Abstract

A new switchable microwave photonic filter based on a novel spectrum slicing technique is presented. The processor enables programmable multi-tap generation with general transfer function characteristics and offers tunability, reconfigurabiliy, and switchability. It is based on connecting a dispersion controlled spectrum slicing filter after the modulated bipolar broadband light source, which consequently generates multiple spectrum slices with bipolarity, and compensates dispersion induced RF degradation simultaneously within a single device. A detailed theoretical model for this microwave photonic filter design is presented. Experimental results are presented which verify the model, and demonstrate a 33 bipolar-tap microwave filter with significant reduction of passband attenuations at high frequencies. The RF response improvement of the new microwave photonic filter is investigated, for both an ideal linear group delay line and for the experimental fiber delay line that has second order group delay and the results show that this new structure is effective for RF filters with various free spectral range values and spectrum slice bandwidths. Finally, a switchable bipolar filter that has a square-top bandpass filter response with more than 30 dB stopband attenuation that can be switched on/off via software control is demonstrated.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. A. Minasian, “Photonic signal processing of microwave signals,” IEEE Trans. Microw. Theory Tech. 54(2), 832–846 (2006).
    [CrossRef]
  2. J. P. Yao, “Microwave photonics,” J. Lightwave Technol. 27(3), 314–335 (2009).
    [CrossRef]
  3. J. Capmany, D. Pastor, and B. Ortega, “New and flexible fiber-optic delay-line filters using chirped Bragg gratings and laser arrays,” IEEE Trans. Microw. Theory Tech. 47(7), 1321–1326 (1999).
    [CrossRef]
  4. J. L. Chen and R. A. Minasian, “Novel synthesised photonic signal processor with hardware compression,” IEEE Photon. Technol. Lett. 17(4), 896–898 (2005).
    [CrossRef]
  5. F. Zeng and J. Yao, “Investigation of phase-modulator-based all-optical bandpass microwave filter,” J. Lightwave Technol. 23(4), 1721–1728 (2005).
    [CrossRef]
  6. T. X. H. Huang, X. Yi, and R. A. Minasian, “New multiple-tap, general-response, reconfigurable photonic signal processor,” Opt. Express 17(7), 5358–5363 (2009).
    [CrossRef] [PubMed]
  7. J. Capmany, D. Pastor, and B. Ortega, “Fiber optic microwave and millimeter-wave filter with high density sampling and very high sidelobe suppression using sub nanometer optical spectrum slicing,” Electron. Lett. 35(6), 494–496 (1999).
    [CrossRef]
  8. D. Pastor, B. Ortega, J. Capmany, S. Sales, A. Martinez, and P. Muñoz, “Optical microwave filter based on spectral slicing by use of arrayed waveguide gratings,” Opt. Lett. 28(19), 1802–1804 (2003).
    [CrossRef] [PubMed]
  9. B. A. L. Gwandu, W. Zhang, J. A. R. Williams, L. Zhang, and I. Bennion, “Microwave photonic filtering using Gaussian-profiled superstructured fiber Bragg grating and dispersive fiber,” Electron. Lett. 38(22), 1328–1330 (2002).
    [CrossRef]
  10. X. Yi and R. A. Minasian, “Dispersion induced RF distortion of spectrum-sliced microwave-photonic filters,” IEEE Trans. Microw. Theory Tech. 54(2), 880–886 (2006).
    [CrossRef]
  11. X. Yi, L. Li, T. X. H. Huang, and R. A. Minasian, “Elimination of dispersion-induced RF distortion in spectrum sliced microwave photonic filters,” IEEE International Topical Meeting on Microwave Photonics (MWP), Montreal, Canada, 389–392 Oct. 2010.
  12. L. Li, X. Yi, and R. A. Minasian, “New microwave photonic spectrum sliced filter with continuous tunability,” Opto-Electronics and Communications Conference (OECC), Taiwan, 192–193 Jul. 2011.
  13. L. Li, X. Yi, T. X. H. Huang, and R. A. Minasian, “Microwave photonic filter based on dispersion controlled spectrum slicing technique,” Electron. Lett. 47(8), 511–512 (2011).
    [CrossRef]
  14. G. Baxter, S. Frisken, D. Abakoumov, H. Zhou, I. Clarke, A. Bartos, and S. Poole, “Highly programmable wavelength selective switch based on liquid crystal on silicon switching elements,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, Technical Digest (CD) (Optical Society of America, 2006), paper OTuF2.
  15. C. H. Cox III, Analog Optical Links: Theory and Practice (Cambridge University Press, 2004).
  16. M. A. F. Roelens, S. Frisken, J. A. Bolger, D. Abakoumov, G. Baxter, S. Poole, and B. J. Eggleton, “Dispersion trimming in a reconfigurable wavelength selective switch,” J. Lightwave Technol. 26(1), 73–78 (2008).
    [CrossRef]
  17. Y. M. Chang, H. Chung, and J. H. Lee, “High Q microwave filter using incoherent, continuous-wave supercontinuum and dispersion-profiled fiber,” IEEE Photon. Technol. Lett. 19(24), 2042–2044 (2007).
    [CrossRef]

