Abstract

We analyze the localized surface plasmon resonance spectra of periodic square lattice arrays of gold nano-disks, and we describe numerically and experimentally the effect of disorder on resonance width, spectrum, and EM field enhancement in increasingly randomized patterns. The periodic structure shows a narrower and stronger extinction peak, conversely we observe an increase of up to (1–2)×102 times enhancement as the disorder is gradually introduced. This allows for simpler, lower resolution fabrication, cost-effective in light harvesting for solar cell and sensing applications. We show that dipole-dipole interactions contribute to diffract light parallel to the surface as a mean of long-range coupling between the nano-disks.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Link and M. A. El-Sayed, “Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles,” J. Phys. Chem. B 103, 4212–4217 (1999).
    [CrossRef]
  2. O. Shekhah, J. Liu, R. A. Fischer, and Ch. Woll, “MOF thin films: existing and future application,” Chem. Soc. Rev. 40, 1081–1106 (2011).
    [CrossRef] [PubMed]
  3. D. M. Koller, A. Hohenau, H. Ditlbacher, N. Galler, F. Reil, F. R. Aussenegg, A. Leitner, E. J. W. List, and J. R. Krenn, “Organic plasmon-emitting diode,” Nat. Photonics 2, 684–687 (2008).
    [CrossRef]
  4. W. Cai, A. P. Vasudev, and M. L. Brongersma, “Electrically controlled nonlinear generation of light with plasmonics,” Science,  333, 1720–1723 (2011).
    [CrossRef] [PubMed]
  5. A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys. 82, 2257–2298 (2010).
    [CrossRef]
  6. D. K. Gramotnev, A. Pors, M. Willatzen, and S. I. Bozhevolnyi, “Gap-plasmon nanoantennas and bowtie resonators,” Phys. Rev. B 85, 045434 (2012).
    [CrossRef]
  7. V. K. Valev, N. Smisdom, A. V. Silhanek, B. De Clercq, W. Gillijns, M. Ameloot, V. V. Moshchalkov, and T. Verbiest, “Plasmonic ratchet wheels: switching circular dichroism by arranging chiral nanostructures,” Nano Lett. 9, 3945–3948 (2009).
    [CrossRef] [PubMed]
  8. M. Michaels, M. Nirmal, and L. E. Brus, “Surface enhanced raman spectroscopy of individual rhodamine 6G molecules on large Ag nanocrystals,” J. Am. Chem. Soc. 121, 9932–9939 (1999).
    [CrossRef]
  9. F. Lordan, J. H. Rice, B. Jose, R. J. Forster, and T. E. Keyes, “Site selective surface enhanced Raman on nanostructured cavities,” Appl. Phys. Lett. 99, 033104 (2011).
    [CrossRef]
  10. K. Ueno, S. Juodkazis, M. Mino, V. Mizeikis, and H. Misawa, “Spectral sensitivity of uniform arrays of gold nanorods to dielectric environment,” J. Phys. Chem. C 111, 4180–4184 (2007).
    [CrossRef]
  11. Y. Sawai, B. Takimoto, H. Nabika, K. Ajito, and K. Murakoshi, “Observation of a small number of molecules at a metal nanogap arrayed on a solid surface using surface-enhanced Raman scattering,” J. Am. Chem. Soc. 129, 1658–1662 (2007).
    [CrossRef] [PubMed]
  12. Y. Nishijima, K. Ueno, Y. Yokota, K. Murakoshi, and H. Misawa, “Plasmon-assisted photocurrent generation from visible to near-infrared wavelength using a Au-nanorods/TiO2 electrode,” J. Phys. Chem. Lett. 1, 2031–2036 (2010).
    [CrossRef]
  13. Y. Tsuboi, T. Shoji, N. Kitamura, M. Takase, K. Murakoshi, Y. Mizumoto, and H. Ishihara, “Optical trapping of quantum dots based on gap-mode-extinction of localized surface plasmon,” Chem. Lett. 1, 2327–2333 (2010).
    [CrossRef]
  14. I. M. Monirul, K. Ueno, S. Juodkazis, Y. Yokota, and H. Misawa, “Development of interdigitated array electrodes with surface-enhanced raman scattering Functionality,” Anal. Sci. 26, 13–18 (2010).
    [CrossRef]
  15. K. Ueno, S. Takabatake, K. Onishi, H. Itoh, Y. Nishijima, and H. Misawa, “Homogeneous nano-patterning using plasmon-assisted photolithography,” Appl. Phys. Lett. 99, 011107 (2011).
    [CrossRef]
  16. J. Merlein, M. Kahl, A. Zuschlag, A. Sell, A. Halm, J. Boneberg, P. Leiderer, A. Leitenstorfer, and R. Bratschitsch, “Nanomechanical control of an optical antenna,” Nat. Photonics 2, 230–233 (2008).
    [CrossRef]
  17. S. J. Barrow, A. M. Funston, D. E. Gomez, T. J. Davis, and P. Mulvaney, “Surface plasmon resonances in strongly coupled gold nanosphere chains from monomer to hexamer,” Nano Lett. 11, 4180–4187 (2011).
    [CrossRef] [PubMed]
  18. A. Roberts and L. Lin, “Substrate and aspect-ratio effects in resonant nanoaperture arrays,” Opt. Mater. Express 1, 480–488 (2011).
    [CrossRef]
  19. K. Ueno, S. Juodkazis, V. Mizeikis, K. Sasaki, and H. Misawa, “Clusters of closely-spaced gold nanoparticles as a source of two-photon photoluminescence at visible wavelengths,” Adv. Mater. 20, 26–30 (2008).
    [CrossRef]
  20. T. Teranishi, M. Eguchi, M. Kanehara, and S. Gwo, “Controlled localized surface plasmon resonance wavelength for conductive nanoparticles over the ultraviolet to near-infrared region,” J. Mater. Chem. 21, 10238–10242 (2011).
    [CrossRef]
  21. K. Ueno, S. Juodkazis, V. Mizeikis, K. Sasaki, and H. Misawa, “Spectrally-resolved atomic-scale length variations of gold nanorods,” J. Am. Chem. Soc. 128, 14226–14227 (2006).
    [CrossRef] [PubMed]
  22. Y. K. Kim, A. J. Danner, J. J. Raftery, and K. D. Choquette, “Focused ion beam nanopatterning for optoelectronic device fabrication,” IEEE J. Sel. Top. Quantum. Electron. 11, 1292–1298 (2005).
    [CrossRef]
  23. M. Hu, C. Novo, A. Funston, H. Wang, H. Staleva, S. Zou, P. Mulvaney, Y. Xia, and G. V. Hartland, “Dark-field microscopy studies of single metal nanoparticles: understanding the factors that influence the linewidth of the localized surface plasmon resonance,” J. Mater. Chem. 18, 1949–1960 (2008).
    [CrossRef] [PubMed]
  24. S. Juodkazis and L. Rosa, “Surface defect mediated electron hopping between nanoparticles separated by a nano-gap,” Phys. Status Solidi - Rapid Res. Lett. 10, 244–246 (2010).
    [CrossRef]
  25. W. Khunsin, B. Brian, J. Dorfmuller, M. Esslinger, R. Vogelgesang, C. Etrich, C. Rockstuhl, A. Dmitriev, and K. Kern, “Long-distance indirect excitation of nanoplasmonic resonances,” Nano Lett. 11, 2765–2769 (2011).
    [CrossRef] [PubMed]
  26. M. I. Stockman, S. V. Faleev, and D. J. Bergman, “Localization versus delocalization of surface plasmons in nanosystems: Can one state have both characteristics?” Phys. Rev. Lett. 87, 167401 (2001).
    [CrossRef] [PubMed]
  27. T. Takasone, S. Juodkazis, Y. Kawagishi, A. Yamaguchi, S. Matsuo, H. Sakakibara, H. Nakayama, and H. Misawa, “Flexural rigidity of a single microtubule,” Jpn. J. Appl. Phys. 41, 3015–3019 (2002).
    [CrossRef]
  28. T. Klar, M. Perner, S. Grosse, G. von Plessen, W. Spirkl, and J. Feldmann, “Surface-plasmon resonances in single metallic nanoparticles,” Phys. Rev. Lett. 80, 4249–4252 (1998).
    [CrossRef]
  29. C. Sonnichsen, S. Geier, N. E. Hecker, G. von Plessen, J. Feldmann, H. Ditlbacher, B. Lamprecht, J. R. Krenn, F. R. Ausseneg, V. Z-H. Chan, J. P. Spatz, and M. Moller, “Spectroscopy of single metallic nanoparticles using total internal reflection microscopy,” Appl. Phys. Lett. 77, 132355, (2000).
    [CrossRef]
  30. M. L. Brongersma, J. W. Hartman, and H. A. Atwater, “Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit,” Phys. Rev. B 62, R16356–R16359 (2000).
    [CrossRef]
  31. B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg, “Metal nanoparticle gratings: Influence of dipolar particle interaction on the plasmon resonance,” Phys. Rev. Lett. 84, 4721–4724 (2000).
    [CrossRef] [PubMed]
  32. W. Gotschy, K. Vonmetz, A. Leitner, and F. R. Aussenegg, “Optical dichroism of lithographically designed silver nanoparticle films,” Opt. Lett. 21, 1099–1101, (1996).
    [CrossRef] [PubMed]
  33. C. Sonnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, “Drastic reduction of plasmon damping in gold nanorods,” Phys. Rev. Lett. 88, 077402 (2002).
    [CrossRef] [PubMed]
  34. G. V. Hartland, “Coherent vibrational motion in metal particles: Determination of the vibrational amplitude and excitation mechanism,” J. Chem. Phys. 116, 8048–8056 (2002).
    [CrossRef]
  35. L. Rosa, K. Sun, and S. Juodkazis, “Sierpinski fractal plasmonic nanoantennas,” Phys. Status Solidi - Rapid Res. Lett. 5, 175–177 (2011).
    [CrossRef]
  36. X. Chen, B. Jia, J. K. Saha, B. Cai, N. Stokes, Q. Qiao, Y. Wang, Z. Shi, and M. Gu, “Broadband enhancement in thin-film amorphous silicon solar cells enabled by nucleated silver nanoparticles,” Nano Lett.2012 (in press)
    [CrossRef] [PubMed]
  37. K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2, 517 (2011).
    [CrossRef] [PubMed]
  38. A. K. Sarychev, V. A. Shubin, and V. M. Shalaev, “Anderson localization of surface plasmons and nonlinear optics of metal-dielectric composites,” Phys. Rev. B 6016389–16408 (1999).
    [CrossRef]
  39. S. Takeda, S. Hamada, R. Peretti, P. Viktorovitch, and M. Obara, “Order to disorder optical phase transition in random photonic crystals,” Appl. Phys. B 10695–100 (2012).
    [CrossRef]
  40. Z. -L. Deng, Z. -H. Li, J. -W. Dong, and H. -Z. Wang, “In-plane plasmonic modes in a quasicrystalline array of metal nanoparticles,” Plasmonics 6, 507–514 (2011).
    [CrossRef]
  41. K. Juodkazis, J. Juodkazytė, P. Kalinauskas, E. Jelmakas, and S. Juodkazis, “Photoelectrolysis of Water: Solar Hydrogen - Achievements and Perspectives,” Opt. Express 18, A147–A160 (2010).
    [CrossRef] [PubMed]

2012 (2)

D. K. Gramotnev, A. Pors, M. Willatzen, and S. I. Bozhevolnyi, “Gap-plasmon nanoantennas and bowtie resonators,” Phys. Rev. B 85, 045434 (2012).
[CrossRef]

S. Takeda, S. Hamada, R. Peretti, P. Viktorovitch, and M. Obara, “Order to disorder optical phase transition in random photonic crystals,” Appl. Phys. B 10695–100 (2012).
[CrossRef]

