Abstract

At present, there exist a number of on-demand single photon sources with high emission rates and stability even at room temperature. However, their emission wavelength is restricted to specific transitions in single quantum emitters. Single photon generation in the near infrared, possibly within the telecom band, though most urgently needed, is particularly crucial. In this paper, we suggest an experimental method to convert visible single photons from a defect center in diamond to the near infrared. The conversion relies on efficient absorption by colloidal quantum dots and subsequent Stokes-shifted emission. The desired target wavelength can be chosen almost arbitrarily by selecting quantum dots with a suitable emission spectrum. A hollow core photonic crystal fiber selectively filled with a solution of quantum dots was used to achieve at the same time a single photon absorption probability of near unity and a very high re-collection efficiency of Stokes-shifted fluorescence (theoretically estimated to be 26%). A total conversion efficiency of light of 0.1% is achieved. Experimental strategies to significantly enhance this number are presented.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Kuhn, M. Hennrich, and G. Rempe, “Deterministic single-photon source for distributed quantum networking,” Phys. Rev. Lett. 89(6), 067901 (2002).
    [CrossRef] [PubMed]
  2. K. G. Lee, X. W. Chen, H. Eghlidi, P. Kukura, R. Lettow, A. Renn, V. Sandoghdar, and S. Gotzinger, “A planar dielectric antenna for directional single-photon emission and near-unity collection efficiency,” Nat. Photonics 5(3), 166–169 (2011).
    [CrossRef]
  3. C. Santori, M. Pelton, G. Solomon, Y. Dale, and Y. Yamamoto, “Triggered single photons from a quantum dot,” Phys. Rev. Lett. 86(8), 1502–1505 (2001).
    [CrossRef] [PubMed]
  4. A. Imamoğlu, P. Michler, M. D. Mason, P. J. Carson, G. F. Strouse, and S. K. Buratto, “Quantum correlation among photons from a single quantum dot at room temperature,” Nature 406(6799), 968–970 (2000).
    [CrossRef] [PubMed]
  5. C. Kurtsiefer, S. Mayer, P. Zarda, and H. Weinfurter, “Stable solid-state source of single photons,” Phys. Rev. Lett. 85(2), 290–293 (2000).
    [CrossRef] [PubMed]
  6. A. Beveratos, S. Kühn, R. Brouri, T. Gacoin, J. P. Poizat, and P. Grangier, “Room temperature stable single-photon source,” Eur. Phys. J. D 18(2), 191–196 (2002).
    [CrossRef]
  7. E. Neu, D. Steinmetz, J. Riedrich-Möller, S. Gsell, M. Fischer, M. Schreck, and C. Becher, “Single photon emission from silicon-vacancy colour centres in chemical vapour deposition nano-diamonds on iridium,” New J. Phys. 13(2), 025012 (2011).
    [CrossRef]
  8. P. M. Intallura, M. B. Ward, O. Z. Karimov, Z. L. Yuan, P. See, A. J. Shields, P. Atkinson, and D. A. Ritchie, “Quantum key distribution using a triggered quantum dot source emitting near 1.3 μm,” Appl. Phys. Lett. 91(16), 161103 (2007).
    [CrossRef]
  9. N. Sangouard, C. Simon, H. de Riedmatten, and N. Gisin, “Quantum repeaters based on atomic ensembles and linear optics,” Rev. Mod. Phys. 83(1), 33–80 (2011).
    [CrossRef]
  10. M. B. Ward, T. Farrow, P. See, Z. L. Yuan, O. Z. Karimov, A. J. Bennett, A. J. Shields, P. Atkinson, K. Cooper, and D. A. Ritchie, “Electrically driven telecommunication wavelength single-photon source,” Appl. Phys. Lett. 90(6), 063512 (2007).
    [CrossRef]
  11. J. J. Peterson and T. D. Krauss, “Fluorescence spectroscopy of single lead sulfide quantum dots,” Nano Lett. 6(3), 510–514 (2006).
    [CrossRef] [PubMed]
  12. T. Schröder, F. Gädeke, M. J. Banholzer, and O. Benson, “Ultrabright and efficient single-photon generation based on nitrogen-vacancy centres in nanodiamonds on a solid immersion lens,” New J. Phys. 13(5), 055017 (2011).
    [CrossRef]
  13. D. K. Harris, P. M. Allen, H. S. Han, B. J. Walker, J. Lee, and M. G. Bawendi, “Synthesis of cadmium arsenide quantum dots luminescent in the infrared,” J. Am. Chem. Soc. 133(13), 4676–4679 (2011).
    [CrossRef] [PubMed]
  14. M. Barth, H. Bartelt, and O. Benson, “Fluid-filled optical fibers” in Handbook of Optofluidics, edts. A. R. Hawkins, H. Schmidt, CRC Press Tylor & Francis (2010).
  15. F. M. Cox, A. Argyros, and M. C. J. Large, “Liquid-filled hollow core microstructured polymer optical fiber,” Opt. Express 14(9), 4135–4140 (2006).
    [CrossRef] [PubMed]
  16. S. Smolka, M. Barth, and O. Benson, “Highly efficient fluorescence sensing with hollow core photonic crystal fibers,” Opt. Express 15(20), 12783–12791 (2007).
    [CrossRef] [PubMed]
  17. S. O. Konorov, C. J. Addison, H. G. Schulze, R. F. B. Turner, and M. W. Blades, “Hollow-core photonic crystal fiber-optic probes for Raman spectroscopy,” Opt. Lett. 31(12), 1911–1913 (2006).
    [CrossRef] [PubMed]
  18. Y. Zhang, C. Shi, C. Gu, L. Seballos, and J. Z. Zhang, “Liquid core photonic crystal fiber sensor based on surface enhanced Raman scattering,” Appl. Phys. Lett. 90(19), 193504 (2007).
    [CrossRef]
  19. X. Yang, C. Shi, D. Wheeler, R. Newhouse, B. Chen, J. Z. Zhang, and C. Gu, “High-sensitivity molecular sensing using hollow-core photonic crystal fiber and surface-enhanced Raman scattering,” J. Opt. Soc. Am. A 27(5), 977–984 (2010).
    [CrossRef] [PubMed]
  20. R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. S. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285(5433), 1537–1539 (1999).
    [CrossRef] [PubMed]
  21. V. Lesnyak, A. Lutich, N. Gaponik, M. Grabolle, A. Plotnikov, U. Resch-Genger, and A. Eychmüller, “One-pot aqueous synthesis of high quality near infrared emitting Cd1_xHgxTe nanocrystals,” J. Mater. Chem. 19(48), 9147–9152 (2009).
    [CrossRef]
  22. H. Zhang, Z. Cui, Y. Wang, K. Zhang, X. Ji, C. Lü, B. Yang, and M. Gao, “From water-soluble CdTe nanocrystals to fluorescent nanocrystal–polymer transparent composites using polymerizable Surfactants,” Adv. Mater. (Deerfield Beach Fla.) 15(10), 777–780 (2003).
    [CrossRef]
  23. E. F. Chillcce, C. M. B. Cordeiro, L. C. Barbosa, and C. H. Brito Cruz, “Tellurite photonic crystal fiber made by a stack-and-draw technique,” J. Non-Cryst. Solids 352(32-35), 3423–3428 (2006).
    [CrossRef]
  24. L. Xiao, W. Jin, M. S. Demokan, H. L. Ho, Y. L. Hoo, and C. L. Zhao, “Fabrication of selective injection microstructured optical fibers with a conventional fusion splicer,” Opt. Express 13(22), 9014–9022 (2005).
    [CrossRef] [PubMed]
  25. H. J. Kimble, M. Dagenais, and L. Mandel, “Photon antibunching in resonance fluorescence,” Phys. Rev. Lett. 39(11), 691–695 (1977).
    [CrossRef]
  26. D. Dorfs, T. Franzl, R. Osovsky, M. Brumer, E. Lifshitz, T. Klar, and A. Eychmüller, “Type-I and Type-II nanoheterostructures based on CdTe nanocrystals – a comparative study,” Small 4, 1148–1153 (2008).
  27. S. Kim, B. Fisher, H.-J. Eisler, and M. Bawendi, “Type-II quantum dots: CdTe/CdSe(core/shell) and CdSe/ZnTe(core/shell) heterostructures,” J. Am. Chem. Soc. 125(38), 11466–11467 (2003).
    [CrossRef] [PubMed]
  28. V. I. Klimov, S. A. Ivanov, J. Nanda, M. Achermann, I. Bezel, J. A. McGuire, and A. Piryatinski, “Single-exciton optical gain in semiconductor nanocrystals,” Nature 447(7143), 441–446 (2007).
    [CrossRef] [PubMed]
  29. D. Oron, M. Kazes, and U. Banin, “Multiexcitons in type-II colloidal semiconductor quantum dots,” Phys. Rev. B 75(3), 035330 (2007).
    [CrossRef]
  30. S. Kumar, M. Jones, S. S. Lo, and G. D. Scholes, “Nanorod heterostructures showing photoinduced charge separation,” Small 3(9), 1633–1639 (2007).
    [CrossRef] [PubMed]
  31. D. Dorfs, A. Salant, I. Popov, and U. Banin, “ZnSe quantum dots within CdS nanorods: a seeded-growth type-II system,” Small 4(9), 1319–1323 (2008).
    [CrossRef] [PubMed]
  32. S. Smolka, M. Barth, and O. Benson, “Selectively coated photonic crystal fiber for highly sensitive fluorescence detection,” Appl. Phys. Lett. 90(11), 111101 (2007).
    [CrossRef]
  33. P. Neumann, R. Kolesov, V. Jacques, J. Beck, J. Tisler, A. Batalov, L. Rogers, N. B. Manson, G. Balasubramanian, F. Jelezko, and J. Wrachtrup, “Excited-state spectroscopy of single NV defects in diamond using optically detected magnetic resonance,” New J. Phys. 11(1), 013017 (2009).
    [CrossRef]
  34. X. W. Chen, S. Götzinger, and V. Sandoghdar, “99% efficiency in collecting photons from a single emitter,” Opt. Lett. 36(18), 3545–3547 (2011).
    [CrossRef] [PubMed]