2011 (1)

L. Li, X. Yi, T. X. H. Huang, and R. A. Minasian, “Microwave photonic filter based on dispersion controlled spectrum slicing technique,” Electron. Lett. 47(8), 511–512 (2011).
[CrossRef]

2009 (2)

2008 (1)

2007 (1)

Y. M. Chang, H. Chung, and J. H. Lee, “High Q microwave filter using incoherent, continuous-wave supercontinuum and dispersion-profiled fiber,” IEEE Photon. Technol. Lett. 19(24), 2042–2044 (2007).
[CrossRef]

2006 (2)

X. Yi and R. A. Minasian, “Dispersion induced RF distortion of spectrum-sliced microwave-photonic filters,” IEEE Trans. Microw. Theory Tech. 54(2), 880–886 (2006).
[CrossRef]

R. A. Minasian, “Photonic signal processing of microwave signals,” IEEE Trans. Microw. Theory Tech. 54(2), 832–846 (2006).
[CrossRef]

2005 (2)

J. L. Chen and R. A. Minasian, “Novel synthesised photonic signal processor with hardware compression,” IEEE Photon. Technol. Lett. 17(4), 896–898 (2005).
[CrossRef]

F. Zeng and J. Yao, “Investigation of phase-modulator-based all-optical bandpass microwave filter,” J. Lightwave Technol. 23(4), 1721–1728 (2005).
[CrossRef]

2003 (1)

2002 (1)

B. A. L. Gwandu, W. Zhang, J. A. R. Williams, L. Zhang, and I. Bennion, “Microwave photonic filtering using Gaussian-profiled superstructured fiber Bragg grating and dispersive fiber,” Electron. Lett. 38(22), 1328–1330 (2002).
[CrossRef]

1999 (2)

J. Capmany, D. Pastor, and B. Ortega, “New and flexible fiber-optic delay-line filters using chirped Bragg gratings and laser arrays,” IEEE Trans. Microw. Theory Tech. 47(7), 1321–1326 (1999).
[CrossRef]

J. Capmany, D. Pastor, and B. Ortega, “Fiber optic microwave and millimeter-wave filter with high density sampling and very high sidelobe suppression using sub nanometer optical spectrum slicing,” Electron. Lett. 35(6), 494–496 (1999).
[CrossRef]

Abakoumov, D.

Baxter, G.

Bennion, I.

B. A. L. Gwandu, W. Zhang, J. A. R. Williams, L. Zhang, and I. Bennion, “Microwave photonic filtering using Gaussian-profiled superstructured fiber Bragg grating and dispersive fiber,” Electron. Lett. 38(22), 1328–1330 (2002).
[CrossRef]

Bolger, J. A.

Capmany, J.

D. Pastor, B. Ortega, J. Capmany, S. Sales, A. Martinez, and P. Muñoz, “Optical microwave filter based on spectral slicing by use of arrayed waveguide gratings,” Opt. Lett. 28(19), 1802–1804 (2003).
[CrossRef] [PubMed]

J. Capmany, D. Pastor, and B. Ortega, “Fiber optic microwave and millimeter-wave filter with high density sampling and very high sidelobe suppression using sub nanometer optical spectrum slicing,” Electron. Lett. 35(6), 494–496 (1999).
[CrossRef]

J. Capmany, D. Pastor, and B. Ortega, “New and flexible fiber-optic delay-line filters using chirped Bragg gratings and laser arrays,” IEEE Trans. Microw. Theory Tech. 47(7), 1321–1326 (1999).
[CrossRef]

Chang, Y. M.