2011 (11)

Z. -L. Deng, Z. -H. Li, J. -W. Dong, and H. -Z. Wang, “In-plane plasmonic modes in a quasicrystalline array of metal nanoparticles,” Plasmonics 6, 507–514 (2011).
[CrossRef]

L. Rosa, K. Sun, and S. Juodkazis, “Sierpinski fractal plasmonic nanoantennas,” Phys. Status Solidi - Rapid Res. Lett. 5, 175–177 (2011).
[CrossRef]

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2, 517 (2011).
[CrossRef] [PubMed]

W. Khunsin, B. Brian, J. Dorfmuller, M. Esslinger, R. Vogelgesang, C. Etrich, C. Rockstuhl, A. Dmitriev, and K. Kern, “Long-distance indirect excitation of nanoplasmonic resonances,” Nano Lett. 11, 2765–2769 (2011).
[CrossRef] [PubMed]

F. Lordan, J. H. Rice, B. Jose, R. J. Forster, and T. E. Keyes, “Site selective surface enhanced Raman on nanostructured cavities,” Appl. Phys. Lett. 99, 033104 (2011).
[CrossRef]

O. Shekhah, J. Liu, R. A. Fischer, and Ch. Woll, “MOF thin films: existing and future application,” Chem. Soc. Rev. 40, 1081–1106 (2011).
[CrossRef] [PubMed]

W. Cai, A. P. Vasudev, and M. L. Brongersma, “Electrically controlled nonlinear generation of light with plasmonics,” Science,  333, 1720–1723 (2011).
[CrossRef] [PubMed]

K. Ueno, S. Takabatake, K. Onishi, H. Itoh, Y. Nishijima, and H. Misawa, “Homogeneous nano-patterning using plasmon-assisted photolithography,” Appl. Phys. Lett. 99, 011107 (2011).
[CrossRef]

S. J. Barrow, A. M. Funston, D. E. Gomez, T. J. Davis, and P. Mulvaney, “Surface plasmon resonances in strongly coupled gold nanosphere chains from monomer to hexamer,” Nano Lett. 11, 4180–4187 (2011).
[CrossRef] [PubMed]

T. Teranishi, M. Eguchi, M. Kanehara, and S. Gwo, “Controlled localized surface plasmon resonance wavelength for conductive nanoparticles over the ultraviolet to near-infrared region,” J. Mater. Chem. 21, 10238–10242 (2011).
[CrossRef]

A. Roberts and L. Lin, “Substrate and aspect-ratio effects in resonant nanoaperture arrays,” Opt. Mater. Express 1, 480–488 (2011).
[CrossRef]

2010 (6)

Y. Nishijima, K. Ueno, Y. Yokota, K. Murakoshi, and H. Misawa, “Plasmon-assisted photocurrent generation from visible to near-infrared wavelength using a Au-nanorods/TiO2 electrode,” J. Phys. Chem. Lett. 1, 2031–2036 (2010).
[CrossRef]

Y. Tsuboi, T. Shoji, N. Kitamura, M. Takase, K. Murakoshi, Y. Mizumoto, and H. Ishihara, “Optical trapping of quantum dots based on gap-mode-extinction of localized surface plasmon,” Chem. Lett. 1, 2327–2333 (2010).
[CrossRef]

I. M. Monirul, K. Ueno, S. Juodkazis, Y. Yokota, and H. Misawa, “Development of interdigitated array electrodes with surface-enhanced raman scattering Functionality,” Anal. Sci. 26, 13–18 (2010).
[CrossRef]

A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys. 82, 2257–2298 (2010).
[CrossRef]

S. Juodkazis and L. Rosa, “Surface defect mediated electron hopping between nanoparticles separated by a nano-gap,” Phys. Status Solidi - Rapid Res. Lett. 10, 244–246 (2010).
[CrossRef]

K. Juodkazis, J. Juodkazytė, P. Kalinauskas, E. Jelmakas, and S. Juodkazis, “Photoelectrolysis of Water: Solar Hydrogen - Achievements and Perspectives,” Opt. Express 18, A147–A160 (2010).
[CrossRef] [PubMed]

2009 (1)

V. K. Valev, N. Smisdom, A. V. Silhanek, B. De Clercq, W. Gillijns, M. Ameloot, V. V. Moshchalkov, and T. Verbiest, “Plasmonic ratchet wheels: switching circular dichroism by arranging chiral nanostructures,” Nano Lett. 9, 3945–3948 (2009).
[CrossRef] [PubMed]

2008 (4)

D. M. Koller, A. Hohenau, H. Ditlbacher, N. Galler, F. Reil, F. R. Aussenegg, A. Leitner, E. J. W. List, and J. R. Krenn, “Organic plasmon-emitting diode,” Nat. Photonics 2, 684–687 (2008).
[CrossRef]

J. Merlein, M. Kahl, A. Zuschlag, A. Sell, A. Halm, J. Boneberg, P. Leiderer, A. Leitenstorfer, and R. Bratschitsch, “Nanomechanical control of an optical antenna,” Nat. Photonics 2, 230–233 (2008).
[CrossRef]

K. Ueno, S. Juodkazis, V. Mizeikis, K. Sasaki, and H. Misawa, “Clusters of closely-spaced gold nanoparticles as a source of two-photon photoluminescence at visible wavelengths,” Adv. Mater. 20, 26–30 (2008).
[CrossRef]

M. Hu, C. Novo, A. Funston, H. Wang, H. Staleva, S. Zou, P. Mulvaney, Y. Xia, and G. V. Hartland, “Dark-field microscopy studies of single metal nanoparticles: understanding the factors that influence the linewidth of the localized surface plasmon resonance,” J. Mater. Chem. 18, 1949–1960 (2008).
[CrossRef] [PubMed]

2007 (2)

K. Ueno, S. Juodkazis, M. Mino, V. Mizeikis, and H. Misawa, “Spectral sensitivity of uniform arrays of gold nanorods to dielectric environment,” J. Phys. Chem. C 111, 4180–4184 (2007).
[CrossRef]

Y. Sawai, B. Takimoto, H. Nabika, K. Ajito, and K. Murakoshi, “Observation of a small number of molecules at a metal nanogap arrayed on a solid surface using surface-enhanced Raman scattering,” J. Am. Chem. Soc. 129, 1658–1662 (2007).
[CrossRef] [PubMed]

2006 (1)

K. Ueno, S. Juodkazis, V. Mizeikis, K. Sasaki, and H. Misawa, “Spectrally-resolved atomic-scale length variations of gold nanorods,” J. Am. Chem. Soc. 128, 14226–14227 (2006).
[CrossRef] [PubMed]

2005 (1)

Y. K. Kim, A. J. Danner, J. J. Raftery, and K. D. Choquette, “Focused ion beam nanopatterning for optoelectronic device fabrication,” IEEE J. Sel. Top. Quantum. Electron. 11, 1292–1298 (2005).
[CrossRef]

2002 (3)

T. Takasone, S. Juodkazis, Y. Kawagishi, A. Yamaguchi, S. Matsuo, H. Sakakibara, H. Nakayama, and H. Misawa, “Flexural rigidity of a single microtubule,” Jpn. J. Appl. Phys. 41, 3015–3019 (2002).
[CrossRef]

C. Sonnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, “Drastic reduction of plasmon damping in gold nanorods,” Phys. Rev. Lett. 88, 077402 (2002).
[CrossRef] [PubMed]

G. V. Hartland, “Coherent vibrational motion in metal particles: Determination of the vibrational amplitude and excitation mechanism,” J. Chem. Phys. 116, 8048–8056 (2002).
[CrossRef]

2001 (1)

M. I. Stockman, S. V. Faleev, and D. J. Bergman, “Localization versus delocalization of surface plasmons in nanosystems: Can one state have both characteristics?” Phys. Rev. Lett. 87, 167401 (2001).
[CrossRef] [PubMed]

2000 (3)

C. Sonnichsen, S. Geier, N. E. Hecker, G. von Plessen, J. Feldmann, H. Ditlbacher, B. Lamprecht, J. R. Krenn, F. R. Ausseneg, V. Z-H. Chan, J. P. Spatz, and M. Moller, “Spectroscopy of single metallic nanoparticles using total internal reflection microscopy,” Appl. Phys. Lett. 77, 132355, (2000).
[CrossRef]

M. L. Brongersma, J. W. Hartman, and H. A. Atwater, “Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit,” Phys. Rev. B 62, R16356–R16359 (2000).
[CrossRef]

B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg, “Metal nanoparticle gratings: Influence of dipolar particle interaction on the plasmon resonance,” Phys. Rev. Lett. 84, 4721–4724 (2000).
[CrossRef] [PubMed]

1999 (3)

S. Link and M. A. El-Sayed, “Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles,” J. Phys. Chem. B 103, 4212–4217 (1999).
[CrossRef]

A. K. Sarychev, V. A. Shubin, and V. M. Shalaev, “Anderson localization of surface plasmons and nonlinear optics of metal-dielectric composites,” Phys. Rev. B 6016389–16408 (1999).
[CrossRef]

M. Michaels, M. Nirmal, and L. E. Brus, “Surface enhanced raman spectroscopy of individual rhodamine 6G molecules on large Ag nanocrystals,” J. Am. Chem. Soc. 121, 9932–9939 (1999).
[CrossRef]

1998 (1)

T. Klar, M. Perner, S. Grosse, G. von Plessen, W. Spirkl, and J. Feldmann, “Surface-plasmon resonances in single metallic nanoparticles,” Phys. Rev. Lett. 80, 4249–4252 (1998).
[CrossRef]

1996 (1)

Ajito, K.

Y. Sawai, B. Takimoto, H. Nabika, K. Ajito, and K. Murakoshi, “Observation of a small number of molecules at a metal nanogap arrayed on a solid surface using surface-enhanced Raman scattering,” J. Am. Chem. Soc. 129, 1658–1662 (2007).
[CrossRef] [PubMed]

Ameloot, M.

V. K. Valev, N. Smisdom, A. V. Silhanek, B. De Clercq, W. Gillijns, M. Ameloot, V. V. Moshchalkov, and T. Verbiest, “Plasmonic ratchet wheels: switching circular dichroism by arranging chiral nanostructures,” Nano Lett. 9, 3945–3948 (2009).
[CrossRef] [PubMed]

Atwater, H. A.

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2, 517 (2011).
[CrossRef] [PubMed]

M. L. Brongersma, J. W. Hartman, and H. A. Atwater, “Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit,” Phys. Rev. B 62, R16356–R16359 (2000).
[CrossRef]

Ausseneg, F. R.

C. Sonnichsen, S. Geier, N. E. Hecker, G. von Plessen, J. Feldmann, H. Ditlbacher, B. Lamprecht, J. R. Krenn, F. R. Ausseneg, V. Z-H. Chan, J. P. Spatz, and M. Moller, “Spectroscopy of single metallic nanoparticles using total internal reflection microscopy,” Appl. Phys. Lett. 77, 132355, (2000).
[CrossRef]

Aussenegg, F. R.

D. M. Koller, A. Hohenau, H. Ditlbacher, N. Galler, F. Reil, F. R. Aussenegg, A. Leitner, E. J. W. List, and J. R. Krenn, “Organic plasmon-emitting diode,” Nat. Photonics 2, 684–687 (2008).
[CrossRef]

B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg, “Metal nanoparticle gratings: Influence of dipolar particle interaction on the plasmon resonance,” Phys. Rev. Lett. 84, 4721–4724 (2000).
[CrossRef] [PubMed]

W. Gotschy, K. Vonmetz, A. Leitner, and F. R. Aussenegg, “Optical dichroism of lithographically designed silver nanoparticle films,” Opt. Lett. 21, 1099–1101, (1996).
[CrossRef] [PubMed]

Aydin, K.

