Abstract

Non-spherical dielectric microparticles were suspended in a water-filled cell and exposed to a coherent Gaussian light beam with controlled state of polarization. When the beam polarization is linear, the particles were trapped at certain off-axial position within the beam cross section. After switching to the right (left) circular polarization, the particles performed spinning motion in agreement with the angular momentum imparted by the field, but they were involved in an orbital rotation around the beam axis as well, which in previous works [Y. Zhao et al, Phys. Rev. Lett. 99, 073901 (2007)] was treated as evidence for the spin-to orbital angular momentum conversion. Since in our realization the moderate focusing of the beam excluded the possibility for such a conversion, we consider the observed particle behavior as a demonstration of the macroscopic “spin energy flow” predicted by the theory of inhomogeneously polarized paraxial beams [A. Bekshaev et al, J. Opt. 13, 053001 (2011)].

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Allen and M. J. Padgett, “The Poynting vector in Laguerre–Gaussian beams and the interpretation of their angular momentum density,” Opt. Commun. 184(1-4), 67–71 (2000).
    [CrossRef]
  2. M. V. Vasnetsov, V. N. Gorshkov, I. G. Marienko, and M. S. Soskin, “Wavefront motion in the vicinity of a phase dislocation: “optical vortex,” Opt. Spectrosc. 88(2), 260–265 (2000).
    [CrossRef]
  3. A. Ya. Bekshaev and M. S. Soskin, “Rotational transformations and transverse energy flow in paraxial light beams: linear azimuthons,” Opt. Lett. 31(14), 2199–2201 (2006).
    [CrossRef] [PubMed]
  4. A. Ya. Bekshaev and M. S. Soskin, “Transverse energy flows in vectorial fields of paraxial beams with singularities,” Opt. Commun. 271(2), 332–348 (2007).
    [CrossRef]
  5. M. V. Berry, “Optical currents,” J. Opt. A, Pure Appl. Opt. 11(9), 094001 (2009).
    [CrossRef]
  6. A. Bekshaev, K. Bliokh, and M. Soskin, “Internal flows and energy circulation in light beams,” J. Opt. 13(5), 053001 (2011).
    [CrossRef]
  7. K. Y. Bliokh, M. A. Alonso, E. A. Ostrovskaya, and A. Aiello, “Angular momenta and spin-orbit interaction of non-paraxial light in free space,” Phys. Rev. A 82(6), 063825 (2010).
    [CrossRef]
  8. M. Born and E. Wolf, Principles of Optics, 7th ed. (Pergamon, London, 2005).
  9. H. F. Schouten, T. D. Visser, and D. Lenstra, “Optical vortices near sub-wavelength structures,” J. Opt. B Quantum Semiclassical Opt. 6(5), S404–S409 (2004).
    [CrossRef]
  10. M. A. Seo, A. J. L. Adam, J. H. Kang, J. W. Lee, S. C. Jeoung, Q. H. Park, P. C. M. Planken, and D. S. Kim, “Fourier-transform terahertz near-field imaging of one-dimensional slit arrays: mapping of electric-field-, magnetic-field-, and Poynting vectors,” Opt. Express 15(19), 11781–11789 (2007).
    [CrossRef] [PubMed]
  11. T. Zentgraf, J. Dorfmüller, C. Rockstuhl, C. Etrich, R. Vogelgesang, K. Kern, T. Pertsch, F. Lederer, and H. Giessen, “Amplitude- and phase-resolved optical near fields of split-ring-resonator-based metamaterials,” Opt. Lett. 33(8), 848–850 (2008).
    [CrossRef] [PubMed]
  12. A. Bitzer, H. Merbold, A. Thoman, T. Feurer, H. Helm, and M. Walther, “Terahertz near-field imaging of electric and magnetic resonances of a planar metamaterial,” Opt. Express 17(5), 3826–3834 (2009).
    [CrossRef] [PubMed]
  13. N. Fang and X. Zhang, “Imaging properties of a metamaterial superlens,” Appl. Phys. Lett. 82(2), 161–163 (2003).
    [CrossRef]
  14. M. Ware, W. E. Dibble, S. A. Glasgow, and J. Peatross, “Energy flow in angularly dispersive optical systems,” J. Opt. Soc. Am. B 18(6), 839–845 (2001).