2011 (6)

K. G. Lee, X. W. Chen, H. Eghlidi, P. Kukura, R. Lettow, A. Renn, V. Sandoghdar, and S. Gotzinger, “A planar dielectric antenna for directional single-photon emission and near-unity collection efficiency,” Nat. Photonics 5(3), 166–169 (2011).
[CrossRef]

E. Neu, D. Steinmetz, J. Riedrich-Möller, S. Gsell, M. Fischer, M. Schreck, and C. Becher, “Single photon emission from silicon-vacancy colour centres in chemical vapour deposition nano-diamonds on iridium,” New J. Phys. 13(2), 025012 (2011).
[CrossRef]

N. Sangouard, C. Simon, H. de Riedmatten, and N. Gisin, “Quantum repeaters based on atomic ensembles and linear optics,” Rev. Mod. Phys. 83(1), 33–80 (2011).
[CrossRef]

T. Schröder, F. Gädeke, M. J. Banholzer, and O. Benson, “Ultrabright and efficient single-photon generation based on nitrogen-vacancy centres in nanodiamonds on a solid immersion lens,” New J. Phys. 13(5), 055017 (2011).
[CrossRef]

D. K. Harris, P. M. Allen, H. S. Han, B. J. Walker, J. Lee, and M. G. Bawendi, “Synthesis of cadmium arsenide quantum dots luminescent in the infrared,” J. Am. Chem. Soc. 133(13), 4676–4679 (2011).
[CrossRef] [PubMed]

X. W. Chen, S. Götzinger, and V. Sandoghdar, “99% efficiency in collecting photons from a single emitter,” Opt. Lett. 36(18), 3545–3547 (2011).
[CrossRef] [PubMed]

2010 (1)

2009 (2)

P. Neumann, R. Kolesov, V. Jacques, J. Beck, J. Tisler, A. Batalov, L. Rogers, N. B. Manson, G. Balasubramanian, F. Jelezko, and J. Wrachtrup, “Excited-state spectroscopy of single NV defects in diamond using optically detected magnetic resonance,” New J. Phys. 11(1), 013017 (2009).
[CrossRef]

V. Lesnyak, A. Lutich, N. Gaponik, M. Grabolle, A. Plotnikov, U. Resch-Genger, and A. Eychmüller, “One-pot aqueous synthesis of high quality near infrared emitting Cd1_xHgxTe nanocrystals,” J. Mater. Chem. 19(48), 9147–9152 (2009).
[CrossRef]

2008 (2)

D. Dorfs, A. Salant, I. Popov, and U. Banin, “ZnSe quantum dots within CdS nanorods: a seeded-growth type-II system,” Small 4(9), 1319–1323 (2008).
[CrossRef] [PubMed]

D. Dorfs, T. Franzl, R. Osovsky, M. Brumer, E. Lifshitz, T. Klar, and A. Eychmüller, “Type-I and Type-II nanoheterostructures based on CdTe nanocrystals – a comparative study,” Small 4, 1148–1153 (2008).

2007 (8)

V. I. Klimov, S. A. Ivanov, J. Nanda, M. Achermann, I. Bezel, J. A. McGuire, and A. Piryatinski, “Single-exciton optical gain in semiconductor nanocrystals,” Nature 447(7143), 441–446 (2007).
[CrossRef] [PubMed]

D. Oron, M. Kazes, and U. Banin, “Multiexcitons in type-II colloidal semiconductor quantum dots,” Phys. Rev. B 75(3), 035330 (2007).
[CrossRef]

S. Kumar, M. Jones, S. S. Lo, and G. D. Scholes, “Nanorod heterostructures showing photoinduced charge separation,” Small 3(9), 1633–1639 (2007).
[CrossRef] [PubMed]

M. B. Ward, T. Farrow, P. See, Z. L. Yuan, O. Z. Karimov, A. J. Bennett, A. J. Shields, P. Atkinson, K. Cooper, and D. A. Ritchie, “Electrically driven telecommunication wavelength single-photon source,” Appl. Phys. Lett. 90(6), 063512 (2007).
[CrossRef]

P. M. Intallura, M. B. Ward, O. Z. Karimov, Z. L. Yuan, P. See, A. J. Shields, P. Atkinson, and D. A. Ritchie, “Quantum key distribution using a triggered quantum dot source emitting near 1.3 μm,” Appl. Phys. Lett. 91(16), 161103 (2007).
[CrossRef]

S. Smolka, M. Barth, and O. Benson, “Selectively coated photonic crystal fiber for highly sensitive fluorescence detection,” Appl. Phys. Lett. 90(11), 111101 (2007).
[CrossRef]

Y. Zhang, C. Shi, C. Gu, L. Seballos, and J. Z. Zhang, “Liquid core photonic crystal fiber sensor based on surface enhanced Raman scattering,” Appl. Phys. Lett. 90(19), 193504 (2007).
[CrossRef]

S. Smolka, M. Barth, and O. Benson, “Highly efficient fluorescence sensing with hollow core photonic crystal fibers,” Opt. Express 15(20), 12783–12791 (2007).
[CrossRef] [PubMed]

2006 (4)

E. F. Chillcce, C. M. B. Cordeiro, L. C. Barbosa, and C. H. Brito Cruz, “Tellurite photonic crystal fiber made by a stack-and-draw technique,” J. Non-Cryst. Solids 352(32-35), 3423–3428 (2006).
[CrossRef]

F. M. Cox, A. Argyros, and M. C. J. Large, “Liquid-filled hollow core microstructured polymer optical fiber,” Opt. Express 14(9), 4135–4140 (2006).
[CrossRef] [PubMed]

S. O. Konorov, C. J. Addison, H. G. Schulze, R. F. B. Turner, and M. W. Blades, “Hollow-core photonic crystal fiber-optic probes for Raman spectroscopy,” Opt. Lett. 31(12), 1911–1913 (2006).
[CrossRef] [PubMed]

J. J. Peterson and T. D. Krauss, “Fluorescence spectroscopy of single lead sulfide quantum dots,” Nano Lett. 6(3), 510–514 (2006).
[CrossRef] [PubMed]

2005 (1)

2003 (2)

H. Zhang, Z. Cui, Y. Wang, K. Zhang, X. Ji, C. Lü, B. Yang, and M. Gao, “From water-soluble CdTe nanocrystals to fluorescent nanocrystal–polymer transparent composites using polymerizable Surfactants,” Adv. Mater. (Deerfield Beach Fla.) 15(10), 777–780 (2003).
[CrossRef]

S. Kim, B. Fisher, H.-J. Eisler, and M. Bawendi, “Type-II quantum dots: CdTe/CdSe(core/shell) and CdSe/ZnTe(core/shell) heterostructures,” J. Am. Chem. Soc. 125(38), 11466–11467 (2003).
[CrossRef] [PubMed]

2002 (2)

A. Kuhn, M. Hennrich, and G. Rempe, “Deterministic single-photon source for distributed quantum networking,” Phys. Rev. Lett. 89(6), 067901 (2002).
[CrossRef] [PubMed]

A. Beveratos, S. Kühn, R. Brouri, T. Gacoin, J. P. Poizat, and P. Grangier, “Room temperature stable single-photon source,” Eur. Phys. J. D 18(2), 191–196 (2002).
[CrossRef]

2001 (1)

C. Santori, M. Pelton, G. Solomon, Y. Dale, and Y. Yamamoto, “Triggered single photons from a quantum dot,” Phys. Rev. Lett. 86(8), 1502–1505 (2001).
[CrossRef] [PubMed]

2000 (2)

A. Imamoğlu, P. Michler, M. D. Mason, P. J. Carson, G. F. Strouse, and S. K. Buratto, “Quantum correlation among photons from a single quantum dot at room temperature,” Nature 406(6799), 968–970 (2000).
[CrossRef] [PubMed]

C. Kurtsiefer, S. Mayer, P. Zarda, and H. Weinfurter, “Stable solid-state source of single photons,” Phys. Rev. Lett. 85(2), 290–293 (2000).
[CrossRef] [PubMed]

1999 (1)

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. S. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285(5433), 1537–1539 (1999).
[CrossRef] [PubMed]

1977 (1)

H. J. Kimble, M. Dagenais, and L. Mandel, “Photon antibunching in resonance fluorescence,” Phys. Rev. Lett. 39(11), 691–695 (1977).
[CrossRef]

Achermann, M.

V. I. Klimov, S. A. Ivanov, J. Nanda, M. Achermann, I. Bezel, J. A. McGuire, and A. Piryatinski, “Single-exciton optical gain in semiconductor nanocrystals,” Nature 447(7143), 441–446 (2007).
[CrossRef] [PubMed]

Addison, C. J.

Allan, D. C.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. S. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285(5433), 1537–1539 (1999).
[CrossRef] [PubMed]

Allen, P. M.

D. K. Harris, P. M. Allen, H. S. Han, B. J. Walker, J. Lee, and M. G. Bawendi, “Synthesis of cadmium arsenide quantum dots luminescent in the infrared,” J. Am. Chem. Soc. 133(13), 4676–4679 (2011).
[CrossRef] [PubMed]

Argyros, A.

Atkinson, P.

