etching processes for improving laser damage resistance of fused silica optical surfaces,” J. Am. Ceram. Soc.94(2), 416–428 (2011).
[CrossRef]

Nostrand, M. C.

C. W. Carr, M. D. Feit, M. C. Nostrand, and J. J. Adams, “Techniques for qualitative and quantitative measurement of aspects of laser-induced damage important for laser beam propagation,” Meas. Sci. Technol.17(7), 1958–1962 (2006).
[CrossRef]

M. C. Nostrand, T. L. Weiland, R. L. Luthi, J. L. Vickers, W. D. Sell, J. A. Stanley, J. Honig, J. Auerbach, R. P. Hackel, and P. J. Wegner, “A large aperture, high energy laser system for optics and optical component testing,” Proc. SPIE5273, 325–333 (2004).
[CrossRef]

Poncetta, J. C.

L. Lamaignère, S. Bouillet, R. Courchinoux, T. Donval, M. Josse, J. C. Poncetta, and H. Bercegol, “An accurate, repeatable, and well characterized measurement of laser damage density of optical materials,” Rev. Sci. Instrum.78(10), 103105 (2007).
[CrossRef] [PubMed]

Raze, G.

M. Loiseau, L. Lamaignere, R. Courchinoux, G. Raze, C. Sudre, M. Josse, T. Donval, and H. Bercegol, “Automatic damage test benches: From samples to large-aperture optical components,” Proc. SPIE5252, 412–422 (2004).
[CrossRef]

Reyes, S.

M. Dunne, E. I. Moses, P. Amendt, T. Anklam, A. Bayramian, E. Bliss, B. Debs, R. Deri, T. D. de la Rubia, B. El-Dasher, J. C. Farmer, D. Flowers, K. J. Kramer, L. Lagin, J. F. Latkowski, J. Lindl, W. Meier, R. Miles, G. A. Moses, S. Reyes, V. Roberts, R. Sawicki, M. Spaeth, and E. Storm, “Timely delivery of laser inertial fusion Energy (LIFE),” Fusion Sci. Tech.60, 19–27 (2011).

Roberts, V.

M. Dunne, E. I. Moses, P. Amendt, T. Anklam, A. Bayramian, E. Bliss, B. Debs, R. Deri, T. D. de la Rubia, B. El-Dasher, J. C. Farmer, D. Flowers, K. J. Kramer, L. Lagin, J. F. Latkowski, J. Lindl, W. Meier, R. Miles, G. A. Moses, S. Reyes, V. Roberts, R. Sawicki, M. Spaeth, and E. Storm, “Timely delivery of laser inertial fusion Energy (LIFE),” Fusion Sci. Tech.60, 19–27 (2011).

Rubenchik, A. M.

M. D. Feit, A. M. Rubenchik, M. R. Kozlowski, F. Y. Genin, S. Schwartz, and L. M. Sheehan, “Extrapolation of damage test data to predict performance of large-area NIF optics at 355 nm,” Proc. SPIE3578, 1–9 (1999).

Sawicki, R.

M. Dunne, E. I. Moses, P. Amendt, T. Anklam, A. Bayramian, E. Bliss, B. Debs, R. Deri, T. D. de la Rubia, B. El-Dasher, J. C. Farmer, D. Flowers, K. J. Kramer, L. Lagin, J. F. Latkowski, J. Lindl, W. Meier, R. Miles, G. A. Moses, S. Reyes, V. Roberts, R. Sawicki, M. Spaeth, and E. Storm, “Timely delivery of laser inertial fusion Energy (LIFE),” Fusion Sci. Tech.60, 19–27 (2011).

Schrauth, S. E.

J. E. Wolfe and S. E. Schrauth, “Automated laser damage test system with real-time damage event imaging and detection,” Proc. SPIE6403, 640328 (2006).
[CrossRef]

Schwartz, S.

S. Schwartz, M. D. Feit, M. R. Kozlowski, and R. P. Mouser, “Current 3ω large optic test procedures and data analysis for the quality assurance of National Ignition Facility optics,” Proc. SPIE3578, 314–321 (1999).
[CrossRef]

M. D. Feit, A. M. Rubenchik, M. R. Kozlowski, F. Y. Genin, S. Schwartz, and L. M. Sheehan, “Extrapolation of damage test data to predict performance of large-area NIF optics at 355 nm,” Proc. SPIE3578, 1–9 (1999).