    [CrossRef]
  15. K. Volke-Sepulveda and R. A. Terborg, “Can diffraction provide quantitative information about energy flux in an optical vortex?” in Frontiers in Optics, OSA Technical Digest (Optical Society of America, 2011), paper JTuA38.
  16. C.-C. Chen and J. F. Whitaker, “An optically-interrogated microwave-Poynting-vector sensor using cadmium manganese telluride,” Opt. Express 18(12), 12239–12248 (2010).
    [CrossRef] [PubMed]
  17. R. Khrobatin, I. Mokhun, and J. Viktorovskaya, “Potentiality of experimental analysis for characteristics of the Poynting vector components,” Ukr. J. Phys. Opt. 9(3), 182–186 (2008).
    [CrossRef]
  18. O. V. Angelsky, M. P. Gorsky, P. P. Maksimyak, A. P. Maksimyak, S. G. Hanson, and C. Y. Zenkova, “Investigation of optical currents in coherent and partially coherent vector fields,” Opt. Express 19(2), 660–672 (2011).
    [CrossRef] [PubMed]
  19. M. Dienerowitz, M. Mazilu, and K. Dholakia, “Optical manipulation of nanoparticles: a review,” J. Nanophotonics 2(1), 021875 (2008).
    [CrossRef]
  20. A. Ya. Bekshaev, O. V. Angelsky, S. V. Sviridova, and C. Yu. Zenkova, “Mechanical action of inhomogeneously polarized optical fields and detection of the internal energy flows,” Adv. Opt. Technol. 2011, 723901 (2011).
    [CrossRef]
  21. A. T. O’Neil, I. MacVicar, L. Allen, and M. J. Padgett, “Intrinsic and extrinsic nature of the orbital angular momentum of a light beam,” Phys. Rev. Lett. 88(5), 053601 (2002).
    [CrossRef] [PubMed]
  22. V. Garcés-Chavez, D. McGloin, M. D. Summers, A. Fernandez-Nieves, G. C. Spalding, G. Cristobal, and K. Dholakia, “The reconstruction of optical angular momentum after distortion in amplitude, phase and polarization,” J. Opt. A, Pure Appl. Opt. 6(5), S235–S238 (2004).
    [CrossRef]
  23. Y. Zhao, J. S. Edgar, G. D. M. Jeffries, D. McGloin, and D. T. Chiu, “Spin-to-orbital angular momentum conversion in a strongly focused optical beam,” Phys. Rev. Lett. 99(7), 073901 (2007).
    [CrossRef] [PubMed]
  24. A. Ya. Bekshaev, “Spin angular momentum of inhomogeneous and transversely limited light beams,” Proc. SPIE 6254, 625407, 625407-8 (2006).
    [CrossRef]
  25. A. Bekshaev and M. Vasnetsov, “Vortex flow of light: “Spin” and “orbital” flows in a circularly polarized paraxial beam,” in Twisted Photons. Applications of Light with Orbital Angular Momentum (Weinheim: Wiley-VCH, 2011), 13–24.
  26. T. A. Nieminen, A. B. Stilgoe, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Angular momentum of a strongly focused Gaussian beam,” J. Opt. A, Pure Appl. Opt. 10(11), 115005 (2008).
    [CrossRef]
  27. A. Ya. Bekshaev, “A simple analytical model of the angular momentum transformation in strongly focused light beams,” Cent. Eur. J. Phys. 8(6), 947–960 (2010).
    [CrossRef]
  28. O. V. Angelsky, A. Ya. Bekshaev, P. P. Maksimyak, A. P. Maksimyak, S. G. Hanson, and C. Yu. Zenkova, “Orbital rotation without orbital angular momentum: mechanical action of the spin part of the internal energy flow in light beams,” Opt. Express 20(4), 3563–3571 (2012).
    [CrossRef] [PubMed]
  29. M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical torque controlled by elliptical polarization,” Opt. Lett. 23(1), 1–3 (1998).
    [CrossRef] [PubMed]

2012

2011

A. Bekshaev, K. Bliokh, and M. Soskin, “Internal flows and energy circulation in light beams,” J. Opt. 13(5), 053001 (2011).
[CrossRef]

O. V. Angelsky, M. P. Gorsky, P. P. Maksimyak, A. P. Maksimyak, S. G. Hanson, and C. Y. Zenkova, “Investigation of optical currents in coherent and partially coherent vector fields,” Opt. Express 19(2), 660–672 (2011).
[CrossRef] [PubMed]