M. B. Ward, T. Farrow, P. See, Z. L. Yuan, O. Z. Karimov, A. J. Bennett, A. J. Shields, P. Atkinson, K. Cooper, and D. A. Ritchie, “Electrically driven telecommunication wavelength single-photon source,” Appl. Phys. Lett. 90(6), 063512 (2007).
[CrossRef]

P. M. Intallura, M. B. Ward, O. Z. Karimov, Z. L. Yuan, P. See, A. J. Shields, P. Atkinson, and D. A. Ritchie, “Quantum key distribution using a triggered quantum dot source emitting near 1.3 μm,” Appl. Phys. Lett. 91(16), 161103 (2007).
[CrossRef]

Balasubramanian, G.

P. Neumann, R. Kolesov, V. Jacques, J. Beck, J. Tisler, A. Batalov, L. Rogers, N. B. Manson, G. Balasubramanian, F. Jelezko, and J. Wrachtrup, “Excited-state spectroscopy of single NV defects in diamond using optically detected magnetic resonance,” New J. Phys. 11(1), 013017 (2009).
[CrossRef]

Banholzer, M. J.

T. Schröder, F. Gädeke, M. J. Banholzer, and O. Benson, “Ultrabright and efficient single-photon generation based on nitrogen-vacancy centres in nanodiamonds on a solid immersion lens,” New J. Phys. 13(5), 055017 (2011).
[CrossRef]

Banin, U.

D. Dorfs, A. Salant, I. Popov, and U. Banin, “ZnSe quantum dots within CdS nanorods: a seeded-growth type-II system,” Small 4(9), 1319–1323 (2008).
[CrossRef] [PubMed]

D. Oron, M. Kazes, and U. Banin, “Multiexcitons in type-II colloidal semiconductor quantum dots,” Phys. Rev. B 75(3), 035330 (2007).
[CrossRef]

Barbosa, L. C.

E. F. Chillcce, C. M. B. Cordeiro, L. C. Barbosa, and C. H. Brito Cruz, “Tellurite photonic crystal fiber made by a stack-and-draw technique,” J. Non-Cryst. Solids 352(32-35), 3423–3428 (2006).
[CrossRef]

Barth, M.

S. Smolka, M. Barth, and O. Benson, “Selectively coated photonic crystal fiber for highly sensitive fluorescence detection,” Appl. Phys. Lett. 90(11), 111101 (2007).
[CrossRef]

S. Smolka, M. Barth, and O. Benson, “Highly efficient fluorescence sensing with hollow core photonic crystal fibers,” Opt. Express 15(20), 12783–12791 (2007).
[CrossRef] [PubMed]

Batalov, A.

P. Neumann, R. Kolesov, V. Jacques, J. Beck, J. Tisler, A. Batalov, L. Rogers, N. B. Manson, G. Balasubramanian, F. Jelezko, and J. Wrachtrup, “Excited-state spectroscopy of single NV defects in diamond using optically detected magnetic resonance,” New J. Phys. 11(1), 013017 (2009).
[CrossRef]

Bawendi, M.

S. Kim, B. Fisher, H.-J. Eisler, and M. Bawendi, “Type-II quantum dots: CdTe/CdSe(core/shell) and CdSe/ZnTe(core/shell) heterostructures,” J. Am. Chem. Soc. 125(38), 11466–11467 (2003).
[CrossRef] [PubMed]

Bawendi, M. G.

D. K. Harris, P. M. Allen, H. S. Han, B. J. Walker, J. Lee, and M. G. Bawendi, “Synthesis of cadmium arsenide quantum dots luminescent in the infrared,” J. Am. Chem. Soc. 133(13), 4676–4679 (2011).
[CrossRef] [PubMed]

Becher, C.

E. Neu, D. Steinmetz, J. Riedrich-Möller, S. Gsell, M. Fischer, M. Schreck, and C. Becher, “Single photon emission from silicon-vacancy colour centres in chemical vapour deposition nano-diamonds on iridium,” New J. Phys. 13(2), 025012 (2011).
[CrossRef]

Beck, J.

P. Neumann, R. Kolesov, V. Jacques, J. Beck, J. Tisler, A. Batalov, L. Rogers, N. B. Manson, G. Balasubramanian, F. Jelezko, and J. Wrachtrup, “Excited-state spectroscopy of single NV defects in diamond using optically detected magnetic resonance,” New J. Phys. 11(1), 013017 (2009).
[CrossRef]

Bennett, A. J.

M. B. Ward, T. Farrow, P. See, Z. L. Yuan, O. Z. Karimov, A. J. Bennett, A. J. Shields, P. Atkinson, K. Cooper, and D. A. Ritchie, “Electrically driven telecommunication wavelength single-photon source,” Appl. Phys. Lett. 90(6), 063512 (2007).
[CrossRef]

Benson, O.

T. Schröder, F. Gädeke, M. J. Banholzer, and O. Benson, “Ultrabright and efficient single-photon generation based on nitrogen-vacancy centres in nanodiamonds on a solid immersion lens,” New J. Phys. 13(5), 055017 (2011).
[CrossRef]

S. Smolka, M. Barth, and O. Benson, “Selectively coated photonic crystal fiber for highly sensitive fluorescence detection,” Appl. Phys. Lett. 90(11), 111101 (2007).
[CrossRef]

S. Smolka, M. Barth, and O. Benson, “Highly efficient fluorescence sensing with hollow core photonic crystal fibers,” Opt. Express 15(20), 12783–12791 (2007).
[CrossRef] [PubMed]

Beveratos, A.

A. Beveratos, S. Kühn, R. Brouri, T. Gacoin, J. P. Poizat, and P. Grangier, “Room temperature stable single-photon source,” Eur. Phys. J. D 18(2), 191–196 (2002).
[CrossRef]

Bezel, I.

V. I. Klimov, S. A. Ivanov, J. Nanda, M. Achermann, I. Bezel, J. A. McGuire, and A. Piryatinski, “Single-exciton optical gain in semiconductor nanocrystals,” Nature 447(7143), 441–446 (2007).
[CrossRef] [PubMed]

Birks, T. A.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. S. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285(5433), 1537–1539 (1999).
[CrossRef] [PubMed]

Blades, M. W.

Brito Cruz, C. H.

E. F. Chillcce, C. M. B. Cordeiro, L. C. Barbosa, and C. H. Brito Cruz, “Tellurite photonic crystal fiber made by a stack-and-draw technique,” J. Non-Cryst. Solids 352(32-35), 3423–3428 (2006).
[CrossRef]

Brouri, R.

A. Beveratos, S. Kühn, R. Brouri, T. Gacoin, J. P. Poizat, and P. Grangier, “Room temperature stable single-photon source,” Eur. Phys. J. D 18(2), 191–196 (2002).
[CrossRef]

Brumer, M.

D. Dorfs, T. Franzl, R. Osovsky, M. Brumer, E. Lifshitz, T. Klar, and A. Eychmüller, “Type-I and Type-II nanoheterostructures based on CdTe nanocrystals – a comparative study,” Small 4, 1148–1153 (2008).

Buratto, S. K.

A. Imamoğlu, P. Michler, M. D. Mason, P. J. Carson, G. F. Strouse, and S. K. Buratto, “Quantum correlation among photons from a single quantum dot at room temperature,” Nature 406(6799), 968–970 (2000).
[CrossRef] [PubMed]

Carson, P. J.

A. Imamoğlu, P. Michler, M. D. Mason, P. J. Carson, G. F. Strouse, and S. K. Buratto, “Quantum correlation among photons from a single quantum dot at room temperature,” Nature 406(6799), 968–970 (2000).
[CrossRef] [PubMed]

Chen, B.

Chen, X. W.

X. W. Chen, S. Götzinger, and V. Sandoghdar, “99% efficiency in collecting photons from a single emitter,” Opt. Lett. 36(18), 3545–3547 (2011).
[CrossRef] [PubMed]

K. G. Lee, X. W. Chen, H. Eghlidi, P. Kukura, R. Lettow, A. Renn, V. Sandoghdar, and S. Gotzinger, “A planar dielectric antenna for directional single-photon emission and near-unity collection efficiency,” Nat. Photonics 5(3), 166–169 (2011).
[CrossRef]

Chillcce, E. F.

E. F. Chillcce, C. M. B. Cordeiro, L. C. Barbosa, and C. H. Brito Cruz, “Tellurite photonic crystal fiber made by a stack-and-draw technique,” J. Non-Cryst. Solids 352(32-35), 3423–3428 (2006).
[CrossRef]

Cooper, K.

M. B. Ward, T. Farrow, P. See, Z. L. Yuan, O. Z. Karimov, A. J. Bennett, A. J. Shields, P. Atkinson, K. Cooper, and D. A. Ritchie, “Electrically driven telecommunication wavelength single-photon source,” Appl. Phys. Lett. 90(6), 063512 (2007).
[CrossRef]

Cordeiro, C. M. B.

E. F. Chillcce, C. M. B. Cordeiro, L. C. Barbosa, and C. H. Brito Cruz, “Tellurite photonic crystal fiber made by a stack-and-draw technique,” J. Non-Cryst. Solids 352(32-35), 3423–3428 (2006).
[CrossRef]

Cox, F. M.

Cregan, R. F.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. S. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285(5433), 1537–1539 (1999).
[CrossRef] [PubMed]

Cui, Z.

H. Zhang, Z. Cui, Y. Wang, K. Zhang, X. Ji, C. Lü, B. Yang, and M. Gao, “From water-soluble CdTe nanocrystals to fluorescent nanocrystal–polymer transparent composites using polymerizable Surfactants,” Adv. Mater. (Deerfield Beach Fla.) 15(10), 777–780 (2003).
[CrossRef]

Dagenais, M.