Sell, W. D.

M. C. Nostrand, T. L. Weiland, R. L. Luthi, J. L. Vickers, W. D. Sell, J. A. Stanley, J. Honig, J. Auerbach, R. P. Hackel, and P. J. Wegner, “A large aperture, high energy laser system for optics and optical component testing,” Proc. SPIE5273, 325–333 (2004).
[CrossRef]

Sheehan, L. M.

M. D. Feit, A. M. Rubenchik, M. R. Kozlowski, F. Y. Genin, S. Schwartz, and L. M. Sheehan, “Extrapolation of damage test data to predict performance of large-area NIF optics at 355 nm,” Proc. SPIE3578, 1–9 (1999).

Shen, N.

T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, and L. L. Wong, “HF-based etching processes for improving laser damage resistance of fused silica optical surfaces,” J. Am. Ceram. Soc.94(2), 416–428 (2011).
[CrossRef]

P. E. Miller, J. D. Bude, T. I. Suratwala, N. Shen, T. A. Laurence, W. A. Steele, J. Menapace, M. D. Feit, and L. L. Wong, “Fracture-induced subbandgap absorption as a precursor to optical damage on fused silica surfaces,” Opt. Lett.35(16), 2702–2704 (2010).
[CrossRef] [PubMed]

P. E. Miller, T. I. Suratwala, J. D. Bude, T. A. Laurence, N. Shen, W. A. Steele, M. D. Feit, J. A. Menapace, and L. L. Wong, “Laser damage precursors in fused silica,” Proc. SPIE7504, (2009).

T. A. Laurence, J. D. Bude, N. Shen, T. Feldman, P. E. Miller, W. A. Steele, and T. Suratwala, “Metallic-like photoluminescence and absorption in fused silica surface flaws,” Appl. Phys. Lett.94(15), 151114 (2009).
[CrossRef]

Shen, Y. R.

Y. R. Shen, “Self-focusing: experimental,” Prog. Quantum Electron.4, 1–34 (1975).
[CrossRef]

Smith, A. V.

Spaeth, M.

M. Dunne, E. I. Moses, P. Amendt, T. Anklam, A. Bayramian, E. Bliss, B. Debs, R. Deri, T. D. de la Rubia, B. El-Dasher, J. C. Farmer, D. Flowers, K. J. Kramer, L. Lagin, J. F. Latkowski, J. Lindl, W. Meier, R. Miles, G. A. Moses, S. Reyes, V. Roberts, R. Sawicki, M. Spaeth, and E. Storm, “Timely delivery of laser inertial fusion Energy (LIFE),” Fusion Sci. Tech.60, 19–27 (2011).

Spaeth, M. L.

Stanley, J. A.

M. C. Nostrand, T. L. Weiland, R. L. Luthi, J. L. Vickers, W. D. Sell, J. A. Stanley, J. Honig, J. Auerbach, R. P. Hackel, and P. J. Wegner, “A large aperture, high energy laser system for optics and optical component testing,” Proc. SPIE5273, 325–333 (2004).
[CrossRef]

Steele, W. A.

T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, and L. L. Wong, “HF-based etching processes for improving laser damage resistance of fused silica optical surfaces,” J. Am. Ceram. Soc.94(2), 416–428 (2011).
[CrossRef]

P. E. Miller, J. D. Bude, T. I. Suratwala, N. Shen, T. A. Laurence, W. A. Steele, J. Menapace, M. D. Feit, and L. L. Wong, “Fracture-induced subbandgap absorption as a precursor to optical damage on fused silica surfaces,” Opt. Lett.35(16), 2702–2704 (2010).
[CrossRef] [PubMed]

P. E. Miller, T. I. Suratwala, J. D. Bude, T. A. Laurence, N. Shen, W. A. Steele, M. D. Feit, J. A. Menapace, and L. L. Wong, “Laser damage precursors in fused silica,” Proc. SPIE7504, (2009).