A. Ya. Bekshaev, O. V. Angelsky, S. V. Sviridova, and C. Yu. Zenkova, “Mechanical action of inhomogeneously polarized optical fields and detection of the internal energy flows,” Adv. Opt. Technol. 2011, 723901 (2011).
[CrossRef]

2010

C.-C. Chen and J. F. Whitaker, “An optically-interrogated microwave-Poynting-vector sensor using cadmium manganese telluride,” Opt. Express 18(12), 12239–12248 (2010).
[CrossRef] [PubMed]

K. Y. Bliokh, M. A. Alonso, E. A. Ostrovskaya, and A. Aiello, “Angular momenta and spin-orbit interaction of non-paraxial light in free space,” Phys. Rev. A 82(6), 063825 (2010).
[CrossRef]

A. Ya. Bekshaev, “A simple analytical model of the angular momentum transformation in strongly focused light beams,” Cent. Eur. J. Phys. 8(6), 947–960 (2010).
[CrossRef]

2009

2008

R. Khrobatin, I. Mokhun, and J. Viktorovskaya, “Potentiality of experimental analysis for characteristics of the Poynting vector components,” Ukr. J. Phys. Opt. 9(3), 182–186 (2008).
[CrossRef]

M. Dienerowitz, M. Mazilu, and K. Dholakia, “Optical manipulation of nanoparticles: a review,” J. Nanophotonics 2(1), 021875 (2008).
[CrossRef]

T. A. Nieminen, A. B. Stilgoe, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Angular momentum of a strongly focused Gaussian beam,” J. Opt. A, Pure Appl. Opt. 10(11), 115005 (2008).
[CrossRef]

T. Zentgraf, J. Dorfmüller, C. Rockstuhl, C. Etrich, R. Vogelgesang, K. Kern, T. Pertsch, F. Lederer, and H. Giessen, “Amplitude- and phase-resolved optical near fields of split-ring-resonator-based metamaterials,” Opt. Lett. 33(8), 848–850 (2008).
[CrossRef] [PubMed]

2007

Y. Zhao, J. S. Edgar, G. D. M. Jeffries, D. McGloin, and D. T. Chiu, “Spin-to-orbital angular momentum conversion in a strongly focused optical beam,” Phys. Rev. Lett. 99(7), 073901 (2007).
[CrossRef] [PubMed]

M. A. Seo, A. J. L. Adam, J. H. Kang, J. W. Lee, S. C. Jeoung, Q. H. Park, P. C. M. Planken, and D. S. Kim, “Fourier-transform terahertz near-field imaging of one-dimensional slit arrays: mapping of electric-field-, magnetic-field-, and Poynting vectors,” Opt. Express 15(19), 11781–11789 (2007).
[CrossRef] [PubMed]

A. Ya. Bekshaev and M. S. Soskin, “Transverse energy flows in vectorial fields of paraxial beams with singularities,” Opt. Commun. 271(2), 332–348 (2007).
[CrossRef]

2006

A. Ya. Bekshaev and M. S. Soskin, “Rotational transformations and transverse energy flow in paraxial light beams: linear azimuthons,” Opt. Lett. 31(14), 2199–2201 (2006).
[CrossRef] [PubMed]

A. Ya. Bekshaev, “Spin angular momentum of inhomogeneous and transversely limited light beams,” Proc. SPIE 6254, 625407, 625407-8 (2006).
[CrossRef]

2004

V. Garcés-Chavez, D. McGloin, M. D. Summers, A. Fernandez-Nieves, G. C. Spalding, G. Cristobal, and K. Dholakia, “The reconstruction of optical angular momentum after distortion in amplitude, phase and polarization,” J. Opt. A, Pure Appl. Opt. 6(5), S235–S238 (2004).
[CrossRef]

H. F. Schouten, T. D. Visser, and D. Lenstra, “Optical vortices near sub-wavelength structures,” J. Opt. B Quantum Semiclassical Opt. 6(5), S404–S409 (2004).
[CrossRef]

2003

N. Fang and X. Zhang, “Imaging properties of a metamaterial superlens,” Appl. Phys. Lett. 82(2), 161–163 (2003).
[CrossRef]

2002

A. T. O’Neil, I. MacVicar, L. Allen, and M. J. Padgett, “Intrinsic and extrinsic nature of the orbital angular momentum of a light beam,” Phys. Rev. Lett. 88(5), 053601 (2002).
[CrossRef] [PubMed]

2001

2000

L. Allen and M. J. Padgett, “The Poynting vector in Laguerre–Gaussian beams and the interpretation of their angular momentum density,” Opt. Commun. 184(1-4), 67–71 (2000).
[CrossRef]

M. V. Vasnetsov, V. N. Gorshkov, I. G. Marienko, and M. S. Soskin, “Wavefront motion in the vicinity of a phase dislocation: “optical vortex,” Opt. Spectrosc. 88(2), 260–265 (2000).
[CrossRef]

1998

Adam, A. J. L.