H. J. Kimble, M. Dagenais, and L. Mandel, “Photon antibunching in resonance fluorescence,” Phys. Rev. Lett. 39(11), 691–695 (1977).
[CrossRef]

Dale, Y.

C. Santori, M. Pelton, G. Solomon, Y. Dale, and Y. Yamamoto, “Triggered single photons from a quantum dot,” Phys. Rev. Lett. 86(8), 1502–1505 (2001).
[CrossRef] [PubMed]

de Riedmatten, H.

N. Sangouard, C. Simon, H. de Riedmatten, and N. Gisin, “Quantum repeaters based on atomic ensembles and linear optics,” Rev. Mod. Phys. 83(1), 33–80 (2011).
[CrossRef]

Demokan, M. S.

Dorfs, D.

D. Dorfs, T. Franzl, R. Osovsky, M. Brumer, E. Lifshitz, T. Klar, and A. Eychmüller, “Type-I and Type-II nanoheterostructures based on CdTe nanocrystals – a comparative study,” Small 4, 1148–1153 (2008).

D. Dorfs, A. Salant, I. Popov, and U. Banin, “ZnSe quantum dots within CdS nanorods: a seeded-growth type-II system,” Small 4(9), 1319–1323 (2008).
[CrossRef] [PubMed]

Eghlidi, H.

K. G. Lee, X. W. Chen, H. Eghlidi, P. Kukura, R. Lettow, A. Renn, V. Sandoghdar, and S. Gotzinger, “A planar dielectric antenna for directional single-photon emission and near-unity collection efficiency,” Nat. Photonics 5(3), 166–169 (2011).
[CrossRef]

Eisler, H.-J.

S. Kim, B. Fisher, H.-J. Eisler, and M. Bawendi, “Type-II quantum dots: CdTe/CdSe(core/shell) and CdSe/ZnTe(core/shell) heterostructures,” J. Am. Chem. Soc. 125(38), 11466–11467 (2003).
[CrossRef] [PubMed]

Eychmüller, A.

V. Lesnyak, A. Lutich, N. Gaponik, M. Grabolle, A. Plotnikov, U. Resch-Genger, and A. Eychmüller, “One-pot aqueous synthesis of high quality near infrared emitting Cd1_xHgxTe nanocrystals,” J. Mater. Chem. 19(48), 9147–9152 (2009).
[CrossRef]

D. Dorfs, T. Franzl, R. Osovsky, M. Brumer, E. Lifshitz, T. Klar, and A. Eychmüller, “Type-I and Type-II nanoheterostructures based on CdTe nanocrystals – a comparative study,” Small 4, 1148–1153 (2008).

Farrow, T.

M. B. Ward, T. Farrow, P. See, Z. L. Yuan, O. Z. Karimov, A. J. Bennett, A. J. Shields, P. Atkinson, K. Cooper, and D. A. Ritchie, “Electrically driven telecommunication wavelength single-photon source,” Appl. Phys. Lett. 90(6), 063512 (2007).
[CrossRef]

Fischer, M.

E. Neu, D. Steinmetz, J. Riedrich-Möller, S. Gsell, M. Fischer, M. Schreck, and C. Becher, “Single photon emission from silicon-vacancy colour centres in chemical vapour deposition nano-diamonds on iridium,” New J. Phys. 13(2), 025012 (2011).
[CrossRef]

Fisher, B.

S. Kim, B. Fisher, H.-J. Eisler, and M. Bawendi, “Type-II quantum dots: CdTe/CdSe(core/shell) and CdSe/ZnTe(core/shell) heterostructures,” J. Am. Chem. Soc. 125(38), 11466–11467 (2003).
[CrossRef] [PubMed]

Franzl, T.

D. Dorfs, T. Franzl, R. Osovsky, M. Brumer, E. Lifshitz, T. Klar, and A. Eychmüller, “Type-I and Type-II nanoheterostructures based on CdTe nanocrystals – a comparative study,” Small 4, 1148–1153 (2008).

Gacoin, T.

A. Beveratos, S. Kühn, R. Brouri, T. Gacoin, J. P. Poizat, and P. Grangier, “Room temperature stable single-photon source,” Eur. Phys. J. D 18(2), 191–196 (2002).
[CrossRef]

Gädeke, F.

T. Schröder, F. Gädeke, M. J. Banholzer, and O. Benson, “Ultrabright and efficient single-photon generation based on nitrogen-vacancy centres in nanodiamonds on a solid immersion lens,” New J. Phys. 13(5), 055017 (2011).
[CrossRef]

Gao, M.

H. Zhang, Z. Cui, Y. Wang, K. Zhang, X. Ji, C. Lü, B. Yang, and M. Gao, “From water-soluble CdTe nanocrystals to fluorescent nanocrystal–polymer transparent composites using polymerizable Surfactants,” Adv. Mater. (Deerfield Beach Fla.) 15(10), 777–780 (2003).
[CrossRef]

Gaponik, N.

V. Lesnyak, A. Lutich, N. Gaponik, M. Grabolle, A. Plotnikov, U. Resch-Genger, and A. Eychmüller, “One-pot aqueous synthesis of high quality near infrared emitting Cd1_xHgxTe nanocrystals,” J. Mater. Chem. 19(48), 9147–9152 (2009).
[CrossRef]

Gisin, N.

N. Sangouard, C. Simon, H. de Riedmatten, and N. Gisin, “Quantum repeaters based on atomic ensembles and linear optics,” Rev. Mod. Phys. 83(1), 33–80 (2011).
[CrossRef]

Gotzinger, S.

K. G. Lee, X. W. Chen, H. Eghlidi, P. Kukura, R. Lettow, A. Renn, V. Sandoghdar, and S. Gotzinger, “A planar dielectric antenna for directional single-photon emission and near-unity collection efficiency,” Nat. Photonics 5(3), 166–169 (2011).
[CrossRef]

Götzinger, S.

Grabolle, M.

V. Lesnyak, A. Lutich, N. Gaponik, M. Grabolle, A. Plotnikov, U. Resch-Genger, and A. Eychmüller, “One-pot aqueous synthesis of high quality near infrared emitting Cd1_xHgxTe nanocrystals,” J. Mater. Chem. 19(48), 9147–9152 (2009).
[CrossRef]

Grangier, P.

A. Beveratos, S. Kühn, R. Brouri, T. Gacoin, J. P. Poizat, and P. Grangier, “Room temperature stable single-photon source,” Eur. Phys. J. D 18(2), 191–196 (2002).
[CrossRef]

Gsell, S.

E. Neu, D. Steinmetz, J. Riedrich-Möller, S. Gsell, M. Fischer, M. Schreck, and C. Becher, “Single photon emission from silicon-vacancy colour centres in chemical vapour deposition nano-diamonds on iridium,” New J. Phys. 13(2), 025012 (2011).
[CrossRef]

Gu, C.

X. Yang, C. Shi, D. Wheeler, R. Newhouse, B. Chen, J. Z. Zhang, and C. Gu, “High-sensitivity molecular sensing using hollow-core photonic crystal fiber and surface-enhanced Raman scattering,” J. Opt. Soc. Am. A 27(5), 977–984 (2010).
[CrossRef] [PubMed]

Y. Zhang, C. Shi, C. Gu, L. Seballos, and J. Z. Zhang, “Liquid core photonic crystal fiber sensor based on surface enhanced Raman scattering,” Appl. Phys. Lett. 90(19), 193504 (2007).
[CrossRef]

Han, H. S.

D. K. Harris, P. M. Allen, H. S. Han, B. J. Walker, J. Lee, and M. G. Bawendi, “Synthesis of cadmium arsenide quantum dots luminescent in the infrared,” J. Am. Chem. Soc. 133(13), 4676–4679 (2011).
[CrossRef] [PubMed]

Harris, D. K.

D. K. Harris, P. M. Allen, H. S. Han, B. J. Walker, J. Lee, and M. G. Bawendi, “Synthesis of cadmium arsenide quantum dots luminescent in the infrared,” J. Am. Chem. Soc. 133(13), 4676–4679 (2011).
[CrossRef] [PubMed]

Hennrich, M.

A. Kuhn, M. Hennrich, and G. Rempe, “Deterministic single-photon source for distributed quantum networking,” Phys. Rev. Lett. 89(6), 067901 (2002).
[CrossRef] [PubMed]

Ho, H. L.

Hoo, Y. L.

Imamoglu, A.

A. Imamoğlu, P. Michler, M. D. Mason, P. J. Carson, G. F. Strouse, and S. K. Buratto, “Quantum correlation among photons from a single quantum dot at room temperature,” Nature 406(6799), 968–970 (2000).
[CrossRef] [PubMed]

Intallura, P. M.

P. M. Intallura, M. B. Ward, O. Z. Karimov, Z. L. Yuan, P. See, A. J. Shields, P. Atkinson, and D. A. Ritchie, “Quantum key distribution using a triggered quantum dot source emitting near 1.3 μm,” Appl. Phys. Lett. 91(16), 161103 (2007).
[CrossRef]

Ivanov, S. A.

V. I. Klimov, S. A. Ivanov, J. Nanda, M. Achermann, I. Bezel, J. A. McGuire, and A. Piryatinski, “Single-exciton optical gain in semiconductor nanocrystals,” Nature 447(7143), 441–446 (2007).
[CrossRef] [PubMed]

Jacques, V.

P. Neumann, R. Kolesov, V. Jacques, J. Beck, J. Tisler, A. Batalov, L. Rogers, N. B. Manson, G. Balasubramanian, F. Jelezko, and J. Wrachtrup, “Excited-state spectroscopy of single NV defects in diamond using optically detected magnetic resonance,” New J. Phys. 11(1), 013017 (2009).
[CrossRef]

Jelezko, F.