Y. M. Chang, H. Chung, and J. H. Lee, “High Q microwave filter using incoherent, continuous-wave supercontinuum and dispersion-profiled fiber,” IEEE Photon. Technol. Lett. 19(24), 2042–2044 (2007).
[CrossRef]

Chen, J. L.

J. L. Chen and R. A. Minasian, “Novel synthesised photonic signal processor with hardware compression,” IEEE Photon. Technol. Lett. 17(4), 896–898 (2005).
[CrossRef]

Chung, H.

Y. M. Chang, H. Chung, and J. H. Lee, “High Q microwave filter using incoherent, continuous-wave supercontinuum and dispersion-profiled fiber,” IEEE Photon. Technol. Lett. 19(24), 2042–2044 (2007).
[CrossRef]

Eggleton, B. J.

Frisken, S.

Gwandu, B. A. L.

B. A. L. Gwandu, W. Zhang, J. A. R. Williams, L. Zhang, and I. Bennion, “Microwave photonic filtering using Gaussian-profiled superstructured fiber Bragg grating and dispersive fiber,” Electron. Lett. 38(22), 1328–1330 (2002).
[CrossRef]

Huang, T. X. H.

L. Li, X. Yi, T. X. H. Huang, and R. A. Minasian, “Microwave photonic filter based on dispersion controlled spectrum slicing technique,” Electron. Lett. 47(8), 511–512 (2011).
[CrossRef]

T. X. H. Huang, X. Yi, and R. A. Minasian, “New multiple-tap, general-response, reconfigurable photonic signal processor,” Opt. Express 17(7), 5358–5363 (2009).
[CrossRef] [PubMed]

Lee, J. H.

Y. M. Chang, H. Chung, and J. H. Lee, “High Q microwave filter using incoherent, continuous-wave supercontinuum and dispersion-profiled fiber,” IEEE Photon. Technol. Lett. 19(24), 2042–2044 (2007).
[CrossRef]

Li, L.

L. Li, X. Yi, T. X. H. Huang, and R. A. Minasian, “Microwave photonic filter based on dispersion controlled spectrum slicing technique,” Electron. Lett. 47(8), 511–512 (2011).
[CrossRef]

Martinez, A.

Minasian, R. A.

L. Li, X. Yi, T. X. H. Huang, and R. A. Minasian, “Microwave photonic filter based on dispersion controlled spectrum slicing technique,” Electron. Lett. 47(8), 511–512 (2011).
[CrossRef]

T. X. H. Huang, X. Yi, and R. A. Minasian, “New multiple-tap, general-response, reconfigurable photonic signal processor,” Opt. Express 17(7), 5358–5363 (2009).
[CrossRef] [PubMed]

X. Yi and R. A. Minasian, “Dispersion induced RF distortion of spectrum-sliced microwave-photonic filters,” IEEE Trans. Microw. Theory Tech. 54(2), 880–886 (2006).
[CrossRef]

R. A. Minasian, “Photonic signal processing of microwave signals,” IEEE Trans. Microw. Theory Tech. 54(2), 832–846 (2006).
[CrossRef]

J. L. Chen and R. A. Minasian, “Novel synthesised photonic signal processor with hardware compression,” IEEE Photon. Technol. Lett. 17(4), 896–898 (2005).
[CrossRef]

Muñoz, P.

Ortega, B.

D. Pastor, B. Ortega, J. Capmany, S. Sales, A. Martinez, and P. Muñoz, “Optical microwave filter based on spectral slicing by use of arrayed waveguide gratings,” Opt. Lett. 28(19), 1802–1804 (2003).
[CrossRef] [PubMed]

J. Capmany, D. Pastor, and B. Ortega, “New and flexible fiber-optic delay-line filters using chirped Bragg gratings and laser arrays,” IEEE Trans. Microw. Theory Tech. 47(7), 1321–1326 (1999).
[CrossRef]

J. Capmany, D. Pastor, and B. Ortega, “Fiber optic microwave and millimeter-wave filter with high density sampling and very high sidelobe suppression using sub nanometer optical spectrum slicing,” Electron. Lett. 35(6), 494–496 (1999).
[CrossRef]

Pastor, D.