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2, 517 (2011).
[CrossRef] [PubMed]

Barrow, S. J.

S. J. Barrow, A. M. Funston, D. E. Gomez, T. J. Davis, and P. Mulvaney, “Surface plasmon resonances in strongly coupled gold nanosphere chains from monomer to hexamer,” Nano Lett. 11, 4180–4187 (2011).
[CrossRef] [PubMed]

Bergman, D. J.

M. I. Stockman, S. V. Faleev, and D. J. Bergman, “Localization versus delocalization of surface plasmons in nanosystems: Can one state have both characteristics?” Phys. Rev. Lett. 87, 167401 (2001).
[CrossRef] [PubMed]

Boneberg, J.

J. Merlein, M. Kahl, A. Zuschlag, A. Sell, A. Halm, J. Boneberg, P. Leiderer, A. Leitenstorfer, and R. Bratschitsch, “Nanomechanical control of an optical antenna,” Nat. Photonics 2, 230–233 (2008).
[CrossRef]

Bozhevolnyi, S. I.

D. K. Gramotnev, A. Pors, M. Willatzen, and S. I. Bozhevolnyi, “Gap-plasmon nanoantennas and bowtie resonators,” Phys. Rev. B 85, 045434 (2012).
[CrossRef]

Bratschitsch, R.

J. Merlein, M. Kahl, A. Zuschlag, A. Sell, A. Halm, J. Boneberg, P. Leiderer, A. Leitenstorfer, and R. Bratschitsch, “Nanomechanical control of an optical antenna,” Nat. Photonics 2, 230–233 (2008).
[CrossRef]

Brian, B.

W. Khunsin, B. Brian, J. Dorfmuller, M. Esslinger, R. Vogelgesang, C. Etrich, C. Rockstuhl, A. Dmitriev, and K. Kern, “Long-distance indirect excitation of nanoplasmonic resonances,” Nano Lett. 11, 2765–2769 (2011).
[CrossRef] [PubMed]

Briggs, R. M.

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2, 517 (2011).
[CrossRef] [PubMed]

Brongersma, M. L.

W. Cai, A. P. Vasudev, and M. L. Brongersma, “Electrically controlled nonlinear generation of light with plasmonics,” Science,  333, 1720–1723 (2011).
[CrossRef] [PubMed]

M. L. Brongersma, J. W. Hartman, and H. A. Atwater, “Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit,” Phys. Rev. B 62, R16356–R16359 (2000).
[CrossRef]

Brus, L. E.

M. Michaels, M. Nirmal, and L. E. Brus, “Surface enhanced raman spectroscopy of individual rhodamine 6G molecules on large Ag nanocrystals,” J. Am. Chem. Soc. 121, 9932–9939 (1999).
[CrossRef]

Cai, B.

X. Chen, B. Jia, J. K. Saha, B. Cai, N. Stokes, Q. Qiao, Y. Wang, Z. Shi, and M. Gu, “Broadband enhancement in thin-film amorphous silicon solar cells enabled by nucleated silver nanoparticles,” Nano Lett.2012 (in press)
[CrossRef] [PubMed]

Cai, W.

W. Cai, A. P. Vasudev, and M. L. Brongersma, “Electrically controlled nonlinear generation of light with plasmonics,” Science,  333, 1720–1723 (2011).
[CrossRef] [PubMed]

Chan, V. Z-H.

C. Sonnichsen, S. Geier, N. E. Hecker, G. von Plessen, J. Feldmann, H. Ditlbacher, B. Lamprecht, J. R. Krenn, F. R. Ausseneg, V. Z-H. Chan, J. P. Spatz, and M. Moller, “Spectroscopy of single metallic nanoparticles using total internal reflection microscopy,” Appl. Phys. Lett. 77, 132355, (2000).
[CrossRef]

Chen, X.

X. Chen, B. Jia, J. K. Saha, B. Cai, N. Stokes, Q. Qiao, Y. Wang, Z. Shi, and M. Gu, “Broadband enhancement in thin-film amorphous silicon solar cells enabled by nucleated silver nanoparticles,” Nano Lett.2012 (in press)
[CrossRef] [PubMed]

Choquette, K. D.

Y. K. Kim, A. J. Danner, J. J. Raftery, and K. D. Choquette, “Focused ion beam nanopatterning for optoelectronic device fabrication,” IEEE J. Sel. Top. Quantum. Electron. 11, 1292–1298 (2005).
[CrossRef]

Danner, A. J.

Y. K. Kim, A. J. Danner, J. J. Raftery, and K. D. Choquette, “Focused ion beam nanopatterning for optoelectronic device fabrication,” IEEE J. Sel. Top. Quantum. Electron. 11, 1292–1298 (2005).
[CrossRef]

Davis, T. J.

S. J. Barrow, A. M. Funston, D. E. Gomez, T. J. Davis, and P. Mulvaney, “Surface plasmon resonances in strongly coupled gold nanosphere chains from monomer to hexamer,” Nano Lett. 11, 4180–4187 (2011).
[CrossRef] [PubMed]

De Clercq, B.

V. K. Valev, N. Smisdom, A. V. Silhanek, B. De Clercq, W. Gillijns, M. Ameloot, V. V. Moshchalkov, and T. Verbiest, “Plasmonic ratchet wheels: switching circular dichroism by arranging chiral nanostructures,” Nano Lett. 9, 3945–3948 (2009).
[CrossRef] [PubMed]

Deng, Z. -L.

Z. -L. Deng, Z. -H. Li, J. -W. Dong, and H. -Z. Wang, “In-plane plasmonic modes in a quasicrystalline array of metal nanoparticles,” Plasmonics 6, 507–514 (2011).
[CrossRef]

Ditlbacher, H.

D. M. Koller, A. Hohenau, H. Ditlbacher, N. Galler, F. Reil, F. R. Aussenegg, A. Leitner, E. J. W. List, and J. R. Krenn, “Organic plasmon-emitting diode,” Nat. Photonics 2, 684–687 (2008).
[CrossRef]

C. Sonnichsen, S. Geier, N. E. Hecker, G. von Plessen, J. Feldmann, H. Ditlbacher, B. Lamprecht, J. R. Krenn, F. R. Ausseneg, V. Z-H. Chan, J. P. Spatz, and M. Moller, “Spectroscopy of single metallic nanoparticles using total internal reflection microscopy,” Appl. Phys. Lett. 77, 132355, (2000).
[CrossRef]

B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg, “Metal nanoparticle gratings: Influence of dipolar particle interaction on the plasmon resonance,” Phys. Rev. Lett. 84, 4721–4724 (2000).
[CrossRef] [PubMed]

Dmitriev, A.

W. Khunsin, B. Brian, J. Dorfmuller, M. Esslinger, R. Vogelgesang, C. Etrich, C. Rockstuhl, A. Dmitriev, and K. Kern, “Long-distance indirect excitation of nanoplasmonic resonances,” Nano Lett. 11, 2765–2769 (2011).
[CrossRef] [PubMed]

Dong, J. -W.

Z. -L. Deng, Z. -H. Li, J. -W. Dong, and H. -Z. Wang, “In-plane plasmonic modes in a quasicrystalline array of metal nanoparticles,” Plasmonics 6, 507–514 (2011).
[CrossRef]

Dorfmuller, J.

W. Khunsin, B. Brian, J. Dorfmuller, M. Esslinger, R. Vogelgesang, C. Etrich, C. Rockstuhl, A. Dmitriev, and K. Kern, “Long-distance indirect excitation of nanoplasmonic resonances,” Nano Lett. 11, 2765–2769 (2011).
[CrossRef] [PubMed]

Eguchi, M.

T. Teranishi, M. Eguchi, M. Kanehara, and S. Gwo, “Controlled localized surface plasmon resonance wavelength for conductive nanoparticles over the ultraviolet to near-infrared region,” J. Mater. Chem. 21, 10238–10242 (2011).
[CrossRef]

El-Sayed, M. A.

S. Link and M. A. El-Sayed, “Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles,” J. Phys. Chem. B 103, 4212–4217 (1999).
[CrossRef]

Esslinger, M.

W. Khunsin, B. Brian, J. Dorfmuller, M. Esslinger, R. Vogelgesang, C. Etrich, C. Rockstuhl, A. Dmitriev, and K. Kern, “Long-distance indirect excitation of nanoplasmonic resonances,” Nano Lett. 11, 2765–2769 (2011).
[CrossRef] [PubMed]

Etrich, C.

W. Khunsin, B. Brian, J. Dorfmuller, M. Esslinger, R. Vogelgesang, C. Etrich, C. Rockstuhl, A. Dmitriev, and K. Kern, “Long-distance indirect excitation of nanoplasmonic resonances,” Nano Lett. 11, 2765–2769 (2011).
[CrossRef] [PubMed]

Faleev, S. V.

M. I. Stockman, S. V. Faleev, and D. J. Bergman, “Localization versus delocalization of surface plasmons in nanosystems: Can one state have both characteristics?” Phys. Rev. Lett. 87, 167401 (2001).
[CrossRef] [PubMed]

Feldmann, J.

C. Sonnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, “Drastic reduction of plasmon damping in gold nanorods,” Phys. Rev. Lett. 88, 077402 (2002).
[CrossRef] [PubMed]

C. Sonnichsen, S. Geier, N. E. Hecker, G. von Plessen, J. Feldmann, H. Ditlbacher, B. Lamprecht, J. R. Krenn, F. R. Ausseneg, V. Z-H. Chan, J. P. Spatz, and M. Moller, “Spectroscopy of single metallic nanoparticles using total internal reflection microscopy,” Appl. Phys. Lett. 77, 132355, (2000).
[CrossRef]

T. Klar, M. Perner, S. Grosse, G. von Plessen, W. Spirkl, and J. Feldmann, “Surface-plasmon resonances in single metallic nanoparticles,” Phys. Rev. Lett. 80, 4249–4252 (1998).
[CrossRef]

Ferry, V. E.

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2, 517 (2011).
[CrossRef] [PubMed]

Fischer, R. A.

O. Shekhah, J. Liu, R. A. Fischer, and Ch. Woll, “MOF thin films: existing and future application,” Chem. Soc. Rev. 40, 1081–1106 (2011).
[CrossRef] [PubMed]

Flach, S.

A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys. 82, 2257–2298 (2010).
[CrossRef]

Forster, R. J.

F. Lordan, J. H. Rice, B. Jose, R. J. Forster, and T. E. Keyes, “Site selective surface enhanced Raman on nanostructured cavities,” Appl. Phys. Lett. 99, 033104 (2011).
[CrossRef]

Franzl, T.

C. Sonnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, “Drastic reduction of plasmon damping in gold nanorods,” Phys. Rev. Lett. 88, 077402 (2002).
[CrossRef] [PubMed]

Funston, A.

M. Hu, C. Novo, A. Funston, H. Wang, H. Staleva, S. Zou, P. Mulvaney, Y. Xia, and G. V. Hartland, “Dark-field microscopy studies of single metal nanoparticles: understanding the factors that influence the linewidth of the localized surface plasmon resonance,” J. Mater. Chem. 18, 1949–1960 (2008).
[CrossRef] [PubMed]

Funston, A. M.

S. J. Barrow, A. M. Funston, D. E. Gomez, T. J. Davis, and P. Mulvaney, “Surface plasmon resonances in strongly coupled gold nanosphere chains from monomer to hexamer,” Nano Lett. 11, 4180–4187 (2011).
[CrossRef] [PubMed]

Galler, N.

D. M. Koller, A. Hohenau, H. Ditlbacher, N. Galler, F. Reil, F. R. Aussenegg, A. Leitner, E. J. W. List, and J. R. Krenn, “Organic plasmon-emitting diode,” Nat. Photonics 2, 684–687 (2008).
[CrossRef]

Geier, S.