P. Neumann, R. Kolesov, V. Jacques, J. Beck, J. Tisler, A. Batalov, L. Rogers, N. B. Manson, G. Balasubramanian, F. Jelezko, and J. Wrachtrup, “Excited-state spectroscopy of single NV defects in diamond using optically detected magnetic resonance,” New J. Phys. 11(1), 013017 (2009).
[CrossRef]

Ji, X.

H. Zhang, Z. Cui, Y. Wang, K. Zhang, X. Ji, C. Lü, B. Yang, and M. Gao, “From water-soluble CdTe nanocrystals to fluorescent nanocrystal–polymer transparent composites using polymerizable Surfactants,” Adv. Mater. (Deerfield Beach Fla.) 15(10), 777–780 (2003).
[CrossRef]

Jin, W.

Jones, M.

S. Kumar, M. Jones, S. S. Lo, and G. D. Scholes, “Nanorod heterostructures showing photoinduced charge separation,” Small 3(9), 1633–1639 (2007).
[CrossRef] [PubMed]

Karimov, O. Z.

P. M. Intallura, M. B. Ward, O. Z. Karimov, Z. L. Yuan, P. See, A. J. Shields, P. Atkinson, and D. A. Ritchie, “Quantum key distribution using a triggered quantum dot source emitting near 1.3 μm,” Appl. Phys. Lett. 91(16), 161103 (2007).
[CrossRef]

M. B. Ward, T. Farrow, P. See, Z. L. Yuan, O. Z. Karimov, A. J. Bennett, A. J. Shields, P. Atkinson, K. Cooper, and D. A. Ritchie, “Electrically driven telecommunication wavelength single-photon source,” Appl. Phys. Lett. 90(6), 063512 (2007).
[CrossRef]

Kazes, M.

D. Oron, M. Kazes, and U. Banin, “Multiexcitons in type-II colloidal semiconductor quantum dots,” Phys. Rev. B 75(3), 035330 (2007).
[CrossRef]

Kim, S.

S. Kim, B. Fisher, H.-J. Eisler, and M. Bawendi, “Type-II quantum dots: CdTe/CdSe(core/shell) and CdSe/ZnTe(core/shell) heterostructures,” J. Am. Chem. Soc. 125(38), 11466–11467 (2003).
[CrossRef] [PubMed]

Kimble, H. J.

H. J. Kimble, M. Dagenais, and L. Mandel, “Photon antibunching in resonance fluorescence,” Phys. Rev. Lett. 39(11), 691–695 (1977).
[CrossRef]

Klar, T.

D. Dorfs, T. Franzl, R. Osovsky, M. Brumer, E. Lifshitz, T. Klar, and A. Eychmüller, “Type-I and Type-II nanoheterostructures based on CdTe nanocrystals – a comparative study,” Small 4, 1148–1153 (2008).

Klimov, V. I.

V. I. Klimov, S. A. Ivanov, J. Nanda, M. Achermann, I. Bezel, J. A. McGuire, and A. Piryatinski, “Single-exciton optical gain in semiconductor nanocrystals,” Nature 447(7143), 441–446 (2007).
[CrossRef] [PubMed]

Knight, J. C.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. S. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285(5433), 1537–1539 (1999).
[CrossRef] [PubMed]

Kolesov, R.

P. Neumann, R. Kolesov, V. Jacques, J. Beck, J. Tisler, A. Batalov, L. Rogers, N. B. Manson, G. Balasubramanian, F. Jelezko, and J. Wrachtrup, “Excited-state spectroscopy of single NV defects in diamond using optically detected magnetic resonance,” New J. Phys. 11(1), 013017 (2009).
[CrossRef]

Konorov, S. O.

Krauss, T. D.

J. J. Peterson and T. D. Krauss, “Fluorescence spectroscopy of single lead sulfide quantum dots,” Nano Lett. 6(3), 510–514 (2006).
[CrossRef] [PubMed]

Kuhn, A.

A. Kuhn, M. Hennrich, and G. Rempe, “Deterministic single-photon source for distributed quantum networking,” Phys. Rev. Lett. 89(6), 067901 (2002).
[CrossRef] [PubMed]

Kühn, S.

A. Beveratos, S. Kühn, R. Brouri, T. Gacoin, J. P. Poizat, and P. Grangier, “Room temperature stable single-photon source,” Eur. Phys. J. D 18(2), 191–196 (2002).
[CrossRef]

Kukura, P.

K. G. Lee, X. W. Chen, H. Eghlidi, P. Kukura, R. Lettow, A. Renn, V. Sandoghdar, and S. Gotzinger, “A planar dielectric antenna for directional single-photon emission and near-unity collection efficiency,” Nat. Photonics 5(3), 166–169 (2011).
[CrossRef]

Kumar, S.

S. Kumar, M. Jones, S. S. Lo, and G. D. Scholes, “Nanorod heterostructures showing photoinduced charge separation,” Small 3(9), 1633–1639 (2007).
[CrossRef] [PubMed]

Kurtsiefer, C.

C. Kurtsiefer, S. Mayer, P. Zarda, and H. Weinfurter, “Stable solid-state source of single photons,” Phys. Rev. Lett. 85(2), 290–293 (2000).
[CrossRef] [PubMed]

Large, M. C. J.

Lee, J.

D. K. Harris, P. M. Allen, H. S. Han, B. J. Walker, J. Lee, and M. G. Bawendi, “Synthesis of cadmium arsenide quantum dots luminescent in the infrared,” J. Am. Chem. Soc. 133(13), 4676–4679 (2011).
[CrossRef] [PubMed]

Lee, K. G.

K. G. Lee, X. W. Chen, H. Eghlidi, P. Kukura, R. Lettow, A. Renn, V. Sandoghdar, and S. Gotzinger, “A planar dielectric antenna for directional single-photon emission and near-unity collection efficiency,” Nat. Photonics 5(3), 166–169 (2011).
[CrossRef]

Lesnyak, V.

V. Lesnyak, A. Lutich, N. Gaponik, M. Grabolle, A. Plotnikov, U. Resch-Genger, and A. Eychmüller, “One-pot aqueous synthesis of high quality near infrared emitting Cd1_xHgxTe nanocrystals,” J. Mater. Chem. 19(48), 9147–9152 (2009).
[CrossRef]

Lettow, R.

K. G. Lee, X. W. Chen, H. Eghlidi, P. Kukura, R. Lettow, A. Renn, V. Sandoghdar, and S. Gotzinger, “A planar dielectric antenna for directional single-photon emission and near-unity collection efficiency,” Nat. Photonics 5(3), 166–169 (2011).
[CrossRef]

Lifshitz, E.

D. Dorfs, T. Franzl, R. Osovsky, M. Brumer, E. Lifshitz, T. Klar, and A. Eychmüller, “Type-I and Type-II nanoheterostructures based on CdTe nanocrystals – a comparative study,” Small 4, 1148–1153 (2008).

Lo, S. S.

S. Kumar, M. Jones, S. S. Lo, and G. D. Scholes, “Nanorod heterostructures showing photoinduced charge separation,” Small 3(9), 1633–1639 (2007).
[CrossRef] [PubMed]

Lü, C.

H. Zhang, Z. Cui, Y. Wang, K. Zhang, X. Ji, C. Lü, B. Yang, and M. Gao, “From water-soluble CdTe nanocrystals to fluorescent nanocrystal–polymer transparent composites using polymerizable Surfactants,” Adv. Mater. (Deerfield Beach Fla.) 15(10), 777–780 (2003).
[CrossRef]

Lutich, A.

V. Lesnyak, A. Lutich, N. Gaponik, M. Grabolle, A. Plotnikov, U. Resch-Genger, and A. Eychmüller, “One-pot aqueous synthesis of high quality near infrared emitting Cd1_xHgxTe nanocrystals,” J. Mater. Chem. 19(48), 9147–9152 (2009).
[CrossRef]

Mandel, L.

H. J. Kimble, M. Dagenais, and L. Mandel, “Photon antibunching in resonance fluorescence,” Phys. Rev. Lett. 39(11), 691–695 (1977).
[CrossRef]

Mangan, B. J.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. S. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285(5433), 1537–1539 (1999).
[CrossRef] [PubMed]

Manson, N. B.

P. Neumann, R. Kolesov, V. Jacques, J. Beck, J. Tisler, A. Batalov, L. Rogers, N. B. Manson, G. Balasubramanian, F. Jelezko, and J. Wrachtrup, “Excited-state spectroscopy of single NV defects in diamond using optically detected magnetic resonance,” New J. Phys. 11(1), 013017 (2009).
[CrossRef]

Mason, M. D.

A. Imamoğlu, P. Michler, M. D. Mason, P. J. Carson, G. F. Strouse, and S. K. Buratto, “Quantum correlation among photons from a single quantum dot at room temperature,” Nature 406(6799), 968–970 (2000).
[CrossRef] [PubMed]

Mayer, S.

C. Kurtsiefer, S. Mayer, P. Zarda, and H. Weinfurter, “Stable solid-state source of single photons,” Phys. Rev. Lett. 85(2), 290–293 (2000).
[CrossRef] [PubMed]

McGuire, J. A.

V. I. Klimov, S. A. Ivanov, J. Nanda, M. Achermann, I. Bezel, J. A. McGuire, and A. Piryatinski, “Single-exciton optical gain in semiconductor nanocrystals,” Nature 447(7143), 441–446 (2007).
[CrossRef] [PubMed]

Michler, P.

A. Imamoğlu, P. Michler, M. D. Mason, P. J. Carson, G. F. Strouse, and S. K. Buratto, “Quantum correlation among photons from a single quantum dot at room temperature,” Nature 406(6799), 968–970 (2000).
[CrossRef] [PubMed]

Nanda, J.