T. A. Laurence, J. D. Bude, N. Shen, T. Feldman, P. E. Miller, W. A. Steele, and T. Suratwala, “Metallic-like photoluminescence and absorption in fused silica surface flaws,” Appl. Phys. Lett.94(15), 151114 (2009).
[CrossRef]

Storm, E.

M. Dunne, E. I. Moses, P. Amendt, T. Anklam, A. Bayramian, E. Bliss, B. Debs, R. Deri, T. D. de la Rubia, B. El-Dasher, J. C. Farmer, D. Flowers, K. J. Kramer, L. Lagin, J. F. Latkowski, J. Lindl, W. Meier, R. Miles, G. A. Moses, S. Reyes, V. Roberts, R. Sawicki, M. Spaeth, and E. Storm, “Timely delivery of laser inertial fusion Energy (LIFE),” Fusion Sci. Tech.60, 19–27 (2011).

Streater, A. D.

D. C. Ness and A. D. Streater, “Automated system for laser damage testing of coated optics,” Proc. SPIE5991, 59912B, 59912B-9 (2005).
[CrossRef]

Sudre, C.

M. Loiseau, L. Lamaignere, R. Courchinoux, G. Raze, C. Sudre, M. Josse, T. Donval, and H. Bercegol, “Automatic damage test benches: From samples to large-aperture optical components,” Proc. SPIE5252, 412–422 (2004).
[CrossRef]

Suratwala, T.

T. A. Laurence, J. D. Bude, N. Shen, T. Feldman, P. E. Miller, W. A. Steele, and T. Suratwala, “Metallic-like photoluminescence and absorption in fused silica surface flaws,” Appl. Phys. Lett.94(15), 151114 (2009).
[CrossRef]

T. Suratwala, M. L. Hanna, and P. Whitman, “Effect of humidity during the coating of Stober silica sols,” J. Non-Cryst. Solids349, 368–376 (2004).
[CrossRef]

Suratwala, T. I.

T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, and L. L. Wong, “HF-based etching processes for improving laser damage resistance of fused silica optical surfaces,” J. Am. Ceram. Soc.94(2), 416–428 (2011).
[CrossRef]

P. E. Miller, J. D. Bude, T. I. Suratwala, N. Shen, T. A. Laurence, W. A. Steele, J. Menapace, M. D. Feit, and L. L. Wong, “Fracture-induced subbandgap absorption as a precursor to optical damage on fused silica surfaces,” Opt. Lett.35(16), 2702–2704 (2010).
[CrossRef] [PubMed]

P. E. Miller, T. I. Suratwala, J. D. Bude, T. A. Laurence, N. Shen, W. A. Steele, M. D. Feit, J. A. Menapace, and L. L. Wong, “Laser damage precursors in fused silica,” Proc. SPIE7504, (2009).

Thomas, I. M.

Trenholme, J. B.

C. W. Carr, J. B. Trenholme, and M. L. Spaeth, “Effect of temporal pulse shape on optical damage,” Appl. Phys. Lett.90(4), 041110 (2007).
[CrossRef]

Vickers, J. L.

M. C. Nostrand, T. L. Weiland, R. L. Luthi, J. L. Vickers, W. D. Sell, J. A. Stanley, J. Honig, J. Auerbach, R. P. Hackel, and P. J. Wegner, “A large aperture, high energy laser system for optics and optical component testing,” Proc. SPIE5273, 325–333 (2004).
[CrossRef]

Wegner, P. J.

M. C. Nostrand, T. L. Weiland, R. L. Luthi, J. L. Vickers, W. D. Sell, J. A. Stanley, J. Honig, J. Auerbach, R. P. Hackel, and P. J. Wegner, “A large aperture, high energy laser system for optics and optical component testing,” Proc. SPIE5273, 325–333 (2004).
[CrossRef]

Weiland, T. L.

M. C. Nostrand, T. L. Weiland, R. L. Luthi, J. L. Vickers, W. D. Sell, J. A. Stanley, J. Honig, J. Auerbach, R. P. Hackel, and P. J. Wegner, “A large aperture, high energy laser system for optics and optical component testing,” Proc. SPIE5273, 325–333 (2004).
[CrossRef]

Welsch, R. E.