Aiello, A.

K. Y. Bliokh, M. A. Alonso, E. A. Ostrovskaya, and A. Aiello, “Angular momenta and spin-orbit interaction of non-paraxial light in free space,” Phys. Rev. A 82(6), 063825 (2010).
[CrossRef]

Allen, L.

A. T. O’Neil, I. MacVicar, L. Allen, and M. J. Padgett, “Intrinsic and extrinsic nature of the orbital angular momentum of a light beam,” Phys. Rev. Lett. 88(5), 053601 (2002).
[CrossRef] [PubMed]

L. Allen and M. J. Padgett, “The Poynting vector in Laguerre–Gaussian beams and the interpretation of their angular momentum density,” Opt. Commun. 184(1-4), 67–71 (2000).
[CrossRef]

Alonso, M. A.

K. Y. Bliokh, M. A. Alonso, E. A. Ostrovskaya, and A. Aiello, “Angular momenta and spin-orbit interaction of non-paraxial light in free space,” Phys. Rev. A 82(6), 063825 (2010).
[CrossRef]

Angelsky, O. V.

Bekshaev, A.

A. Bekshaev, K. Bliokh, and M. Soskin, “Internal flows and energy circulation in light beams,” J. Opt. 13(5), 053001 (2011).
[CrossRef]

Bekshaev, A. Ya.

O. V. Angelsky, A. Ya. Bekshaev, P. P. Maksimyak, A. P. Maksimyak, S. G. Hanson, and C. Yu. Zenkova, “Orbital rotation without orbital angular momentum: mechanical action of the spin part of the internal energy flow in light beams,” Opt. Express 20(4), 3563–3571 (2012).
[CrossRef] [PubMed]

A. Ya. Bekshaev, O. V. Angelsky, S. V. Sviridova, and C. Yu. Zenkova, “Mechanical action of inhomogeneously polarized optical fields and detection of the internal energy flows,” Adv. Opt. Technol. 2011, 723901 (2011).
[CrossRef]

A. Ya. Bekshaev, “A simple analytical model of the angular momentum transformation in strongly focused light beams,” Cent. Eur. J. Phys. 8(6), 947–960 (2010).
[CrossRef]

A. Ya. Bekshaev and M. S. Soskin, “Transverse energy flows in vectorial fields of paraxial beams with singularities,” Opt. Commun. 271(2), 332–348 (2007).
[CrossRef]

A. Ya. Bekshaev and M. S. Soskin, “Rotational transformations and transverse energy flow in paraxial light beams: linear azimuthons,” Opt. Lett. 31(14), 2199–2201 (2006).
[CrossRef] [PubMed]

A. Ya. Bekshaev, “Spin angular momentum of inhomogeneous and transversely limited light beams,” Proc. SPIE 6254, 625407, 625407-8 (2006).
[CrossRef]

Berry, M. V.

M. V. Berry, “Optical currents,” J. Opt. A, Pure Appl. Opt. 11(9), 094001 (2009).
[CrossRef]

Bitzer, A.

Bliokh, K.

A. Bekshaev, K. Bliokh, and M. Soskin, “Internal flows and energy circulation in light beams,” J. Opt. 13(5), 053001 (2011).
[CrossRef]

Bliokh, K. Y.

K. Y. Bliokh, M. A. Alonso, E. A. Ostrovskaya, and A. Aiello, “Angular momenta and spin-orbit interaction of non-paraxial light in free space,” Phys. Rev. A 82(6), 063825 (2010).
[CrossRef]

Chen, C.-C.

Chiu, D. T.

Y. Zhao, J. S. Edgar, G. D. M. Jeffries, D. McGloin, and D. T. Chiu, “Spin-to-orbital angular momentum conversion in a strongly focused optical beam,” Phys. Rev. Lett. 99(7), 073901 (2007).
[CrossRef] [PubMed]

Cristobal, G.