D. Pastor, B. Ortega, J. Capmany, S. Sales, A. Martinez, and P. Muñoz, “Optical microwave filter based on spectral slicing by use of arrayed waveguide gratings,” Opt. Lett. 28(19), 1802–1804 (2003).
[CrossRef] [PubMed]

J. Capmany, D. Pastor, and B. Ortega, “Fiber optic microwave and millimeter-wave filter with high density sampling and very high sidelobe suppression using sub nanometer optical spectrum slicing,” Electron. Lett. 35(6), 494–496 (1999).
[CrossRef]

J. Capmany, D. Pastor, and B. Ortega, “New and flexible fiber-optic delay-line filters using chirped Bragg gratings and laser arrays,” IEEE Trans. Microw. Theory Tech. 47(7), 1321–1326 (1999).
[CrossRef]

Poole, S.

Roelens, M. A. F.

Sales, S.

Williams, J. A. R.

B. A. L. Gwandu, W. Zhang, J. A. R. Williams, L. Zhang, and I. Bennion, “Microwave photonic filtering using Gaussian-profiled superstructured fiber Bragg grating and dispersive fiber,” Electron. Lett. 38(22), 1328–1330 (2002).
[CrossRef]

Yao, J.

Yao, J. P.

Yi, X.

L. Li, X. Yi, T. X. H. Huang, and R. A. Minasian, “Microwave photonic filter based on dispersion controlled spectrum slicing technique,” Electron. Lett. 47(8), 511–512 (2011).
[CrossRef]

T. X. H. Huang, X. Yi, and R. A. Minasian, “New multiple-tap, general-response, reconfigurable photonic signal processor,” Opt. Express 17(7), 5358–5363 (2009).
[CrossRef] [PubMed]

X. Yi and R. A. Minasian, “Dispersion induced RF distortion of spectrum-sliced microwave-photonic filters,” IEEE Trans. Microw. Theory Tech. 54(2), 880–886 (2006).
[CrossRef]

Zeng, F.

Zhang, L.

B. A. L. Gwandu, W. Zhang, J. A. R. Williams, L. Zhang, and I. Bennion, “Microwave photonic filtering using Gaussian-profiled superstructured fiber Bragg grating and dispersive fiber,” Electron. Lett. 38(22), 1328–1330 (2002).
[CrossRef]

Zhang, W.

B. A. L. Gwandu, W. Zhang, J. A. R. Williams, L. Zhang, and I. Bennion, “Microwave photonic filtering using Gaussian-profiled superstructured fiber Bragg grating and dispersive fiber,” Electron. Lett. 38(22), 1328–1330 (2002).
[CrossRef]

Electron. Lett. (3)

J. Capmany, D. Pastor, and B. Ortega, “Fiber optic microwave and millimeter-wave filter with high density sampling and very high sidelobe suppression using sub nanometer optical spectrum slicing,” Electron. Lett. 35(6), 494–496 (1999).
[CrossRef]

B. A. L. Gwandu, W. Zhang, J. A. R. Williams, L. Zhang, and I. Bennion, “Microwave photonic filtering using Gaussian-profiled superstructured fiber Bragg grating and dispersive fiber,” Electron. Lett. 38(22), 1328–1330 (2002).
[CrossRef]

L. Li, X. Yi, T. X. H. Huang, and R. A. Minasian, “Microwave photonic filter based on dispersion controlled spectrum slicing technique,” Electron. Lett. 47(8), 511–512 (2011).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

J. L. Chen and R. A. Minasian, “Novel synthesised photonic signal processor with hardware compression,” IEEE Photon. Technol. Lett. 17(4), 896–898 (2005).
[CrossRef]

Y. M. Chang, H. Chung, and J. H. Lee, “High Q microwave filter using incoherent, continuous-wave supercontinuum and dispersion-profiled fiber,” IEEE Photon. Technol. Lett. 19(24), 2042–2044 (2007).
[CrossRef]

IEEE Trans. Microw. Theory Tech. (3)

J. Capmany, D. Pastor, and B. Ortega, “New and flexible fiber-optic delay-line filters using chirped Bragg gratings and laser arrays,” IEEE Trans. Microw. Theory Tech. 47(7), 1321–1326 (1999).
[CrossRef]

R. A. Minasian, “Photonic signal processing of microwave signals,” IEEE Trans. Microw. Theory Tech. 54(2), 832–846 (2006).
[CrossRef]

X. Yi and R. A. Minasian, “Dispersion induced RF distortion of spectrum-sliced microwave-photonic filters,” IEEE Trans. Microw. Theory Tech. 54(2), 880–886 (2006).
[CrossRef]

J. Lightwave Technol. (3)

Opt. Express (1)

Opt. Lett. (1)

Other (4)

X. Yi, L. Li, T. X. H. Huang, and R. A. Minasian, “Elimination of dispersion-induced RF distortion in spectrum sliced microwave photonic filters,” IEEE International Topical Meeting on Microwave Photonics (MWP), Montreal, Canada, 389–392 Oct. 2010.