D. S. Bunch, D. M. Gay, and R. E. Welsch, “Algorithm-717 subroutines for maximum-likelihood and quasi-likelihood estimation of parameters in nonlinear-regression models,” ACM Trans. Math. Softw.19(1), 109–130 (1993).
[CrossRef]

Whitman, P.

T. Suratwala, M. L. Hanna, and P. Whitman, “Effect of humidity during the coating of Stober silica sols,” J. Non-Cryst. Solids349, 368–376 (2004).
[CrossRef]

Wolfe, J. E.

J. E. Wolfe and S. E. Schrauth, “Automated laser damage test system with real-time damage event imaging and detection,” Proc. SPIE6403, 640328 (2006).
[CrossRef]

Wong, L. L.

T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, and L. L. Wong, “HF-based etching processes for improving laser damage resistance of fused silica optical surfaces,” J. Am. Ceram. Soc.94(2), 416–428 (2011).
[CrossRef]

P. E. Miller, J. D. Bude, T. I. Suratwala, N. Shen, T. A. Laurence, W. A. Steele, J. Menapace, M. D. Feit, and L. L. Wong, “Fracture-induced subbandgap absorption as a precursor to optical damage on fused silica surfaces,” Opt. Lett.35(16), 2702–2704 (2010).
[CrossRef] [PubMed]

P. E. Miller, T. I. Suratwala, J. D. Bude, T. A. Laurence, N. Shen, W. A. Steele, M. D. Feit, J. A. Menapace, and L. L. Wong, “Laser damage precursors in fused silica,” Proc. SPIE7504, (2009).

ACM Trans. Math. Softw.

D. S. Bunch, D. M. Gay, and R. E. Welsch, “Algorithm-717 subroutines for maximum-likelihood and quasi-likelihood estimation of parameters in nonlinear-regression models,” ACM Trans. Math. Softw.19(1), 109–130 (1993).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

T. A. Laurence, J. D. Bude, N. Shen, T. Feldman, P. E. Miller, W. A. Steele, and T. Suratwala, “Metallic-like photoluminescence and absorption in fused silica surface flaws,” Appl. Phys. Lett.94(15), 151114 (2009).
[CrossRef]

C. W. Carr, J. B. Trenholme, and M. L. Spaeth, “Effect of temporal pulse shape on optical damage,” Appl. Phys. Lett.90(4), 041110 (2007).
[CrossRef]

Fusion Sci. Tech.

E. I. Moses, “The National Ignition Facility and the promise of inertial fusion energy,” Fusion Sci. Tech.60, 11–16 (2011).

M. Dunne, E. I. Moses, P. Amendt, T. Anklam, A. Bayramian, E. Bliss, B. Debs, R. Deri, T. D. de la Rubia, B. El-Dasher, J. C. Farmer, D. Flowers, K. J. Kramer, L. Lagin, J. F. Latkowski, J. Lindl, W. Meier, R. Miles, G. A. Moses, S. Reyes, V. Roberts, R. Sawicki, M. Spaeth, and E. Storm, “Timely delivery of laser inertial fusion Energy (LIFE),” Fusion Sci. Tech.60, 19–27 (2011).

J. Am. Ceram. Soc.

T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, and L. L. Wong, “HF-based etching processes for improving laser damage resistance of fused silica optical surfaces,” J. Am. Ceram. Soc.94(2), 416–428 (2011).
[CrossRef]

J. Non-Cryst. Solids

T. Suratwala, M. L. Hanna, and P. Whitman, “Effect of humidity during the coating of Stober silica sols,” J. Non-Cryst. Solids349, 368–376 (2004).
[CrossRef]

J. Soc. Ind. Appl. Math.

D. W. Marquardt, “An algorithm for least-squares estimation of nonlinear parameters,” J. Soc. Ind. Appl. Math.11(2), 431–441 (1963).
[CrossRef]

Meas. Sci. Technol.