V. Garcés-Chavez, D. McGloin, M. D. Summers, A. Fernandez-Nieves, G. C. Spalding, G. Cristobal, and K. Dholakia, “The reconstruction of optical angular momentum after distortion in amplitude, phase and polarization,” J. Opt. A, Pure Appl. Opt. 6(5), S235–S238 (2004).
[CrossRef]

Dholakia, K.

M. Dienerowitz, M. Mazilu, and K. Dholakia, “Optical manipulation of nanoparticles: a review,” J. Nanophotonics 2(1), 021875 (2008).
[CrossRef]

V. Garcés-Chavez, D. McGloin, M. D. Summers, A. Fernandez-Nieves, G. C. Spalding, G. Cristobal, and K. Dholakia, “The reconstruction of optical angular momentum after distortion in amplitude, phase and polarization,” J. Opt. A, Pure Appl. Opt. 6(5), S235–S238 (2004).
[CrossRef]

Dibble, W. E.

Dienerowitz, M.

M. Dienerowitz, M. Mazilu, and K. Dholakia, “Optical manipulation of nanoparticles: a review,” J. Nanophotonics 2(1), 021875 (2008).
[CrossRef]

Dorfmüller, J.

Edgar, J. S.

Y. Zhao, J. S. Edgar, G. D. M. Jeffries, D. McGloin, and D. T. Chiu, “Spin-to-orbital angular momentum conversion in a strongly focused optical beam,” Phys. Rev. Lett. 99(7), 073901 (2007).
[CrossRef] [PubMed]

Etrich, C.

Fang, N.

N. Fang and X. Zhang, “Imaging properties of a metamaterial superlens,” Appl. Phys. Lett. 82(2), 161–163 (2003).
[CrossRef]

Fernandez-Nieves, A.

V. Garcés-Chavez, D. McGloin, M. D. Summers, A. Fernandez-Nieves, G. C. Spalding, G. Cristobal, and K. Dholakia, “The reconstruction of optical angular momentum after distortion in amplitude, phase and polarization,” J. Opt. A, Pure Appl. Opt. 6(5), S235–S238 (2004).
[CrossRef]

Feurer, T.

Friese, M. E. J.

Garcés-Chavez, V.

V. Garcés-Chavez, D. McGloin, M. D. Summers, A. Fernandez-Nieves, G. C. Spalding, G. Cristobal, and K. Dholakia, “The reconstruction of optical angular momentum after distortion in amplitude, phase and polarization,” J. Opt. A, Pure Appl. Opt. 6(5), S235–S238 (2004).
[CrossRef]

Giessen, H.

Glasgow, S. A.

Gorshkov, V. N.

M. V. Vasnetsov, V. N. Gorshkov, I. G. Marienko, and M. S. Soskin, “Wavefront motion in the vicinity of a phase dislocation: “optical vortex,” Opt. Spectrosc. 88(2), 260–265 (2000).
[CrossRef]

Gorsky, M. P.

Hanson, S. G.

Heckenberg, N. R.

T. A. Nieminen, A. B. Stilgoe, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Angular momentum of a strongly focused Gaussian beam,” J. Opt. A, Pure Appl. Opt. 10(11), 115005 (2008).
[CrossRef]

M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical torque controlled by elliptical polarization,” Opt. Lett. 23(1), 1–3 (1998).
[CrossRef] [PubMed]

Helm, H.

Jeffries, G. D. M.

Y. Zhao, J. S. Edgar, G. D. M. Jeffries, D. McGloin, and D. T. Chiu, “Spin-to-orbital angular momentum conversion in a strongly focused optical beam,” Phys. Rev. Lett. 99(7), 073901 (2007).
[CrossRef] [PubMed]

Jeoung, S. C.

Kang, J. H.

Kern, K.

Khrobatin, R.

R. Khrobatin, I. Mokhun, and J. Viktorovskaya, “Potentiality of experimental analysis for characteristics of the Poynting vector components,” Ukr. J. Phys. Opt. 9(3), 182–186 (2008).
[CrossRef]

Kim, D. S.

Lederer, F.

Lee, J. W.

Lenstra, D.

H. F. Schouten, T. D. Visser, and D. Lenstra, “Optical vortices near sub-wavelength structures,” J. Opt. B Quantum Semiclassical Opt. 6(5), S404–S409 (2004).
[CrossRef]

MacVicar, I.