V. I. Klimov, S. A. Ivanov, J. Nanda, M. Achermann, I. Bezel, J. A. McGuire, and A. Piryatinski, “Single-exciton optical gain in semiconductor nanocrystals,” Nature 447(7143), 441–446 (2007).
[CrossRef] [PubMed]

Neu, E.

E. Neu, D. Steinmetz, J. Riedrich-Möller, S. Gsell, M. Fischer, M. Schreck, and C. Becher, “Single photon emission from silicon-vacancy colour centres in chemical vapour deposition nano-diamonds on iridium,” New J. Phys. 13(2), 025012 (2011).
[CrossRef]

Neumann, P.

P. Neumann, R. Kolesov, V. Jacques, J. Beck, J. Tisler, A. Batalov, L. Rogers, N. B. Manson, G. Balasubramanian, F. Jelezko, and J. Wrachtrup, “Excited-state spectroscopy of single NV defects in diamond using optically detected magnetic resonance,” New J. Phys. 11(1), 013017 (2009).
[CrossRef]

Newhouse, R.

Oron, D.

D. Oron, M. Kazes, and U. Banin, “Multiexcitons in type-II colloidal semiconductor quantum dots,” Phys. Rev. B 75(3), 035330 (2007).
[CrossRef]

Osovsky, R.

D. Dorfs, T. Franzl, R. Osovsky, M. Brumer, E. Lifshitz, T. Klar, and A. Eychmüller, “Type-I and Type-II nanoheterostructures based on CdTe nanocrystals – a comparative study,” Small 4, 1148–1153 (2008).

Pelton, M.

C. Santori, M. Pelton, G. Solomon, Y. Dale, and Y. Yamamoto, “Triggered single photons from a quantum dot,” Phys. Rev. Lett. 86(8), 1502–1505 (2001).
[CrossRef] [PubMed]

Peterson, J. J.

J. J. Peterson and T. D. Krauss, “Fluorescence spectroscopy of single lead sulfide quantum dots,” Nano Lett. 6(3), 510–514 (2006).
[CrossRef] [PubMed]

Piryatinski, A.

V. I. Klimov, S. A. Ivanov, J. Nanda, M. Achermann, I. Bezel, J. A. McGuire, and A. Piryatinski, “Single-exciton optical gain in semiconductor nanocrystals,” Nature 447(7143), 441–446 (2007).
[CrossRef] [PubMed]

Plotnikov, A.

V. Lesnyak, A. Lutich, N. Gaponik, M. Grabolle, A. Plotnikov, U. Resch-Genger, and A. Eychmüller, “One-pot aqueous synthesis of high quality near infrared emitting Cd1_xHgxTe nanocrystals,” J. Mater. Chem. 19(48), 9147–9152 (2009).
[CrossRef]

Poizat, J. P.

A. Beveratos, S. Kühn, R. Brouri, T. Gacoin, J. P. Poizat, and P. Grangier, “Room temperature stable single-photon source,” Eur. Phys. J. D 18(2), 191–196 (2002).
[CrossRef]

Popov, I.

D. Dorfs, A. Salant, I. Popov, and U. Banin, “ZnSe quantum dots within CdS nanorods: a seeded-growth type-II system,” Small 4(9), 1319–1323 (2008).
[CrossRef] [PubMed]

Rempe, G.

A. Kuhn, M. Hennrich, and G. Rempe, “Deterministic single-photon source for distributed quantum networking,” Phys. Rev. Lett. 89(6), 067901 (2002).
[CrossRef] [PubMed]

Renn, A.

K. G. Lee, X. W. Chen, H. Eghlidi, P. Kukura, R. Lettow, A. Renn, V. Sandoghdar, and S. Gotzinger, “A planar dielectric antenna for directional single-photon emission and near-unity collection efficiency,” Nat. Photonics 5(3), 166–169 (2011).
[CrossRef]

Resch-Genger, U.

V. Lesnyak, A. Lutich, N. Gaponik, M. Grabolle, A. Plotnikov, U. Resch-Genger, and A. Eychmüller, “One-pot aqueous synthesis of high quality near infrared emitting Cd1_xHgxTe nanocrystals,” J. Mater. Chem. 19(48), 9147–9152 (2009).
[CrossRef]

Riedrich-Möller, J.

E. Neu, D. Steinmetz, J. Riedrich-Möller, S. Gsell, M. Fischer, M. Schreck, and C. Becher, “Single photon emission from silicon-vacancy colour centres in chemical vapour deposition nano-diamonds on iridium,” New J. Phys. 13(2), 025012 (2011).
[CrossRef]

Ritchie, D. A.

M. B. Ward, T. Farrow, P. See, Z. L. Yuan, O. Z. Karimov, A. J. Bennett, A. J. Shields, P. Atkinson, K. Cooper, and D. A. Ritchie, “Electrically driven telecommunication wavelength single-photon source,” Appl. Phys. Lett. 90(6), 063512 (2007).
[CrossRef]

P. M. Intallura, M. B. Ward, O. Z. Karimov, Z. L. Yuan, P. See, A. J. Shields, P. Atkinson, and D. A. Ritchie, “Quantum key distribution using a triggered quantum dot source emitting near 1.3 μm,” Appl. Phys. Lett. 91(16), 161103 (2007).
[CrossRef]

Roberts, P. J.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. S. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285(5433), 1537–1539 (1999).
[CrossRef] [PubMed]

Rogers, L.

P. Neumann, R. Kolesov, V. Jacques, J. Beck, J. Tisler, A. Batalov, L. Rogers, N. B. Manson, G. Balasubramanian, F. Jelezko, and J. Wrachtrup, “Excited-state spectroscopy of single NV defects in diamond using optically detected magnetic resonance,” New J. Phys. 11(1), 013017 (2009).
[CrossRef]

Russell, P. S. J.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. S. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285(5433), 1537–1539 (1999).
[CrossRef] [PubMed]

Salant, A.

D. Dorfs, A. Salant, I. Popov, and U. Banin, “ZnSe quantum dots within CdS nanorods: a seeded-growth type-II system,” Small 4(9), 1319–1323 (2008).
[CrossRef] [PubMed]

Sandoghdar, V.

K. G. Lee, X. W. Chen, H. Eghlidi, P. Kukura, R. Lettow, A. Renn, V. Sandoghdar, and S. Gotzinger, “A planar dielectric antenna for directional single-photon emission and near-unity collection efficiency,” Nat. Photonics 5(3), 166–169 (2011).
[CrossRef]

X. W. Chen, S. Götzinger, and V. Sandoghdar, “99% efficiency in collecting photons from a single emitter,” Opt. Lett. 36(18), 3545–3547 (2011).
[CrossRef] [PubMed]

Sangouard, N.

N. Sangouard, C. Simon, H. de Riedmatten, and N. Gisin, “Quantum repeaters based on atomic ensembles and linear optics,” Rev. Mod. Phys. 83(1), 33–80 (2011).
[CrossRef]

Santori, C.

C. Santori, M. Pelton, G. Solomon, Y. Dale, and Y. Yamamoto, “Triggered single photons from a quantum dot,” Phys. Rev. Lett. 86(8), 1502–1505 (2001).
[CrossRef] [PubMed]

Scholes, G. D.

S. Kumar, M. Jones, S. S. Lo, and G. D. Scholes, “Nanorod heterostructures showing photoinduced charge separation,” Small 3(9), 1633–1639 (2007).
[CrossRef] [PubMed]

Schreck, M.

E. Neu, D. Steinmetz, J. Riedrich-Möller, S. Gsell, M. Fischer, M. Schreck, and C. Becher, “Single photon emission from silicon-vacancy colour centres in chemical vapour deposition nano-diamonds on iridium,” New J. Phys. 13(2), 025012 (2011).
[CrossRef]

Schröder, T.

T. Schröder, F. Gädeke, M. J. Banholzer, and O. Benson, “Ultrabright and efficient single-photon generation based on nitrogen-vacancy centres in nanodiamonds on a solid immersion lens,” New J. Phys. 13(5), 055017 (2011).
[CrossRef]

Schulze, H. G.

Seballos, L.

Y. Zhang, C. Shi, C. Gu, L. Seballos, and J. Z. Zhang, “Liquid core photonic crystal fiber sensor based on surface enhanced Raman scattering,” Appl. Phys. Lett. 90(19), 193504 (2007).
[CrossRef]

See, P.

P. M. Intallura, M. B. Ward, O. Z. Karimov, Z. L. Yuan, P. See, A. J. Shields, P. Atkinson, and D. A. Ritchie, “Quantum key distribution using a triggered quantum dot source emitting near 1.3 μm,” Appl. Phys. Lett. 91(16), 161103 (2007).
[CrossRef]

M. B. Ward, T. Farrow, P. See, Z. L. Yuan, O. Z. Karimov, A. J. Bennett, A. J. Shields, P. Atkinson, K. Cooper, and D. A. Ritchie, “Electrically driven telecommunication wavelength single-photon source,” Appl. Phys. Lett. 90(6), 063512 (2007).
[CrossRef]

Shi, C.

X. Yang, C. Shi, D. Wheeler, R. Newhouse, B. Chen, J. Z. Zhang, and C. Gu, “High-sensitivity molecular sensing using hollow-core photonic crystal fiber and surface-enhanced Raman scattering,” J. Opt. Soc. Am. A 27(5), 977–984 (2010).
[CrossRef] [PubMed]

Y. Zhang, C. Shi, C. Gu, L. Seballos, and J. Z. Zhang, “Liquid core photonic crystal fiber sensor based on surface enhanced Raman scattering,” Appl. Phys. Lett. 90(19), 193504 (2007).
[CrossRef]

Shields, A. J.