C. W. Carr, M. D. Feit, M. C. Nostrand, and J. J. Adams, “Techniques for qualitative and quantitative measurement of aspects of laser-induced damage important for laser beam propagation,” Meas. Sci. Technol.17(7), 1958–1962 (2006).
[CrossRef]

Nat. Methods

T. A. Laurence and B. A. Chromy, “Efficient maximum likelihood estimator fitting of histograms,” Nat. Methods7(5), 338–339 (2010).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Proc. SPIE

M. D. Feit, A. M. Rubenchik, M. R. Kozlowski, F. Y. Genin, S. Schwartz, and L. M. Sheehan, “Extrapolation of damage test data to predict performance of large-area NIF optics at 355 nm,” Proc. SPIE3578, 1–9 (1999).

P. E. Miller, T. I. Suratwala, J. D. Bude, T. A. Laurence, N. Shen, W. A. Steele, M. D. Feit, J. A. Menapace, and L. L. Wong, “Laser damage precursors in fused silica,” Proc. SPIE7504, (2009).

S. Schwartz, M. D. Feit, M. R. Kozlowski, and R. P. Mouser, “Current 3ω large optic test procedures and data analysis for the quality assurance of National Ignition Facility optics,” Proc. SPIE3578, 314–321 (1999).
[CrossRef]

J. J. Adams, J. A. Jarboe, M. D. Feit, and R. P. Hackel, “Comparison between S/1 and R/1 tests and damage density vs. fluence (rho(Phi)) results for unconditioned and sub-nanosecond laser-conditioned KD 2PO 4 crystals,” Proc. SPIE6720, 672014 (2007).
[CrossRef]

M. Loiseau, L. Lamaignere, R. Courchinoux, G. Raze, C. Sudre, M. Josse, T. Donval, and H. Bercegol, “Automatic damage test benches: From samples to large-aperture optical components,” Proc. SPIE5252, 412–422 (2004).
[CrossRef]

D. C. Ness and A. D. Streater, “Automated system for laser damage testing of coated optics,” Proc. SPIE5991, 59912B, 59912B-9 (2005).
[CrossRef]

J. E. Wolfe and S. E. Schrauth, “Automated laser damage test system with real-time damage event imaging and detection,” Proc. SPIE6403, 640328 (2006).
[CrossRef]

M. C. Nostrand, T. L. Weiland, R. L. Luthi, J. L. Vickers, W. D. Sell, J. A. Stanley, J. Honig, J. Auerbach, R. P. Hackel, and P. J. Wegner, “A large aperture, high energy laser system for optics and optical component testing,” Proc. SPIE5273, 325–333 (2004).
[CrossRef]

M. J. Matthews and M. D. Feit, “Effect of random clustering on surface damage density estimates,” Proc. SPIE6720, 67201J (2007).
[CrossRef]

L. B. Glebov, “Intrinsic laser-induced breakdown of silicate glasses,” Proc. SPIE4679, 321–331 (2002).
[CrossRef]

Prog. Quantum Electron.

Y. R. Shen, “Self-focusing: experimental,” Prog. Quantum Electron.4, 1–34 (1975).
[CrossRef]

J. H. Marburger, “Self-focusing: theory,” Prog. Quantum Electron.4, 35–110 (1975).
[CrossRef]

Rev. Sci. Instrum.

L. Lamaignère, S. Bouillet, R. Courchinoux, T. Donval, M. Josse, J. C. Poncetta, and H. Bercegol, “An accurate, repeatable, and well characterized measurement of laser damage density of optical materials,” Rev. Sci. Instrum.78(10), 103105 (2007).
[CrossRef] [PubMed]

Other

B. Efron and R. Tibshirani, An introduction to the bootstrap, Monographs on statistics and applied probability (Chapman & Hall, New York, 1993).

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in C: The Art of Scientific Computing, 2nd ed. (Cambridge University Press, Cambridge, U.K., 1992).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

(a) Probing the damage performance of optical surfaces with small laser beams isolates the precursors that damage at various fluences. For the densities encountered, laser damage sites will overlap for large beam studies. (b) Large beam studies measure the cumulative density of damage precursors ρ(Φ) up to 25-30 J/cm2. In these experiments we want to determine if there is either a previously unknown surface limitation to damage performance or what populations of precursors are present in this fluence range. If there is a fixed damage threshold for fused silica surfaces, we expect a rapid increase in ρ(Φ) as shown by the extrapolated black curve. If we find a shallow increase, the precursor distribution must be dominated by extrinsic, non-uniform features such as defects or contaminants.