C. Sonnichsen, S. Geier, N. E. Hecker, G. von Plessen, J. Feldmann, H. Ditlbacher, B. Lamprecht, J. R. Krenn, F. R. Ausseneg, V. Z-H. Chan, J. P. Spatz, and M. Moller, “Spectroscopy of single metallic nanoparticles using total internal reflection microscopy,” Appl. Phys. Lett. 77, 132355, (2000).
[CrossRef]

Gillijns, W.

V. K. Valev, N. Smisdom, A. V. Silhanek, B. De Clercq, W. Gillijns, M. Ameloot, V. V. Moshchalkov, and T. Verbiest, “Plasmonic ratchet wheels: switching circular dichroism by arranging chiral nanostructures,” Nano Lett. 9, 3945–3948 (2009).
[CrossRef] [PubMed]

Gomez, D. E.

S. J. Barrow, A. M. Funston, D. E. Gomez, T. J. Davis, and P. Mulvaney, “Surface plasmon resonances in strongly coupled gold nanosphere chains from monomer to hexamer,” Nano Lett. 11, 4180–4187 (2011).
[CrossRef] [PubMed]

Gotschy, W.

Gramotnev, D. K.

D. K. Gramotnev, A. Pors, M. Willatzen, and S. I. Bozhevolnyi, “Gap-plasmon nanoantennas and bowtie resonators,” Phys. Rev. B 85, 045434 (2012).
[CrossRef]

Grosse, S.

T. Klar, M. Perner, S. Grosse, G. von Plessen, W. Spirkl, and J. Feldmann, “Surface-plasmon resonances in single metallic nanoparticles,” Phys. Rev. Lett. 80, 4249–4252 (1998).
[CrossRef]

Gu, M.

X. Chen, B. Jia, J. K. Saha, B. Cai, N. Stokes, Q. Qiao, Y. Wang, Z. Shi, and M. Gu, “Broadband enhancement in thin-film amorphous silicon solar cells enabled by nucleated silver nanoparticles,” Nano Lett.2012 (in press)
[CrossRef] [PubMed]

Gwo, S.

T. Teranishi, M. Eguchi, M. Kanehara, and S. Gwo, “Controlled localized surface plasmon resonance wavelength for conductive nanoparticles over the ultraviolet to near-infrared region,” J. Mater. Chem. 21, 10238–10242 (2011).
[CrossRef]

Halm, A.

J. Merlein, M. Kahl, A. Zuschlag, A. Sell, A. Halm, J. Boneberg, P. Leiderer, A. Leitenstorfer, and R. Bratschitsch, “Nanomechanical control of an optical antenna,” Nat. Photonics 2, 230–233 (2008).
[CrossRef]

Hamada, S.

S. Takeda, S. Hamada, R. Peretti, P. Viktorovitch, and M. Obara, “Order to disorder optical phase transition in random photonic crystals,” Appl. Phys. B 10695–100 (2012).
[CrossRef]

Hartland, G. V.

M. Hu, C. Novo, A. Funston, H. Wang, H. Staleva, S. Zou, P. Mulvaney, Y. Xia, and G. V. Hartland, “Dark-field microscopy studies of single metal nanoparticles: understanding the factors that influence the linewidth of the localized surface plasmon resonance,” J. Mater. Chem. 18, 1949–1960 (2008).
[CrossRef] [PubMed]

G. V. Hartland, “Coherent vibrational motion in metal particles: Determination of the vibrational amplitude and excitation mechanism,” J. Chem. Phys. 116, 8048–8056 (2002).
[CrossRef]

Hartman, J. W.

M. L. Brongersma, J. W. Hartman, and H. A. Atwater, “Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit,” Phys. Rev. B 62, R16356–R16359 (2000).
[CrossRef]

Hecker, N. E.

C. Sonnichsen, S. Geier, N. E. Hecker, G. von Plessen, J. Feldmann, H. Ditlbacher, B. Lamprecht, J. R. Krenn, F. R. Ausseneg, V. Z-H. Chan, J. P. Spatz, and M. Moller, “Spectroscopy of single metallic nanoparticles using total internal reflection microscopy,” Appl. Phys. Lett. 77, 132355, (2000).
[CrossRef]

Hohenau, A.

D. M. Koller, A. Hohenau, H. Ditlbacher, N. Galler, F. Reil, F. R. Aussenegg, A. Leitner, E. J. W. List, and J. R. Krenn, “Organic plasmon-emitting diode,” Nat. Photonics 2, 684–687 (2008).
[CrossRef]

Hu, M.

M. Hu, C. Novo, A. Funston, H. Wang, H. Staleva, S. Zou, P. Mulvaney, Y. Xia, and G. V. Hartland, “Dark-field microscopy studies of single metal nanoparticles: understanding the factors that influence the linewidth of the localized surface plasmon resonance,” J. Mater. Chem. 18, 1949–1960 (2008).
[CrossRef] [PubMed]

Ishihara, H.

Y. Tsuboi, T. Shoji, N. Kitamura, M. Takase, K. Murakoshi, Y. Mizumoto, and H. Ishihara, “Optical trapping of quantum dots based on gap-mode-extinction of localized surface plasmon,” Chem. Lett. 1, 2327–2333 (2010).
[CrossRef]

Itoh, H.

K. Ueno, S. Takabatake, K. Onishi, H. Itoh, Y. Nishijima, and H. Misawa, “Homogeneous nano-patterning using plasmon-assisted photolithography,” Appl. Phys. Lett. 99, 011107 (2011).
[CrossRef]

Jelmakas, E.

Jia, B.

X. Chen, B. Jia, J. K. Saha, B. Cai, N. Stokes, Q. Qiao, Y. Wang, Z. Shi, and M. Gu, “Broadband enhancement in thin-film amorphous silicon solar cells enabled by nucleated silver nanoparticles,” Nano Lett.2012 (in press)
[CrossRef] [PubMed]

Jose, B.

F. Lordan, J. H. Rice, B. Jose, R. J. Forster, and T. E. Keyes, “Site selective surface enhanced Raman on nanostructured cavities,” Appl. Phys. Lett. 99, 033104 (2011).
[CrossRef]

Juodkazis, K.

Juodkazis, S.

L. Rosa, K. Sun, and S. Juodkazis, “Sierpinski fractal plasmonic nanoantennas,” Phys. Status Solidi - Rapid Res. Lett. 5, 175–177 (2011).
[CrossRef]

I. M. Monirul, K. Ueno, S. Juodkazis, Y. Yokota, and H. Misawa, “Development of interdigitated array electrodes with surface-enhanced raman scattering Functionality,” Anal. Sci. 26, 13–18 (2010).
[CrossRef]

S. Juodkazis and L. Rosa, “Surface defect mediated electron hopping between nanoparticles separated by a nano-gap,” Phys. Status Solidi - Rapid Res. Lett. 10, 244–246 (2010).
[CrossRef]

K. Juodkazis, J. Juodkazytė, P. Kalinauskas, E. Jelmakas, and S. Juodkazis, “Photoelectrolysis of Water: Solar Hydrogen - Achievements and Perspectives,” Opt. Express 18, A147–A160 (2010).
[CrossRef] [PubMed]

K. Ueno, S. Juodkazis, V. Mizeikis, K. Sasaki, and H. Misawa, “Clusters of closely-spaced gold nanoparticles as a source of two-photon photoluminescence at visible wavelengths,” Adv. Mater. 20, 26–30 (2008).
[CrossRef]

K. Ueno, S. Juodkazis, M. Mino, V. Mizeikis, and H. Misawa, “Spectral sensitivity of uniform arrays of gold nanorods to dielectric environment,” J. Phys. Chem. C 111, 4180–4184 (2007).
[CrossRef]

K. Ueno, S. Juodkazis, V. Mizeikis, K. Sasaki, and H. Misawa, “Spectrally-resolved atomic-scale length variations of gold nanorods,” J. Am. Chem. Soc. 128, 14226–14227 (2006).
[CrossRef] [PubMed]

T. Takasone, S. Juodkazis, Y. Kawagishi, A. Yamaguchi, S. Matsuo, H. Sakakibara, H. Nakayama, and H. Misawa, “Flexural rigidity of a single microtubule,” Jpn. J. Appl. Phys. 41, 3015–3019 (2002).
[CrossRef]

Juodkazyte, J.

Kahl, M.

J. Merlein, M. Kahl, A. Zuschlag, A. Sell, A. Halm, J. Boneberg, P. Leiderer, A. Leitenstorfer, and R. Bratschitsch, “Nanomechanical control of an optical antenna,” Nat. Photonics 2, 230–233 (2008).
[CrossRef]

Kalinauskas, P.

Kanehara, M.

T. Teranishi, M. Eguchi, M. Kanehara, and S. Gwo, “Controlled localized surface plasmon resonance wavelength for conductive nanoparticles over the ultraviolet to near-infrared region,” J. Mater. Chem. 21, 10238–10242 (2011).
[CrossRef]

Kawagishi, Y.

T. Takasone, S. Juodkazis, Y. Kawagishi, A. Yamaguchi, S. Matsuo, H. Sakakibara, H. Nakayama, and H. Misawa, “Flexural rigidity of a single microtubule,” Jpn. J. Appl. Phys. 41, 3015–3019 (2002).
[CrossRef]

Kern, K.

W. Khunsin, B. Brian, J. Dorfmuller, M. Esslinger, R. Vogelgesang, C. Etrich, C. Rockstuhl, A. Dmitriev, and K. Kern, “Long-distance indirect excitation of nanoplasmonic resonances,” Nano Lett. 11, 2765–2769 (2011).
[CrossRef] [PubMed]

Keyes, T. E.

F. Lordan, J. H. Rice, B. Jose, R. J. Forster, and T. E. Keyes, “Site selective surface enhanced Raman on nanostructured cavities,” Appl. Phys. Lett. 99, 033104 (2011).
[CrossRef]

Khunsin, W.

W. Khunsin, B. Brian, J. Dorfmuller, M. Esslinger, R. Vogelgesang, C. Etrich, C. Rockstuhl, A. Dmitriev, and K. Kern, “Long-distance indirect excitation of nanoplasmonic resonances,” Nano Lett. 11, 2765–2769 (2011).
[CrossRef] [PubMed]

Kim, Y. K.

Y. K. Kim, A. J. Danner, J. J. Raftery, and K. D. Choquette, “Focused ion beam nanopatterning for optoelectronic device fabrication,” IEEE J. Sel. Top. Quantum. Electron. 11, 1292–1298 (2005).
[CrossRef]

Kitamura, N.

Y. Tsuboi, T. Shoji, N. Kitamura, M. Takase, K. Murakoshi, Y. Mizumoto, and H. Ishihara, “Optical trapping of quantum dots based on gap-mode-extinction of localized surface plasmon,” Chem. Lett. 1, 2327–2333 (2010).
[CrossRef]

Kivshar, Y. S.

A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys. 82, 2257–2298 (2010).
[CrossRef]

Klar, T.

T. Klar, M. Perner, S. Grosse, G. von Plessen, W. Spirkl, and J. Feldmann, “Surface-plasmon resonances in single metallic nanoparticles,” Phys. Rev. Lett. 80, 4249–4252 (1998).
[CrossRef]

Koller, D. M.

D. M. Koller, A. Hohenau, H. Ditlbacher, N. Galler, F. Reil, F. R. Aussenegg, A. Leitner, E. J. W. List, and J. R. Krenn, “Organic plasmon-emitting diode,” Nat. Photonics 2, 684–687 (2008).
[CrossRef]

Krenn, J. R.