P. M. Intallura, M. B. Ward, O. Z. Karimov, Z. L. Yuan, P. See, A. J. Shields, P. Atkinson, and D. A. Ritchie, “Quantum key distribution using a triggered quantum dot source emitting near 1.3 μm,” Appl. Phys. Lett. 91(16), 161103 (2007).
[CrossRef]

M. B. Ward, T. Farrow, P. See, Z. L. Yuan, O. Z. Karimov, A. J. Bennett, A. J. Shields, P. Atkinson, K. Cooper, and D. A. Ritchie, “Electrically driven telecommunication wavelength single-photon source,” Appl. Phys. Lett. 90(6), 063512 (2007).
[CrossRef]

Simon, C.

N. Sangouard, C. Simon, H. de Riedmatten, and N. Gisin, “Quantum repeaters based on atomic ensembles and linear optics,” Rev. Mod. Phys. 83(1), 33–80 (2011).
[CrossRef]

Smolka, S.

S. Smolka, M. Barth, and O. Benson, “Selectively coated photonic crystal fiber for highly sensitive fluorescence detection,” Appl. Phys. Lett. 90(11), 111101 (2007).
[CrossRef]

S. Smolka, M. Barth, and O. Benson, “Highly efficient fluorescence sensing with hollow core photonic crystal fibers,” Opt. Express 15(20), 12783–12791 (2007).
[CrossRef] [PubMed]

Solomon, G.

C. Santori, M. Pelton, G. Solomon, Y. Dale, and Y. Yamamoto, “Triggered single photons from a quantum dot,” Phys. Rev. Lett. 86(8), 1502–1505 (2001).
[CrossRef] [PubMed]

Steinmetz, D.

E. Neu, D. Steinmetz, J. Riedrich-Möller, S. Gsell, M. Fischer, M. Schreck, and C. Becher, “Single photon emission from silicon-vacancy colour centres in chemical vapour deposition nano-diamonds on iridium,” New J. Phys. 13(2), 025012 (2011).
[CrossRef]

Strouse, G. F.

A. Imamoğlu, P. Michler, M. D. Mason, P. J. Carson, G. F. Strouse, and S. K. Buratto, “Quantum correlation among photons from a single quantum dot at room temperature,” Nature 406(6799), 968–970 (2000).
[CrossRef] [PubMed]

Tisler, J.

P. Neumann, R. Kolesov, V. Jacques, J. Beck, J. Tisler, A. Batalov, L. Rogers, N. B. Manson, G. Balasubramanian, F. Jelezko, and J. Wrachtrup, “Excited-state spectroscopy of single NV defects in diamond using optically detected magnetic resonance,” New J. Phys. 11(1), 013017 (2009).
[CrossRef]

Turner, R. F. B.

Walker, B. J.

D. K. Harris, P. M. Allen, H. S. Han, B. J. Walker, J. Lee, and M. G. Bawendi, “Synthesis of cadmium arsenide quantum dots luminescent in the infrared,” J. Am. Chem. Soc. 133(13), 4676–4679 (2011).
[CrossRef] [PubMed]

Wang, Y.

H. Zhang, Z. Cui, Y. Wang, K. Zhang, X. Ji, C. Lü, B. Yang, and M. Gao, “From water-soluble CdTe nanocrystals to fluorescent nanocrystal–polymer transparent composites using polymerizable Surfactants,” Adv. Mater. (Deerfield Beach Fla.) 15(10), 777–780 (2003).
[CrossRef]

Ward, M. B.

M. B. Ward, T. Farrow, P. See, Z. L. Yuan, O. Z. Karimov, A. J. Bennett, A. J. Shields, P. Atkinson, K. Cooper, and D. A. Ritchie, “Electrically driven telecommunication wavelength single-photon source,” Appl. Phys. Lett. 90(6), 063512 (2007).
[CrossRef]

P. M. Intallura, M. B. Ward, O. Z. Karimov, Z. L. Yuan, P. See, A. J. Shields, P. Atkinson, and D. A. Ritchie, “Quantum key distribution using a triggered quantum dot source emitting near 1.3 μm,” Appl. Phys. Lett. 91(16), 161103 (2007).
[CrossRef]

Weinfurter, H.

C. Kurtsiefer, S. Mayer, P. Zarda, and H. Weinfurter, “Stable solid-state source of single photons,” Phys. Rev. Lett. 85(2), 290–293 (2000).
[CrossRef] [PubMed]

Wheeler, D.

Wrachtrup, J.

P. Neumann, R. Kolesov, V. Jacques, J. Beck, J. Tisler, A. Batalov, L. Rogers, N. B. Manson, G. Balasubramanian, F. Jelezko, and J. Wrachtrup, “Excited-state spectroscopy of single NV defects in diamond using optically detected magnetic resonance,” New J. Phys. 11(1), 013017 (2009).
[CrossRef]

Xiao, L.

Yamamoto, Y.

C. Santori, M. Pelton, G. Solomon, Y. Dale, and Y. Yamamoto, “Triggered single photons from a quantum dot,” Phys. Rev. Lett. 86(8), 1502–1505 (2001).
[CrossRef] [PubMed]

Yang, B.

H. Zhang, Z. Cui, Y. Wang, K. Zhang, X. Ji, C. Lü, B. Yang, and M. Gao, “From water-soluble CdTe nanocrystals to fluorescent nanocrystal–polymer transparent composites using polymerizable Surfactants,” Adv. Mater. (Deerfield Beach Fla.) 15(10), 777–780 (2003).
[CrossRef]

Yang, X.

Yuan, Z. L.

P. M. Intallura, M. B. Ward, O. Z. Karimov, Z. L. Yuan, P. See, A. J. Shields, P. Atkinson, and D. A. Ritchie, “Quantum key distribution using a triggered quantum dot source emitting near 1.3 μm,” Appl. Phys. Lett. 91(16), 161103 (2007).
[CrossRef]

M. B. Ward, T. Farrow, P. See, Z. L. Yuan, O. Z. Karimov, A. J. Bennett, A. J. Shields, P. Atkinson, K. Cooper, and D. A. Ritchie, “Electrically driven telecommunication wavelength single-photon source,” Appl. Phys. Lett. 90(6), 063512 (2007).
[CrossRef]

Zarda, P.

C. Kurtsiefer, S. Mayer, P. Zarda, and H. Weinfurter, “Stable solid-state source of single photons,” Phys. Rev. Lett. 85(2), 290–293 (2000).
[CrossRef] [PubMed]

Zhang, H.

H. Zhang, Z. Cui, Y. Wang, K. Zhang, X. Ji, C. Lü, B. Yang, and M. Gao, “From water-soluble CdTe nanocrystals to fluorescent nanocrystal–polymer transparent composites using polymerizable Surfactants,” Adv. Mater. (Deerfield Beach Fla.) 15(10), 777–780 (2003).
[CrossRef]

Zhang, J. Z.

X. Yang, C. Shi, D. Wheeler, R. Newhouse, B. Chen, J. Z. Zhang, and C. Gu, “High-sensitivity molecular sensing using hollow-core photonic crystal fiber and surface-enhanced Raman scattering,” J. Opt. Soc. Am. A 27(5), 977–984 (2010).
[CrossRef] [PubMed]

Y. Zhang, C. Shi, C. Gu, L. Seballos, and J. Z. Zhang, “Liquid core photonic crystal fiber sensor based on surface enhanced Raman scattering,” Appl. Phys. Lett. 90(19), 193504 (2007).
[CrossRef]

Zhang, K.

H. Zhang, Z. Cui, Y. Wang, K. Zhang, X. Ji, C. Lü, B. Yang, and M. Gao, “From water-soluble CdTe nanocrystals to fluorescent nanocrystal–polymer transparent composites using polymerizable Surfactants,” Adv. Mater. (Deerfield Beach Fla.) 15(10), 777–780 (2003).
[CrossRef]

Zhang, Y.

Y. Zhang, C. Shi, C. Gu, L. Seballos, and J. Z. Zhang, “Liquid core photonic crystal fiber sensor based on surface enhanced Raman scattering,” Appl. Phys. Lett. 90(19), 193504 (2007).
[CrossRef]

Zhao, C. L.

Adv. Mater. (Deerfield Beach Fla.) (1)

H. Zhang, Z. Cui, Y. Wang, K. Zhang, X. Ji, C. Lü, B. Yang, and M. Gao, “From water-soluble CdTe nanocrystals to fluorescent nanocrystal–polymer transparent composites using polymerizable Surfactants,” Adv. Mater. (Deerfield Beach Fla.) 15(10), 777–780 (2003).
[CrossRef]

Appl. Phys. Lett. (4)

S. Smolka, M. Barth, and O. Benson, “Selectively coated photonic crystal fiber for highly sensitive fluorescence detection,” Appl. Phys. Lett. 90(11), 111101 (2007).
[CrossRef]

Y. Zhang, C. Shi, C. Gu, L. Seballos, and J. Z. Zhang, “Liquid core photonic crystal fiber sensor based on surface enhanced Raman scattering,” Appl. Phys. Lett. 90(19), 193504 (2007).
[CrossRef]

P. M. Intallura, M. B. Ward, O. Z. Karimov, Z. L. Yuan, P. See, A. J. Shields, P. Atkinson, and D. A. Ritchie, “Quantum key distribution using a triggered quantum dot source emitting near 1.3 μm,” Appl. Phys. Lett. 91(16), 161103 (2007).
[CrossRef]

M. B. Ward, T. Farrow, P. See, Z. L. Yuan, O. Z. Karimov, A. J. Bennett, A. J. Shields, P. Atkinson, K. Cooper, and D. A. Ritchie, “Electrically driven telecommunication wavelength single-photon source,” Appl. Phys. Lett. 90(6), 063512 (2007).
[CrossRef]

Eur. Phys. J. D (1)