Fig. 2
Fig. 2

(a) Experimental configuration for automated small beam damage testing and detection. (b) Damage testing pattern. Fiducials are placed along the x and y axes. The damage test proceeds by rows with increasing pulse energy. (c) After the damage test is performed, the laser shutter is closed, the microscope is put into place, and each site is automatically imaged to determine if damage occurred.

Fig. 3
Fig. 3

(a) Comparison of radial distribution of circular distribution of radius 1.4 mm and Gaussian with intensity 1/e radius of a/1.915. (b) Intensification expected as a function of pulse energy for beams focused with the 10 cm (red) and 30 cm (blue) focusing lenses. Since the pulse energies used were below 2 mJ for the 30 cm lens, and below 1 mJ for the 10 cm lens, we do not expect significant intensification or self focusing in our measurements.

Fig. 4
Fig. 4

Beam Profiles are used to convert pulse energy to dA/dΦ, the amount of area covered by a certain fluence. Green squares are 50 μm for each image. (a) Beam profile for f = 300 mm with 50 μm box shown for scale. (b) Beam profile for f = 100 mm. (c) Calculation of dA/dΦ from images in (a) and (b).

Fig. 5
Fig. 5

The model for the cumulative distribution of the laser damage precursors is a piecewise continuous, exponentially growing function. We restrict the values of different exponential growth rates to be strictly positive. The fluence positions of transitions between ri are fixed during the fit.

Fig. 6
Fig. 6

(a) The uncertainty in the fitted ρ(Φ) is estimated as a bootstrapping procedure. The original extracted ρ(Φ) is shown in black, and the extracted ρ(Φ) of 11 bootstrap instances are shown as well. At each point, the standard deviation was calculated to estimated the uncertainty in the values. (b) Error bars are calculated as the standard deviation of all bootstrap instances.

Fig. 7
Fig. 7

Extracted ρ(Φ) for various functional forms. (a) Cubic ρ(Φ) and fit are shown in red. Exponential ρ(Φ) and fit are shown in black. (b) ρ(Φ) with exponential increases interrupted by plateaus are shown in red and black. Corresponding fits are shown by symbols.

Fig. 8
Fig. 8

Example of extraction of precursor damage density by combining damage test results using lenses with three different focal lengths. (a) The raw data of the experiment consists of a series of three curves showing the probability of laser damage versus measured pulse energy in mJ. (b) Data from part A, but with the pulse energy is converted to the fluence of the top 10% of the beam. (c) The distribution of the laser damage precursors ρ(Φ) as a function of fluence (black line). These results can be directly compared to the large beam results at lower fluence (cyan line). (d) ρ(Φ) extracted for each focal length separately plotted with the ρ(Φ) extracted when all information is taken into account.

Fig. 9
Fig. 9

(a) Extracted ρ(Φ) for uncoated silica samples. Samples 1 and 2 are samples undergoing the full treatment listed in Ref [3]. (b) The damage performance samples with applied antireflective silica sol-gel coatings are able to be similar to that of uncoated parts. Sample 4 was processed similarly to sample 1, except the sol-gel coating was applied. Sample 5 was the same as Sample 4, except a squalane hydrocarbon contamination which impairs the antireflective properties of the coating was deliberately added.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

i E z = 2 E 2K K n γ | E | 2 E.
P( E pulse )=1exp{ ρ[ Φ( x,y ) ]dxdy }.
P( E pulse )=1exp[ 0 Φ max ρ( Φ ) dA dΦ dΦ ].
ρ( Φ )=ρ( Φ i )exp[ r i ( Φ Φ i ) ].
ρ( Φ )=ρ( Φ 0 )exp[ r i ( Φ Φ i ) ] j=1 i1 exp[ r j ( Φ j Φ j1 ) ] .
P( x i | n i , p i )=( n i x i ) p i x i ( 1 p i ) n i x i .
L( x|f )= i P( x i | f i ) .
χ mle 2 =2ln( L( x|f ) / L( x|x ) ) =2 i=1, x i 0 m x i ln( n i f i / x i ) 2 i=1, x i n i m ( n i x i )ln n i f i n i n i x i .

Metrics