D. M. Koller, A. Hohenau, H. Ditlbacher, N. Galler, F. Reil, F. R. Aussenegg, A. Leitner, E. J. W. List, and J. R. Krenn, “Organic plasmon-emitting diode,” Nat. Photonics 2, 684–687 (2008).
[CrossRef]

B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg, “Metal nanoparticle gratings: Influence of dipolar particle interaction on the plasmon resonance,” Phys. Rev. Lett. 84, 4721–4724 (2000).
[CrossRef] [PubMed]

C. Sonnichsen, S. Geier, N. E. Hecker, G. von Plessen, J. Feldmann, H. Ditlbacher, B. Lamprecht, J. R. Krenn, F. R. Ausseneg, V. Z-H. Chan, J. P. Spatz, and M. Moller, “Spectroscopy of single metallic nanoparticles using total internal reflection microscopy,” Appl. Phys. Lett. 77, 132355, (2000).
[CrossRef]

Lamprecht, B.

B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg, “Metal nanoparticle gratings: Influence of dipolar particle interaction on the plasmon resonance,” Phys. Rev. Lett. 84, 4721–4724 (2000).
[CrossRef] [PubMed]

C. Sonnichsen, S. Geier, N. E. Hecker, G. von Plessen, J. Feldmann, H. Ditlbacher, B. Lamprecht, J. R. Krenn, F. R. Ausseneg, V. Z-H. Chan, J. P. Spatz, and M. Moller, “Spectroscopy of single metallic nanoparticles using total internal reflection microscopy,” Appl. Phys. Lett. 77, 132355, (2000).
[CrossRef]

Lechner, R. T.

B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg, “Metal nanoparticle gratings: Influence of dipolar particle interaction on the plasmon resonance,” Phys. Rev. Lett. 84, 4721–4724 (2000).
[CrossRef] [PubMed]

Leiderer, P.

J. Merlein, M. Kahl, A. Zuschlag, A. Sell, A. Halm, J. Boneberg, P. Leiderer, A. Leitenstorfer, and R. Bratschitsch, “Nanomechanical control of an optical antenna,” Nat. Photonics 2, 230–233 (2008).
[CrossRef]

Leitenstorfer, A.

J. Merlein, M. Kahl, A. Zuschlag, A. Sell, A. Halm, J. Boneberg, P. Leiderer, A. Leitenstorfer, and R. Bratschitsch, “Nanomechanical control of an optical antenna,” Nat. Photonics 2, 230–233 (2008).
[CrossRef]

Leitner, A.

D. M. Koller, A. Hohenau, H. Ditlbacher, N. Galler, F. Reil, F. R. Aussenegg, A. Leitner, E. J. W. List, and J. R. Krenn, “Organic plasmon-emitting diode,” Nat. Photonics 2, 684–687 (2008).
[CrossRef]

B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg, “Metal nanoparticle gratings: Influence of dipolar particle interaction on the plasmon resonance,” Phys. Rev. Lett. 84, 4721–4724 (2000).
[CrossRef] [PubMed]

W. Gotschy, K. Vonmetz, A. Leitner, and F. R. Aussenegg, “Optical dichroism of lithographically designed silver nanoparticle films,” Opt. Lett. 21, 1099–1101, (1996).
[CrossRef] [PubMed]

Li, Z. -H.

Z. -L. Deng, Z. -H. Li, J. -W. Dong, and H. -Z. Wang, “In-plane plasmonic modes in a quasicrystalline array of metal nanoparticles,” Plasmonics 6, 507–514 (2011).
[CrossRef]

Lin, L.

Link, S.

S. Link and M. A. El-Sayed, “Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles,” J. Phys. Chem. B 103, 4212–4217 (1999).
[CrossRef]

List, E. J. W.

D. M. Koller, A. Hohenau, H. Ditlbacher, N. Galler, F. Reil, F. R. Aussenegg, A. Leitner, E. J. W. List, and J. R. Krenn, “Organic plasmon-emitting diode,” Nat. Photonics 2, 684–687 (2008).
[CrossRef]

Liu, J.

O. Shekhah, J. Liu, R. A. Fischer, and Ch. Woll, “MOF thin films: existing and future application,” Chem. Soc. Rev. 40, 1081–1106 (2011).
[CrossRef] [PubMed]

Lordan, F.

F. Lordan, J. H. Rice, B. Jose, R. J. Forster, and T. E. Keyes, “Site selective surface enhanced Raman on nanostructured cavities,” Appl. Phys. Lett. 99, 033104 (2011).
[CrossRef]

Matsuo, S.

T. Takasone, S. Juodkazis, Y. Kawagishi, A. Yamaguchi, S. Matsuo, H. Sakakibara, H. Nakayama, and H. Misawa, “Flexural rigidity of a single microtubule,” Jpn. J. Appl. Phys. 41, 3015–3019 (2002).
[CrossRef]

Merlein, J.

J. Merlein, M. Kahl, A. Zuschlag, A. Sell, A. Halm, J. Boneberg, P. Leiderer, A. Leitenstorfer, and R. Bratschitsch, “Nanomechanical control of an optical antenna,” Nat. Photonics 2, 230–233 (2008).
[CrossRef]

Michaels, M.

M. Michaels, M. Nirmal, and L. E. Brus, “Surface enhanced raman spectroscopy of individual rhodamine 6G molecules on large Ag nanocrystals,” J. Am. Chem. Soc. 121, 9932–9939 (1999).
[CrossRef]

Mino, M.

K. Ueno, S. Juodkazis, M. Mino, V. Mizeikis, and H. Misawa, “Spectral sensitivity of uniform arrays of gold nanorods to dielectric environment,” J. Phys. Chem. C 111, 4180–4184 (2007).
[CrossRef]

Miroshnichenko, A. E.

A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys. 82, 2257–2298 (2010).
[CrossRef]

Misawa, H.

K. Ueno, S. Takabatake, K. Onishi, H. Itoh, Y. Nishijima, and H. Misawa, “Homogeneous nano-patterning using plasmon-assisted photolithography,” Appl. Phys. Lett. 99, 011107 (2011).
[CrossRef]

Y. Nishijima, K. Ueno, Y. Yokota, K. Murakoshi, and H. Misawa, “Plasmon-assisted photocurrent generation from visible to near-infrared wavelength using a Au-nanorods/TiO2 electrode,” J. Phys. Chem. Lett. 1, 2031–2036 (2010).
[CrossRef]

I. M. Monirul, K. Ueno, S. Juodkazis, Y. Yokota, and H. Misawa, “Development of interdigitated array electrodes with surface-enhanced raman scattering Functionality,” Anal. Sci. 26, 13–18 (2010).
[CrossRef]

K. Ueno, S. Juodkazis, V. Mizeikis, K. Sasaki, and H. Misawa, “Clusters of closely-spaced gold nanoparticles as a source of two-photon photoluminescence at visible wavelengths,” Adv. Mater. 20, 26–30 (2008).
[CrossRef]

K. Ueno, S. Juodkazis, M. Mino, V. Mizeikis, and H. Misawa, “Spectral sensitivity of uniform arrays of gold nanorods to dielectric environment,” J. Phys. Chem. C 111, 4180–4184 (2007).
[CrossRef]

K. Ueno, S. Juodkazis, V. Mizeikis, K. Sasaki, and H. Misawa, “Spectrally-resolved atomic-scale length variations of gold nanorods,” J. Am. Chem. Soc. 128, 14226–14227 (2006).
[CrossRef] [PubMed]

T. Takasone, S. Juodkazis, Y. Kawagishi, A. Yamaguchi, S. Matsuo, H. Sakakibara, H. Nakayama, and H. Misawa, “Flexural rigidity of a single microtubule,” Jpn. J. Appl. Phys. 41, 3015–3019 (2002).
[CrossRef]

Mizeikis, V.

K. Ueno, S. Juodkazis, V. Mizeikis, K. Sasaki, and H. Misawa, “Clusters of closely-spaced gold nanoparticles as a source of two-photon photoluminescence at visible wavelengths,” Adv. Mater. 20, 26–30 (2008).
[CrossRef]

K. Ueno, S. Juodkazis, M. Mino, V. Mizeikis, and H. Misawa, “Spectral sensitivity of uniform arrays of gold nanorods to dielectric environment,” J. Phys. Chem. C 111, 4180–4184 (2007).
[CrossRef]

K. Ueno, S. Juodkazis, V. Mizeikis, K. Sasaki, and H. Misawa, “Spectrally-resolved atomic-scale length variations of gold nanorods,” J. Am. Chem. Soc. 128, 14226–14227 (2006).
[CrossRef] [PubMed]

Mizumoto, Y.

Y. Tsuboi, T. Shoji, N. Kitamura, M. Takase, K. Murakoshi, Y. Mizumoto, and H. Ishihara, “Optical trapping of quantum dots based on gap-mode-extinction of localized surface plasmon,” Chem. Lett. 1, 2327–2333 (2010).
[CrossRef]

Moller, M.

C. Sonnichsen, S. Geier, N. E. Hecker, G. von Plessen, J. Feldmann, H. Ditlbacher, B. Lamprecht, J. R. Krenn, F. R. Ausseneg, V. Z-H. Chan, J. P. Spatz, and M. Moller, “Spectroscopy of single metallic nanoparticles using total internal reflection microscopy,” Appl. Phys. Lett. 77, 132355, (2000).
[CrossRef]

Monirul, I. M.

I. M. Monirul, K. Ueno, S. Juodkazis, Y. Yokota, and H. Misawa, “Development of interdigitated array electrodes with surface-enhanced raman scattering Functionality,” Anal. Sci. 26, 13–18 (2010).
[CrossRef]

Moshchalkov, V. V.

V. K. Valev, N. Smisdom, A. V. Silhanek, B. De Clercq, W. Gillijns, M. Ameloot, V. V. Moshchalkov, and T. Verbiest, “Plasmonic ratchet wheels: switching circular dichroism by arranging chiral nanostructures,” Nano Lett. 9, 3945–3948 (2009).
[CrossRef] [PubMed]

Mulvaney, P.

S. J. Barrow, A. M. Funston, D. E. Gomez, T. J. Davis, and P. Mulvaney, “Surface plasmon resonances in strongly coupled gold nanosphere chains from monomer to hexamer,” Nano Lett. 11, 4180–4187 (2011).
[CrossRef] [PubMed]

M. Hu, C. Novo, A. Funston, H. Wang, H. Staleva, S. Zou, P. Mulvaney, Y. Xia, and G. V. Hartland, “Dark-field microscopy studies of single metal nanoparticles: understanding the factors that influence the linewidth of the localized surface plasmon resonance,” J. Mater. Chem. 18, 1949–1960 (2008).
[CrossRef] [PubMed]

C. Sonnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, “Drastic reduction of plasmon damping in gold nanorods,” Phys. Rev. Lett. 88, 077402 (2002).
[CrossRef] [PubMed]

Murakoshi, K.

Y. Nishijima, K. Ueno, Y. Yokota, K. Murakoshi, and H. Misawa, “Plasmon-assisted photocurrent generation from visible to near-infrared wavelength using a Au-nanorods/TiO2 electrode,” J. Phys. Chem. Lett. 1, 2031–2036 (2010).
[CrossRef]

Y. Tsuboi, T. Shoji, N. Kitamura, M. Takase, K. Murakoshi, Y. Mizumoto, and H. Ishihara, “Optical trapping of quantum dots based on gap-mode-extinction of localized surface plasmon,” Chem. Lett. 1, 2327–2333 (2010).
[CrossRef]

Y. Sawai, B. Takimoto, H. Nabika, K. Ajito, and K. Murakoshi, “Observation of a small number of molecules at a metal nanogap arrayed on a solid surface using surface-enhanced Raman scattering,” J. Am. Chem. Soc. 129, 1658–1662 (2007).
[CrossRef] [PubMed]

Nabika, H.

Y. Sawai, B. Takimoto, H. Nabika, K. Ajito, and K. Murakoshi, “Observation of a small number of molecules at a metal nanogap arrayed on a solid surface using surface-enhanced Raman scattering,” J. Am. Chem. Soc. 129, 1658–1662 (2007).
[CrossRef] [PubMed]

Nakayama, H.