L. Li, X. Yi, and R. A. Minasian, “New microwave photonic spectrum sliced filter with continuous tunability,” Opto-Electronics and Communications Conference (OECC), Taiwan, 192–193 Jul. 2011.

G. Baxter, S. Frisken, D. Abakoumov, H. Zhou, I. Clarke, A. Bartos, and S. Poole, “Highly programmable wavelength selective switch based on liquid crystal on silicon switching elements,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, Technical Digest (CD) (Optical Society of America, 2006), paper OTuF2.

C. H. Cox III, Analog Optical Links: Theory and Practice (Cambridge University Press, 2004).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Structure of the microwave photonic processor.

Fig. 2
Fig. 2

Simulated filter response using 33 bipolar rectangular spectrum slices having a width of 72 GHz: (a) without dispersion compensation (b) with dispersion compensation.

Fig. 3
Fig. 3

(a) Simulated wavelength locations of the 33slices; (b) Measured optical spectra of the spectrum slices.

Fig. 4
Fig. 4

Measured characteristics of the microwave photonic filter with only positive coefficients (a) from 0.01GHz to 20GHz (b)(c)(d) snapshots for three passbands. ——Measured ——Calculated

Fig. 5
Fig. 5

Measured characteristics of the bipolar-coefficient microwave photonic filter (a) from 0.01GHz to 20GHz (b)(c)(d) snapshots for three passbands. —— Measured ——Calculated.

Fig. 6
Fig. 6

Comparison between the RF passband responses of the 33-tap bipolar filter, when an ideal linear time delay line is used and when the actual experimental fiber delay line, which exhibits second order group delay, are used as the delay medium.

Fig. 7
Fig. 7

Simulated 33-tap RF response improvement for the first to the fourth passbands for different filter FSR values: (a) using an ideal linear delay line (b) using the experimental delay line that has second order group delay effects. Circles, 5 GHz; squares, 7 GHz; triangles, 9 GHz; crosses, 11GHz.

Fig. 8
Fig. 8

Simulated 33-tap RF Response improvement for the first to the fourth passbands for different bandwidth spectrum slices, with an FSR of 11 GHz: (a) using the ideal linear delay line (b) using the experimental delay line that has second order group delay effects. Circles, 30 GHz; squares, 50 GHz; triangles, 70 GHz; crosses, 90 GHz.

Fig. 9
Fig. 9

Measured 33-tap filter RF response (a) tuned to a passband of 11 GHz (b) switched baseband-suppressed filter with 33 bipolar taps. —— Measured —— Calculated.

Fig. 10
Fig. 10

Measured 33-tap square-top RF filter response (a) bipolar Gaussian-sinc profile (b) switched bipolar Gaussian-sinc profile.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

s 0 ( t )=cos( π 2 V π ( V RF cos(2π f m t)+ V bias +k V π ) )
L ~ n ( f m )=sig n n W n f n f n+ g 0 ( f f n )[ g 0 ( f f n + f m ) e j a 1 π f m 2 + g 0 ( f f n f m ) e j a 1 π f m 2 ] e j2π f m a 1 ( f f n ) df
| H( f m ) |=| n=1 N L n ( f m ) e j2π f m nΔt |
where L n ( f m )=sig n n W n f n f n+ g 0 ( f f n )[ g 0 ( f f n + f m )+ g 0 ( f f n f m ) ]df
f n+1 = f n +[ ( f n +0.5 b 1 / b 2 )+ f n 2 +0.25 b 1 2 / b 2 2 + b 1 f n / b 2 +Δt/ b 2 ]
L ' n ( f m )=sig n n W n f n f n+ g 0 ( f f n )[ g 0 ( f f n + f m ) e j( 2 b 2 f+( b 1 d ) )π f m 2 + g 0 ( f f n f m ) e j( 2 b 2 f+( b 1 d ) )π f m 2 ] × e j2π f m [ b 2 ( f 2 f n 2 )+( b 1 d )( f f n ) ] df

Metrics