A. Beveratos, S. Kühn, R. Brouri, T. Gacoin, J. P. Poizat, and P. Grangier, “Room temperature stable single-photon source,” Eur. Phys. J. D 18(2), 191–196 (2002).
[CrossRef]

J. Am. Chem. Soc. (2)

D. K. Harris, P. M. Allen, H. S. Han, B. J. Walker, J. Lee, and M. G. Bawendi, “Synthesis of cadmium arsenide quantum dots luminescent in the infrared,” J. Am. Chem. Soc. 133(13), 4676–4679 (2011).
[CrossRef] [PubMed]

S. Kim, B. Fisher, H.-J. Eisler, and M. Bawendi, “Type-II quantum dots: CdTe/CdSe(core/shell) and CdSe/ZnTe(core/shell) heterostructures,” J. Am. Chem. Soc. 125(38), 11466–11467 (2003).
[CrossRef] [PubMed]

J. Mater. Chem. (1)

V. Lesnyak, A. Lutich, N. Gaponik, M. Grabolle, A. Plotnikov, U. Resch-Genger, and A. Eychmüller, “One-pot aqueous synthesis of high quality near infrared emitting Cd1_xHgxTe nanocrystals,” J. Mater. Chem. 19(48), 9147–9152 (2009).
[CrossRef]

J. Non-Cryst. Solids (1)

E. F. Chillcce, C. M. B. Cordeiro, L. C. Barbosa, and C. H. Brito Cruz, “Tellurite photonic crystal fiber made by a stack-and-draw technique,” J. Non-Cryst. Solids 352(32-35), 3423–3428 (2006).
[CrossRef]

J. Opt. Soc. Am. A (1)

Nano Lett. (1)

J. J. Peterson and T. D. Krauss, “Fluorescence spectroscopy of single lead sulfide quantum dots,” Nano Lett. 6(3), 510–514 (2006).
[CrossRef] [PubMed]

Nat. Photonics (1)

K. G. Lee, X. W. Chen, H. Eghlidi, P. Kukura, R. Lettow, A. Renn, V. Sandoghdar, and S. Gotzinger, “A planar dielectric antenna for directional single-photon emission and near-unity collection efficiency,” Nat. Photonics 5(3), 166–169 (2011).
[CrossRef]

Nature (2)

A. Imamoğlu, P. Michler, M. D. Mason, P. J. Carson, G. F. Strouse, and S. K. Buratto, “Quantum correlation among photons from a single quantum dot at room temperature,” Nature 406(6799), 968–970 (2000).
[CrossRef] [PubMed]

V. I. Klimov, S. A. Ivanov, J. Nanda, M. Achermann, I. Bezel, J. A. McGuire, and A. Piryatinski, “Single-exciton optical gain in semiconductor nanocrystals,” Nature 447(7143), 441–446 (2007).
[CrossRef] [PubMed]

New J. Phys. (3)

T. Schröder, F. Gädeke, M. J. Banholzer, and O. Benson, “Ultrabright and efficient single-photon generation based on nitrogen-vacancy centres in nanodiamonds on a solid immersion lens,” New J. Phys. 13(5), 055017 (2011).
[CrossRef]

E. Neu, D. Steinmetz, J. Riedrich-Möller, S. Gsell, M. Fischer, M. Schreck, and C. Becher, “Single photon emission from silicon-vacancy colour centres in chemical vapour deposition nano-diamonds on iridium,” New J. Phys. 13(2), 025012 (2011).
[CrossRef]

P. Neumann, R. Kolesov, V. Jacques, J. Beck, J. Tisler, A. Batalov, L. Rogers, N. B. Manson, G. Balasubramanian, F. Jelezko, and J. Wrachtrup, “Excited-state spectroscopy of single NV defects in diamond using optically detected magnetic resonance,” New J. Phys. 11(1), 013017 (2009).
[CrossRef]

Opt. Express (3)

Opt. Lett. (2)

Phys. Rev. B (1)

D. Oron, M. Kazes, and U. Banin, “Multiexcitons in type-II colloidal semiconductor quantum dots,” Phys. Rev. B 75(3), 035330 (2007).
[CrossRef]

Phys. Rev. Lett. (4)

C. Kurtsiefer, S. Mayer, P. Zarda, and H. Weinfurter, “Stable solid-state source of single photons,” Phys. Rev. Lett. 85(2), 290–293 (2000).
[CrossRef] [PubMed]

C. Santori, M. Pelton, G. Solomon, Y. Dale, and Y. Yamamoto, “Triggered single photons from a quantum dot,” Phys. Rev. Lett. 86(8), 1502–1505 (2001).
[CrossRef] [PubMed]

H. J. Kimble, M. Dagenais, and L. Mandel, “Photon antibunching in resonance fluorescence,” Phys. Rev. Lett. 39(11), 691–695 (1977).
[CrossRef]

A. Kuhn, M. Hennrich, and G. Rempe, “Deterministic single-photon source for distributed quantum networking,” Phys. Rev. Lett. 89(6), 067901 (2002).
[CrossRef] [PubMed]

Rev. Mod. Phys. (1)

N. Sangouard, C. Simon, H. de Riedmatten, and N. Gisin, “Quantum repeaters based on atomic ensembles and linear optics,” Rev. Mod. Phys. 83(1), 33–80 (2011).
[CrossRef]

Science (1)

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. S. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285(5433), 1537–1539 (1999).
[CrossRef] [PubMed]

Small (3)

D. Dorfs, T. Franzl, R. Osovsky, M. Brumer, E. Lifshitz, T. Klar, and A. Eychmüller, “Type-I and Type-II nanoheterostructures based on CdTe nanocrystals – a comparative study,” Small 4, 1148–1153 (2008).

S. Kumar, M. Jones, S. S. Lo, and G. D. Scholes, “Nanorod heterostructures showing photoinduced charge separation,” Small 3(9), 1633–1639 (2007).
[CrossRef] [PubMed]

D. Dorfs, A. Salant, I. Popov, and U. Banin, “ZnSe quantum dots within CdS nanorods: a seeded-growth type-II system,” Small 4(9), 1319–1323 (2008).
[CrossRef] [PubMed]

Other (1)

M. Barth, H. Bartelt, and O. Benson, “Fluid-filled optical fibers” in Handbook of Optofluidics, edts. A. R. Hawkins, H. Schmidt, CRC Press Tylor & Francis (2010).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Two complementary approaches for on-demand single photon generation. (a) Excitation of a single quantum system with a classical source and subsequent spontaneous emission of a single photon. (b) Excitation of an arbitrary ensemble with a single photon. Also in this case only a single excitation is present, hence decay of the ensemble also leads to emission of a single photon only.

Fig. 2
Fig. 2

(a). Optical microscope image of a hollow-core fiber (side view) after treatment in the fusion splicer. The arrows indicate the region of the open core hole, while the cladding holes are sealed. (b) Optical microscope image of a hollow-core photonic crystal fiber selectively filled with liquid.

Fig. 3
Fig. 3

Experimental setup. BC, BS, DBS, RM, F, PH, SILs, HBT refer to beam control, beam splitter, dichroic beam splitter, removable mirror, filter, pinhole, solid immersion lens, Hanbury Brown and Twiss setup, respectively.

Fig. 4
Fig. 4

Normalized second-order correlation function of the fluorescence of a single NV-center in a nano-diamond located on a solid immersion lens. The data shows a deep dip at zero, indicating single photon statistics. The red curve is a fit to the data according to a three level model [33].

Fig. 5
Fig. 5

Measured spectral properties of the liquid-filled HCPCF, the NV-center, and the solid immersion lens (SIL). The black curve shows the fluorescence from the bare ZrO2 SIL. The red and blue curves are spectra of NV-centers on a SIL and the total fluorescence from the end of the filled fiber, respectively. The blue curve is normalized to the red one. The edges in the spectrum are caused by a 590 nm long pass and a 795 short pass filter. The excitation wavelength was 532 nm.

Fig. 6
Fig. 6

(a) Schematics of the HCPCF as in (b). The fiber has a diameter of 135 µm, the core a diameter of 9.5 µm. The cladding consists of a hexagonal glass structure with a pitch of 2.3 µm and an air fraction of 0.9. (b) CCD image of the photoluminescence from the CdHgTe QD-solution in the HCPCF collected at the end of the fiber. The white dashed lines indicate the fiber and the cladding region, the dotted line shows the core. The largest fraction of light is guided in the central core region.

Fig. 7
Fig. 7

(a) Absorption (red) and PL (black) spectra of CdHgTe QDs in toluene. (b) PL spectra collected at the end of the HCPCF fiber (see Fig. 6(b)) with different CdHgTe QDs concentrations (increasing from the black to the blue curve). The black curve represents the appropriate concentration used for our experiment, where re-absorption is absent. The red and the blue curve correspond to a two times and five times higher concentration than in the black curve, respectively.

Fig. 8
Fig. 8

Overview of single photon sources realized so far and expected single photon count rates from incoherent photon conversion to the near infrared using our HCPCF system. The red cross marks the achieved conversion rate of 0.1 (blue line) and the resulting single photon counts of 280 cts/s for the conversion of NV-centers in diamond to CdHgTe QDs emitting at 850 nm. The black lines show the expected infrared single photon counts for ηtot = 1% and ηtot = 10%. These conversion efficiencies can be achieved with experimental improvements. The black vertical dotted lines represent the employed single photon source as well as other sources in the visible that have been realized [7,12], also indicated by an asterisk. The grey vertical dotted line gives an outlook of a possible implementation of NV-centers in a dielectric layer system with a collection efficiency of 99% as has been realized with single molecules [34]. Conversion with the present efficiency of such high flux would generate 80 kcts/s infrared single photons.

Metrics