T. Takasone, S. Juodkazis, Y. Kawagishi, A. Yamaguchi, S. Matsuo, H. Sakakibara, H. Nakayama, and H. Misawa, “Flexural rigidity of a single microtubule,” Jpn. J. Appl. Phys. 41, 3015–3019 (2002).
[CrossRef]

Nirmal, M.

M. Michaels, M. Nirmal, and L. E. Brus, “Surface enhanced raman spectroscopy of individual rhodamine 6G molecules on large Ag nanocrystals,” J. Am. Chem. Soc. 121, 9932–9939 (1999).
[CrossRef]

Nishijima, Y.

K. Ueno, S. Takabatake, K. Onishi, H. Itoh, Y. Nishijima, and H. Misawa, “Homogeneous nano-patterning using plasmon-assisted photolithography,” Appl. Phys. Lett. 99, 011107 (2011).
[CrossRef]

Y. Nishijima, K. Ueno, Y. Yokota, K. Murakoshi, and H. Misawa, “Plasmon-assisted photocurrent generation from visible to near-infrared wavelength using a Au-nanorods/TiO2 electrode,” J. Phys. Chem. Lett. 1, 2031–2036 (2010).
[CrossRef]

Novo, C.

M. Hu, C. Novo, A. Funston, H. Wang, H. Staleva, S. Zou, P. Mulvaney, Y. Xia, and G. V. Hartland, “Dark-field microscopy studies of single metal nanoparticles: understanding the factors that influence the linewidth of the localized surface plasmon resonance,” J. Mater. Chem. 18, 1949–1960 (2008).
[CrossRef] [PubMed]

Obara, M.

S. Takeda, S. Hamada, R. Peretti, P. Viktorovitch, and M. Obara, “Order to disorder optical phase transition in random photonic crystals,” Appl. Phys. B 10695–100 (2012).
[CrossRef]

Onishi, K.

K. Ueno, S. Takabatake, K. Onishi, H. Itoh, Y. Nishijima, and H. Misawa, “Homogeneous nano-patterning using plasmon-assisted photolithography,” Appl. Phys. Lett. 99, 011107 (2011).
[CrossRef]

Peretti, R.

S. Takeda, S. Hamada, R. Peretti, P. Viktorovitch, and M. Obara, “Order to disorder optical phase transition in random photonic crystals,” Appl. Phys. B 10695–100 (2012).
[CrossRef]

Perner, M.

T. Klar, M. Perner, S. Grosse, G. von Plessen, W. Spirkl, and J. Feldmann, “Surface-plasmon resonances in single metallic nanoparticles,” Phys. Rev. Lett. 80, 4249–4252 (1998).
[CrossRef]

Pors, A.

D. K. Gramotnev, A. Pors, M. Willatzen, and S. I. Bozhevolnyi, “Gap-plasmon nanoantennas and bowtie resonators,” Phys. Rev. B 85, 045434 (2012).
[CrossRef]

Qiao, Q.

X. Chen, B. Jia, J. K. Saha, B. Cai, N. Stokes, Q. Qiao, Y. Wang, Z. Shi, and M. Gu, “Broadband enhancement in thin-film amorphous silicon solar cells enabled by nucleated silver nanoparticles,” Nano Lett.2012 (in press)
[CrossRef] [PubMed]

Raftery, J. J.

Y. K. Kim, A. J. Danner, J. J. Raftery, and K. D. Choquette, “Focused ion beam nanopatterning for optoelectronic device fabrication,” IEEE J. Sel. Top. Quantum. Electron. 11, 1292–1298 (2005).
[CrossRef]

Reil, F.

D. M. Koller, A. Hohenau, H. Ditlbacher, N. Galler, F. Reil, F. R. Aussenegg, A. Leitner, E. J. W. List, and J. R. Krenn, “Organic plasmon-emitting diode,” Nat. Photonics 2, 684–687 (2008).
[CrossRef]

Rice, J. H.

F. Lordan, J. H. Rice, B. Jose, R. J. Forster, and T. E. Keyes, “Site selective surface enhanced Raman on nanostructured cavities,” Appl. Phys. Lett. 99, 033104 (2011).
[CrossRef]

Roberts, A.

Rockstuhl, C.

W. Khunsin, B. Brian, J. Dorfmuller, M. Esslinger, R. Vogelgesang, C. Etrich, C. Rockstuhl, A. Dmitriev, and K. Kern, “Long-distance indirect excitation of nanoplasmonic resonances,” Nano Lett. 11, 2765–2769 (2011).
[CrossRef] [PubMed]

Rosa, L.

L. Rosa, K. Sun, and S. Juodkazis, “Sierpinski fractal plasmonic nanoantennas,” Phys. Status Solidi - Rapid Res. Lett. 5, 175–177 (2011).
[CrossRef]

S. Juodkazis and L. Rosa, “Surface defect mediated electron hopping between nanoparticles separated by a nano-gap,” Phys. Status Solidi - Rapid Res. Lett. 10, 244–246 (2010).
[CrossRef]

Saha, J. K.

X. Chen, B. Jia, J. K. Saha, B. Cai, N. Stokes, Q. Qiao, Y. Wang, Z. Shi, and M. Gu, “Broadband enhancement in thin-film amorphous silicon solar cells enabled by nucleated silver nanoparticles,” Nano Lett.2012 (in press)
[CrossRef] [PubMed]

Sakakibara, H.

T. Takasone, S. Juodkazis, Y. Kawagishi, A. Yamaguchi, S. Matsuo, H. Sakakibara, H. Nakayama, and H. Misawa, “Flexural rigidity of a single microtubule,” Jpn. J. Appl. Phys. 41, 3015–3019 (2002).
[CrossRef]

Sarychev, A. K.

A. K. Sarychev, V. A. Shubin, and V. M. Shalaev, “Anderson localization of surface plasmons and nonlinear optics of metal-dielectric composites,” Phys. Rev. B 6016389–16408 (1999).
[CrossRef]

Sasaki, K.

K. Ueno, S. Juodkazis, V. Mizeikis, K. Sasaki, and H. Misawa, “Clusters of closely-spaced gold nanoparticles as a source of two-photon photoluminescence at visible wavelengths,” Adv. Mater. 20, 26–30 (2008).
[CrossRef]

K. Ueno, S. Juodkazis, V. Mizeikis, K. Sasaki, and H. Misawa, “Spectrally-resolved atomic-scale length variations of gold nanorods,” J. Am. Chem. Soc. 128, 14226–14227 (2006).
[CrossRef] [PubMed]

Sawai, Y.

Y. Sawai, B. Takimoto, H. Nabika, K. Ajito, and K. Murakoshi, “Observation of a small number of molecules at a metal nanogap arrayed on a solid surface using surface-enhanced Raman scattering,” J. Am. Chem. Soc. 129, 1658–1662 (2007).
[CrossRef] [PubMed]

Schider, G.

B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg, “Metal nanoparticle gratings: Influence of dipolar particle interaction on the plasmon resonance,” Phys. Rev. Lett. 84, 4721–4724 (2000).
[CrossRef] [PubMed]

Sell, A.

J. Merlein, M. Kahl, A. Zuschlag, A. Sell, A. Halm, J. Boneberg, P. Leiderer, A. Leitenstorfer, and R. Bratschitsch, “Nanomechanical control of an optical antenna,” Nat. Photonics 2, 230–233 (2008).
[CrossRef]

Shalaev, V. M.

A. K. Sarychev, V. A. Shubin, and V. M. Shalaev, “Anderson localization of surface plasmons and nonlinear optics of metal-dielectric composites,” Phys. Rev. B 6016389–16408 (1999).
[CrossRef]

Shekhah, O.

O. Shekhah, J. Liu, R. A. Fischer, and Ch. Woll, “MOF thin films: existing and future application,” Chem. Soc. Rev. 40, 1081–1106 (2011).
[CrossRef] [PubMed]

Shi, Z.

X. Chen, B. Jia, J. K. Saha, B. Cai, N. Stokes, Q. Qiao, Y. Wang, Z. Shi, and M. Gu, “Broadband enhancement in thin-film amorphous silicon solar cells enabled by nucleated silver nanoparticles,” Nano Lett.2012 (in press)
[CrossRef] [PubMed]

Shoji, T.

Y. Tsuboi, T. Shoji, N. Kitamura, M. Takase, K. Murakoshi, Y. Mizumoto, and H. Ishihara, “Optical trapping of quantum dots based on gap-mode-extinction of localized surface plasmon,” Chem. Lett. 1, 2327–2333 (2010).
[CrossRef]

Shubin, V. A.

A. K. Sarychev, V. A. Shubin, and V. M. Shalaev, “Anderson localization of surface plasmons and nonlinear optics of metal-dielectric composites,” Phys. Rev. B 6016389–16408 (1999).
[CrossRef]

Silhanek, A. V.

V. K. Valev, N. Smisdom, A. V. Silhanek, B. De Clercq, W. Gillijns, M. Ameloot, V. V. Moshchalkov, and T. Verbiest, “Plasmonic ratchet wheels: switching circular dichroism by arranging chiral nanostructures,” Nano Lett. 9, 3945–3948 (2009).
[CrossRef] [PubMed]

Smisdom, N.

V. K. Valev, N. Smisdom, A. V. Silhanek, B. De Clercq, W. Gillijns, M. Ameloot, V. V. Moshchalkov, and T. Verbiest, “Plasmonic ratchet wheels: switching circular dichroism by arranging chiral nanostructures,” Nano Lett. 9, 3945–3948 (2009).
[CrossRef] [PubMed]

Sonnichsen, C.

C. Sonnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, “Drastic reduction of plasmon damping in gold nanorods,” Phys. Rev. Lett. 88, 077402 (2002).
[CrossRef] [PubMed]

C. Sonnichsen, S. Geier, N. E. Hecker, G. von Plessen, J. Feldmann, H. Ditlbacher, B. Lamprecht, J. R. Krenn, F. R. Ausseneg, V. Z-H. Chan, J. P. Spatz, and M. Moller, “Spectroscopy of single metallic nanoparticles using total internal reflection microscopy,” Appl. Phys. Lett. 77, 132355, (2000).
[CrossRef]

Spatz, J. P.

C. Sonnichsen, S. Geier, N. E. Hecker, G. von Plessen, J. Feldmann, H. Ditlbacher, B. Lamprecht, J. R. Krenn, F. R. Ausseneg, V. Z-H. Chan, J. P. Spatz, and M. Moller, “Spectroscopy of single metallic nanoparticles using total internal reflection microscopy,” Appl. Phys. Lett. 77, 132355, (2000).
[CrossRef]

Spirkl, W.

T. Klar, M. Perner, S. Grosse, G. von Plessen, W. Spirkl, and J. Feldmann, “Surface-plasmon resonances in single metallic nanoparticles,” Phys. Rev. Lett. 80, 4249–4252 (1998).
[CrossRef]

Staleva, H.

M. Hu, C. Novo, A. Funston, H. Wang, H. Staleva, S. Zou, P. Mulvaney, Y. Xia, and G. V. Hartland, “Dark-field microscopy studies of single metal nanoparticles: understanding the factors that influence the linewidth of the localized surface plasmon resonance,” J. Mater. Chem. 18, 1949–1960 (2008).
[CrossRef] [PubMed]

Stockman, M. I.

M. I. Stockman, S. V. Faleev, and D. J. Bergman, “Localization versus delocalization of surface plasmons in nanosystems: Can one state have both characteristics?” Phys. Rev. Lett. 87, 167401 (2001).
[CrossRef] [PubMed]

Stokes, N.

X. Chen, B. Jia, J. K. Saha, B. Cai, N. Stokes, Q. Qiao, Y. Wang, Z. Shi, and M. Gu, “Broadband enhancement in thin-film amorphous silicon solar cells enabled by nucleated silver nanoparticles,” Nano Lett.2012 (in press)
[CrossRef] [PubMed]

Sun, K.

L. Rosa, K. Sun, and S. Juodkazis, “Sierpinski fractal plasmonic nanoantennas,” Phys. Status Solidi - Rapid Res. Lett. 5, 175–177 (2011).
[CrossRef]

Takabatake, S.

K. Ueno, S. Takabatake, K. Onishi, H. Itoh, Y. Nishijima, and H. Misawa, “Homogeneous nano-patterning using plasmon-assisted photolithography,” Appl. Phys. Lett. 99, 011107 (2011).
[CrossRef]

Takase, M.

Y. Tsuboi, T. Shoji, N. Kitamura, M. Takase, K. Murakoshi, Y. Mizumoto, and H. Ishihara, “Optical trapping of quantum dots based on gap-mode-extinction of localized surface plasmon,” Chem. Lett. 1, 2327–2333 (2010).
[CrossRef]

Takasone, T.

T. Takasone, S. Juodkazis, Y. Kawagishi, A. Yamaguchi, S. Matsuo, H. Sakakibara, H. Nakayama, and H. Misawa, “Flexural rigidity of a single microtubule,” Jpn. J. Appl. Phys. 41, 3015–3019 (2002).
[CrossRef]

Takeda, S.

S. Takeda, S. Hamada, R. Peretti, P. Viktorovitch, and M. Obara, “Order to disorder optical phase transition in random photonic crystals,” Appl. Phys. B 10695–100 (2012).
[CrossRef]

Takimoto, B.

Y. Sawai, B. Takimoto, H. Nabika, K. Ajito, and K. Murakoshi, “Observation of a small number of molecules at a metal nanogap arrayed on a solid surface using surface-enhanced Raman scattering,” J. Am. Chem. Soc. 129, 1658–1662 (2007).
[CrossRef] [PubMed]

Teranishi, T.

T. Teranishi, M. Eguchi, M. Kanehara, and S. Gwo, “Controlled localized surface plasmon resonance wavelength for conductive nanoparticles over the ultraviolet to near-infrared region,” J. Mater. Chem. 21, 10238–10242 (2011).
[CrossRef]

Tsuboi, Y.

Y. Tsuboi, T. Shoji, N. Kitamura, M. Takase, K. Murakoshi, Y. Mizumoto, and H. Ishihara, “Optical trapping of quantum dots based on gap-mode-extinction of localized surface plasmon,” Chem. Lett. 1, 2327–2333 (2010).
[CrossRef]

Ueno, K.

K. Ueno, S. Takabatake, K. Onishi, H. Itoh, Y. Nishijima, and H. Misawa, “Homogeneous nano-patterning using plasmon-assisted photolithography,” Appl. Phys. Lett. 99, 011107 (2011).
[CrossRef]

Y. Nishijima, K. Ueno, Y. Yokota, K. Murakoshi, and H. Misawa, “Plasmon-assisted photocurrent generation from visible to near-infrared wavelength using a Au-nanorods/TiO2 electrode,” J. Phys. Chem. Lett. 1, 2031–2036 (2010).
[CrossRef]

I. M. Monirul, K. Ueno, S. Juodkazis, Y. Yokota, and H. Misawa, “Development of interdigitated array electrodes with surface-enhanced raman scattering Functionality,” Anal. Sci. 26, 13–18 (2010).
[CrossRef]

K. Ueno, S. Juodkazis, V. Mizeikis, K. Sasaki, and H. Misawa, “Clusters of closely-spaced gold nanoparticles as a source of two-photon photoluminescence at visible wavelengths,” Adv. Mater. 20, 26–30 (2008).
[CrossRef]

K. Ueno, S. Juodkazis, M. Mino, V. Mizeikis, and H. Misawa, “Spectral sensitivity of uniform arrays of gold nanorods to dielectric environment,” J. Phys. Chem. C 111, 4180–4184 (2007).
[CrossRef]

K. Ueno, S. Juodkazis, V. Mizeikis, K. Sasaki, and H. Misawa, “Spectrally-resolved atomic-scale length variations of gold nanorods,” J. Am. Chem. Soc. 128, 14226–14227 (2006).
[CrossRef] [PubMed]

Valev, V. K.

V. K. Valev, N. Smisdom, A. V. Silhanek, B. De Clercq, W. Gillijns, M. Ameloot, V. V. Moshchalkov, and T. Verbiest, “Plasmonic ratchet wheels: switching circular dichroism by arranging chiral nanostructures,” Nano Lett. 9, 3945–3948 (2009).
[CrossRef] [PubMed]

Vasudev, A. P.

W. Cai, A. P. Vasudev, and M. L. Brongersma, “Electrically controlled nonlinear generation of light with plasmonics,” Science,  333, 1720–1723 (2011).
[CrossRef] [PubMed]

Verbiest, T.

V. K. Valev, N. Smisdom, A. V. Silhanek, B. De Clercq, W. Gillijns, M. Ameloot, V. V. Moshchalkov, and T. Verbiest, “Plasmonic ratchet wheels: switching circular dichroism by arranging chiral nanostructures,” Nano Lett. 9, 3945–3948 (2009).
[CrossRef] [PubMed]

Viktorovitch, P.

S. Takeda, S. Hamada, R. Peretti, P. Viktorovitch, and M. Obara, “Order to disorder optical phase transition in random photonic crystals,” Appl. Phys. B 10695–100 (2012).
[CrossRef]

Vogelgesang, R.

W. Khunsin, B. Brian, J. Dorfmuller, M. Esslinger, R. Vogelgesang, C. Etrich, C. Rockstuhl, A. Dmitriev, and K. Kern, “Long-distance indirect excitation of nanoplasmonic resonances,” Nano Lett. 11, 2765–2769 (2011).
[CrossRef] [PubMed]

von Plessen, G.

C. Sonnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, “Drastic reduction of plasmon damping in gold nanorods,” Phys. Rev. Lett. 88, 077402 (2002).
[CrossRef] [PubMed]

C. Sonnichsen, S. Geier, N. E. Hecker, G. von Plessen, J. Feldmann, H. Ditlbacher, B. Lamprecht, J. R. Krenn, F. R. Ausseneg, V. Z-H. Chan, J. P. Spatz, and M. Moller, “Spectroscopy of single metallic nanoparticles using total internal reflection microscopy,” Appl. Phys. Lett. 77, 132355, (2000).
[CrossRef]

T. Klar, M. Perner, S. Grosse, G. von Plessen, W. Spirkl, and J. Feldmann, “Surface-plasmon resonances in single metallic nanoparticles,” Phys. Rev. Lett. 80, 4249–4252 (1998).
[CrossRef]

Vonmetz, K.

Wang, H.

M. Hu, C. Novo, A. Funston, H. Wang, H. Staleva, S. Zou, P. Mulvaney, Y. Xia, and G. V. Hartland, “Dark-field microscopy studies of single metal nanoparticles: understanding the factors that influence the linewidth of the localized surface plasmon resonance,” J. Mater. Chem. 18, 1949–1960 (2008).
[CrossRef] [PubMed]

Wang, H. -Z.

Z. -L. Deng, Z. -H. Li, J. -W. Dong, and H. -Z. Wang, “In-plane plasmonic modes in a quasicrystalline array of metal nanoparticles,” Plasmonics 6, 507–514 (2011).
[CrossRef]

Wang, Y.

X. Chen, B. Jia, J. K. Saha, B. Cai, N. Stokes, Q. Qiao, Y. Wang, Z. Shi, and M. Gu, “Broadband enhancement in thin-film amorphous silicon solar cells enabled by nucleated silver nanoparticles,” Nano Lett.2012 (in press)
[CrossRef] [PubMed]

Wilk, T.

C. Sonnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, “Drastic reduction of plasmon damping in gold nanorods,” Phys. Rev. Lett. 88, 077402 (2002).
[CrossRef] [PubMed]

Willatzen, M.

D. K. Gramotnev, A. Pors, M. Willatzen, and S. I. Bozhevolnyi, “Gap-plasmon nanoantennas and bowtie resonators,” Phys. Rev. B 85, 045434 (2012).
[CrossRef]

Wilson, O.

C. Sonnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, “Drastic reduction of plasmon damping in gold nanorods,” Phys. Rev. Lett. 88, 077402 (2002).
[CrossRef] [PubMed]

Woll, Ch.

O. Shekhah, J. Liu, R. A. Fischer, and Ch. Woll, “MOF thin films: existing and future application,” Chem. Soc. Rev. 40, 1081–1106 (2011).
[CrossRef] [PubMed]

Xia, Y.

M. Hu, C. Novo, A. Funston, H. Wang, H. Staleva, S. Zou, P. Mulvaney, Y. Xia, and G. V. Hartland, “Dark-field microscopy studies of single metal nanoparticles: understanding the factors that influence the linewidth of the localized surface plasmon resonance,” J. Mater. Chem. 18, 1949–1960 (2008).
[CrossRef] [PubMed]

Yamaguchi, A.

T. Takasone, S. Juodkazis, Y. Kawagishi, A. Yamaguchi, S. Matsuo, H. Sakakibara, H. Nakayama, and H. Misawa, “Flexural rigidity of a single microtubule,” Jpn. J. Appl. Phys. 41, 3015–3019 (2002).
[CrossRef]

Yokota, Y.

Y. Nishijima, K. Ueno, Y. Yokota, K. Murakoshi, and H. Misawa, “Plasmon-assisted photocurrent generation from visible to near-infrared wavelength using a Au-nanorods/TiO2 electrode,” J. Phys. Chem. Lett. 1, 2031–2036 (2010).
[CrossRef]

I. M. Monirul, K. Ueno, S. Juodkazis, Y. Yokota, and H. Misawa, “Development of interdigitated array electrodes with surface-enhanced raman scattering Functionality,” Anal. Sci. 26, 13–18 (2010).
[CrossRef]

Zou, S.

M. Hu, C. Novo, A. Funston, H. Wang, H. Staleva, S. Zou, P. Mulvaney, Y. Xia, and G. V. Hartland, “Dark-field microscopy studies of single metal nanoparticles: understanding the factors that influence the linewidth of the localized surface plasmon resonance,” J. Mater. Chem. 18, 1949–1960 (2008).
[CrossRef] [PubMed]

Zuschlag, A.

J. Merlein, M. Kahl, A. Zuschlag, A. Sell, A. Halm, J. Boneberg, P. Leiderer, A. Leitenstorfer, and R. Bratschitsch, “Nanomechanical control of an optical antenna,” Nat. Photonics 2, 230–233 (2008).
[CrossRef]

Adv. Mater. (1)

K. Ueno, S. Juodkazis, V. Mizeikis, K. Sasaki, and H. Misawa, “Clusters of closely-spaced gold nanoparticles as a source of two-photon photoluminescence at visible wavelengths,” Adv. Mater. 20, 26–30 (2008).
[CrossRef]

Anal. Sci. (1)

I. M. Monirul, K. Ueno, S. Juodkazis, Y. Yokota, and H. Misawa, “Development of interdigitated array electrodes with surface-enhanced raman scattering Functionality,” Anal. Sci. 26, 13–18 (2010).
[CrossRef]

Appl. Phys. B (1)

S. Takeda, S. Hamada, R. Peretti, P. Viktorovitch, and M. Obara, “Order to disorder optical phase transition in random photonic crystals,” Appl. Phys. B 10695–100 (2012).
[CrossRef]

Appl. Phys. Lett. (3)

K. Ueno, S. Takabatake, K. Onishi, H. Itoh, Y. Nishijima, and H. Misawa, “Homogeneous nano-patterning using plasmon-assisted photolithography,” Appl. Phys. Lett. 99, 011107 (2011).
[CrossRef]

F. Lordan, J. H. Rice, B. Jose, R. J. Forster, and T. E. Keyes, “Site selective surface enhanced Raman on nanostructured cavities,” Appl. Phys. Lett. 99, 033104 (2011).
[CrossRef]

C. Sonnichsen, S. Geier, N. E. Hecker, G. von Plessen, J. Feldmann, H. Ditlbacher, B. Lamprecht, J. R. Krenn, F. R. Ausseneg, V. Z-H. Chan, J. P. Spatz, and M. Moller, “Spectroscopy of single metallic nanoparticles using total internal reflection microscopy,” Appl. Phys. Lett. 77, 132355, (2000).
[CrossRef]

Chem. Lett. (1)

Y. Tsuboi, T. Shoji, N. Kitamura, M. Takase, K. Murakoshi, Y. Mizumoto, and H. Ishihara, “Optical trapping of quantum dots based on gap-mode-extinction of localized surface plasmon,” Chem. Lett. 1, 2327–2333 (2010).
[CrossRef]

Chem. Soc. Rev. (1)

O. Shekhah, J. Liu, R. A. Fischer, and Ch. Woll, “MOF thin films: existing and future application,” Chem. Soc. Rev. 40, 1081–1106 (2011).
[CrossRef] [PubMed]

IEEE J. Sel. Top. Quantum. Electron. (1)

Y. K. Kim, A. J. Danner, J. J. Raftery, and K. D. Choquette, “Focused ion beam nanopatterning for optoelectronic device fabrication,” IEEE J. Sel. Top. Quantum. Electron. 11, 1292–1298 (2005).
[CrossRef]

J. Am. Chem. Soc. (3)

K. Ueno, S. Juodkazis, V. Mizeikis, K. Sasaki, and H. Misawa, “Spectrally-resolved atomic-scale length variations of gold nanorods,” J. Am. Chem. Soc. 128, 14226–14227 (2006).
[CrossRef] [PubMed]

M. Michaels, M. Nirmal, and L. E. Brus, “Surface enhanced raman spectroscopy of individual rhodamine 6G molecules on large Ag nanocrystals,” J. Am. Chem. Soc. 121, 9932–9939 (1999).
[CrossRef]

Y. Sawai, B. Takimoto, H. Nabika, K. Ajito, and K. Murakoshi, “Observation of a small number of molecules at a metal nanogap arrayed on a solid surface using surface-enhanced Raman scattering,” J. Am. Chem. Soc. 129, 1658–1662 (2007).
[CrossRef] [PubMed]

J. Chem. Phys. (1)

G. V. Hartland, “Coherent vibrational motion in metal particles: Determination of the vibrational amplitude and excitation mechanism,” J. Chem. Phys. 116, 8048–8056 (2002).
[CrossRef]

J. Mater. Chem. (2)

M. Hu, C. Novo, A. Funston, H. Wang, H. Staleva, S. Zou, P. Mulvaney, Y. Xia, and G. V. Hartland, “Dark-field microscopy studies of single metal nanoparticles: understanding the factors that influence the linewidth of the localized surface plasmon resonance,” J. Mater. Chem. 18, 1949–1960 (2008).
[CrossRef] [PubMed]

T. Teranishi, M. Eguchi, M. Kanehara, and S. Gwo, “Controlled localized surface plasmon resonance wavelength for conductive nanoparticles over the ultraviolet to near-infrared region,” J. Mater. Chem. 21, 10238–10242 (2011).
[CrossRef]

J. Phys. Chem. B (1)

S. Link and M. A. El-Sayed, “Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles,” J. Phys. Chem. B 103, 4212–4217 (1999).
[CrossRef]

J. Phys. Chem. C (1)

K. Ueno, S. Juodkazis, M. Mino, V. Mizeikis, and H. Misawa, “Spectral sensitivity of uniform arrays of gold nanorods to dielectric environment,” J. Phys. Chem. C 111, 4180–4184 (2007).
[CrossRef]

J. Phys. Chem. Lett. (1)

Y. Nishijima, K. Ueno, Y. Yokota, K. Murakoshi, and H. Misawa, “Plasmon-assisted photocurrent generation from visible to near-infrared wavelength using a Au-nanorods/TiO2 electrode,” J. Phys. Chem. Lett. 1, 2031–2036 (2010).
[CrossRef]

Jpn. J. Appl. Phys. (1)

T. Takasone, S. Juodkazis, Y. Kawagishi, A. Yamaguchi, S. Matsuo, H. Sakakibara, H. Nakayama, and H. Misawa, “Flexural rigidity of a single microtubule,” Jpn. J. Appl. Phys. 41, 3015–3019 (2002).
[CrossRef]

Nano Lett. (4)

W. Khunsin, B. Brian, J. Dorfmuller, M. Esslinger, R. Vogelgesang, C. Etrich, C. Rockstuhl, A. Dmitriev, and K. Kern, “Long-distance indirect excitation of nanoplasmonic resonances,” Nano Lett. 11, 2765–2769 (2011).
[CrossRef] [PubMed]

S. J. Barrow, A. M. Funston, D. E. Gomez, T. J. Davis, and P. Mulvaney, “Surface plasmon resonances in strongly coupled gold nanosphere chains from monomer to hexamer,” Nano Lett. 11, 4180–4187 (2011).
[CrossRef] [PubMed]

X. Chen, B. Jia, J. K. Saha, B. Cai, N. Stokes, Q. Qiao, Y. Wang, Z. Shi, and M. Gu, “Broadband enhancement in thin-film amorphous silicon solar cells enabled by nucleated silver nanoparticles,” Nano Lett.2012 (in press)
[CrossRef] [PubMed]

V. K. Valev, N. Smisdom, A. V. Silhanek, B. De Clercq, W. Gillijns, M. Ameloot, V. V. Moshchalkov, and T. Verbiest, “Plasmonic ratchet wheels: switching circular dichroism by arranging chiral nanostructures,” Nano Lett. 9, 3945–3948 (2009).
[CrossRef] [PubMed]

Nat. Commun. (1)

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2, 517 (2011).
[CrossRef] [PubMed]

Nat. Photonics (2)

D. M. Koller, A. Hohenau, H. Ditlbacher, N. Galler, F. Reil, F. R. Aussenegg, A. Leitner, E. J. W. List, and J. R. Krenn, “Organic plasmon-emitting diode,” Nat. Photonics 2, 684–687 (2008).
[CrossRef]

J. Merlein, M. Kahl, A. Zuschlag, A. Sell, A. Halm, J. Boneberg, P. Leiderer, A. Leitenstorfer, and R. Bratschitsch, “Nanomechanical control of an optical antenna,” Nat. Photonics 2, 230–233 (2008).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Opt. Mater. Express (1)

Phys. Rev. B (3)

D. K. Gramotnev, A. Pors, M. Willatzen, and S. I. Bozhevolnyi, “Gap-plasmon nanoantennas and bowtie resonators,” Phys. Rev. B 85, 045434 (2012).
[CrossRef]

A. K. Sarychev, V. A. Shubin, and V. M. Shalaev, “Anderson localization of surface plasmons and nonlinear optics of metal-dielectric composites,” Phys. Rev. B 6016389–16408 (1999).
[CrossRef]

M. L. Brongersma, J. W. Hartman, and H. A. Atwater, “Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit,” Phys. Rev. B 62, R16356–R16359 (2000).
[CrossRef]

Phys. Rev. Lett. (4)

B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg, “Metal nanoparticle gratings: Influence of dipolar particle interaction on the plasmon resonance,” Phys. Rev. Lett. 84, 4721–4724 (2000).
[CrossRef] [PubMed]

C. Sonnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, “Drastic reduction of plasmon damping in gold nanorods,” Phys. Rev. Lett. 88, 077402 (2002).
[CrossRef] [PubMed]

M. I. Stockman, S. V. Faleev, and D. J. Bergman, “Localization versus delocalization of surface plasmons in nanosystems: Can one state have both characteristics?” Phys. Rev. Lett. 87, 167401 (2001).
[CrossRef] [PubMed]

T. Klar, M. Perner, S. Grosse, G. von Plessen, W. Spirkl, and J. Feldmann, “Surface-plasmon resonances in single metallic nanoparticles,” Phys. Rev. Lett. 80, 4249–4252 (1998).
[CrossRef]

Phys. Status Solidi - Rapid Res. Lett. (2)

S. Juodkazis and L. Rosa, “Surface defect mediated electron hopping between nanoparticles separated by a nano-gap,” Phys. Status Solidi - Rapid Res. Lett. 10, 244–246 (2010).
[CrossRef]

L. Rosa, K. Sun, and S. Juodkazis, “Sierpinski fractal plasmonic nanoantennas,” Phys. Status Solidi - Rapid Res. Lett. 5, 175–177 (2011).
[CrossRef]

Plasmonics (1)

Z. -L. Deng, Z. -H. Li, J. -W. Dong, and H. -Z. Wang, “In-plane plasmonic modes in a quasicrystalline array of metal nanoparticles,” Plasmonics 6, 507–514 (2011).
[CrossRef]

Rev. Mod. Phys. (1)

A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys. 82, 2257–2298 (2010).
[CrossRef]

Science (1)

W. Cai, A. P. Vasudev, and M. L. Brongersma, “Electrically controlled nonlinear generation of light with plasmonics,” Science,  333, 1720–1723 (2011).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

(a) Method description for random configuration preparation. (b) Statistical distribution of nano-disk distance from the initial configuration, from the first to tenth random-walk step (a numerical result).

Fig. 2
Fig. 2

SEM images of (a) periodic structure with period Λ = 500 nm and (b) random configuration with mean random-walk distance of 669 nm (N = 10). Inset figures are FFT image of SEM pictures. (c) Dark-field optical microphotograph of gold nano-structures arrays. Upper layer samples are periodic structures with Λ = 450, 500, 550, 600, 650 nm periodicity, respectively. Lower ones are random structures with 500 nm periodicity and random walk numbers N = 1, 5, and 10, respectively.

Fig. 3
Fig. 3

(a) Schematic depiction of extinction measurements and coupling of diffracted light along surface via radiation at grazing angle. (b) Photos of the diffraction pattern in transmission, 2nd-order is in grazing mode and propagates along the surface (recognizable by coloring of the cover glass edges).

Fig. 4
Fig. 4

Experimental extinction spectra of periodic arrays with periods between Λ = 450 nm and 700 nm. Diameter of nano-cylinders d = 150 nm.

Fig. 5
Fig. 5

Random-walk induced changes of experimentally measured extinction; diameter of nano-disk is d = 150 nm. (a) Extinction spectra for Λ = 550 nm with N = 0, 3, 5, and 10, respectively. (b) Dependence of the extinction maximum and of the dephasing time, T2 (extinction at peak wavelength) on the random-walk distance.

Fig. 6
Fig. 6

Experimental dephasing time ratios of periodic structures relative to random structures for different diameters d = 150 (1), 200 (2), and 250 nm (3), respectively.

Fig. 7
Fig. 7

3D-FDTD calculations: (a) normalized extinction spectrum for periodic and random-walk nano-disk array (periodicity 600 nm, diameter 160 nm) and log-plots of normalized E-field enhancement on top of the nano-disks for (b) periodic array (λ = 850 nm), (c) random-walk with N = 2 (λ = 850 nm), and (d) random-walk with N = 10 (λ = 790 nm). The maximum enhancements are: 200 (b), 2.1 × 104 (c), 2.2 × 104 (d).

Fig. 8
Fig. 8

Light field enhancement for the periodic nano-cylinders of diameter, d, calculated by 3D-FDTD method.thickness of Ag was 25 nm; the enhancement maximum is plotted at the extinction peak.

Metrics