A. T. O’Neil, I. MacVicar, L. Allen, and M. J. Padgett, “Intrinsic and extrinsic nature of the orbital angular momentum of a light beam,” Phys. Rev. Lett. 88(5), 053601 (2002).
[CrossRef] [PubMed]

Maksimyak, A. P.

Maksimyak, P. P.

Marienko, I. G.

M. V. Vasnetsov, V. N. Gorshkov, I. G. Marienko, and M. S. Soskin, “Wavefront motion in the vicinity of a phase dislocation: “optical vortex,” Opt. Spectrosc. 88(2), 260–265 (2000).
[CrossRef]

Mazilu, M.

M. Dienerowitz, M. Mazilu, and K. Dholakia, “Optical manipulation of nanoparticles: a review,” J. Nanophotonics 2(1), 021875 (2008).
[CrossRef]

McGloin, D.

Y. Zhao, J. S. Edgar, G. D. M. Jeffries, D. McGloin, and D. T. Chiu, “Spin-to-orbital angular momentum conversion in a strongly focused optical beam,” Phys. Rev. Lett. 99(7), 073901 (2007).
[CrossRef] [PubMed]

V. Garcés-Chavez, D. McGloin, M. D. Summers, A. Fernandez-Nieves, G. C. Spalding, G. Cristobal, and K. Dholakia, “The reconstruction of optical angular momentum after distortion in amplitude, phase and polarization,” J. Opt. A, Pure Appl. Opt. 6(5), S235–S238 (2004).
[CrossRef]

Merbold, H.

Mokhun, I.

R. Khrobatin, I. Mokhun, and J. Viktorovskaya, “Potentiality of experimental analysis for characteristics of the Poynting vector components,” Ukr. J. Phys. Opt. 9(3), 182–186 (2008).
[CrossRef]

Nieminen, T. A.

T. A. Nieminen, A. B. Stilgoe, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Angular momentum of a strongly focused Gaussian beam,” J. Opt. A, Pure Appl. Opt. 10(11), 115005 (2008).
[CrossRef]

M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical torque controlled by elliptical polarization,” Opt. Lett. 23(1), 1–3 (1998).
[CrossRef] [PubMed]

O’Neil, A. T.

A. T. O’Neil, I. MacVicar, L. Allen, and M. J. Padgett, “Intrinsic and extrinsic nature of the orbital angular momentum of a light beam,” Phys. Rev. Lett. 88(5), 053601 (2002).
[CrossRef] [PubMed]

Ostrovskaya, E. A.

K. Y. Bliokh, M. A. Alonso, E. A. Ostrovskaya, and A. Aiello, “Angular momenta and spin-orbit interaction of non-paraxial light in free space,” Phys. Rev. A 82(6), 063825 (2010).
[CrossRef]

Padgett, M. J.

A. T. O’Neil, I. MacVicar, L. Allen, and M. J. Padgett, “Intrinsic and extrinsic nature of the orbital angular momentum of a light beam,” Phys. Rev. Lett. 88(5), 053601 (2002).
[CrossRef] [PubMed]

L. Allen and M. J. Padgett, “The Poynting vector in Laguerre–Gaussian beams and the interpretation of their angular momentum density,” Opt. Commun. 184(1-4), 67–71 (2000).
[CrossRef]

Park, Q. H.

Peatross, J.

Pertsch, T.

Planken, P. C. M.

Rockstuhl, C.

Rubinsztein-Dunlop, H.

T. A. Nieminen, A. B. Stilgoe, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Angular momentum of a strongly focused Gaussian beam,” J. Opt. A, Pure Appl. Opt. 10(11), 115005 (2008).
[CrossRef]

M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical torque controlled by elliptical polarization,” Opt. Lett. 23(1), 1–3 (1998).
[CrossRef] [PubMed]

Schouten, H. F.

H. F. Schouten, T. D. Visser, and D. Lenstra, “Optical vortices near sub-wavelength structures,” J. Opt. B Quantum Semiclassical Opt. 6(5), S404–S409 (2004).
[CrossRef]

Seo, M. A.

Soskin, M.

A. Bekshaev, K. Bliokh, and M. Soskin, “Internal flows and energy circulation in light beams,” J. Opt. 13(5), 053001 (2011).
[CrossRef]

Soskin, M. S.

A. Ya. Bekshaev and M. S. Soskin, “Transverse energy flows in vectorial fields of paraxial beams with singularities,” Opt. Commun. 271(2), 332–348 (2007).
[CrossRef]

A. Ya. Bekshaev and M. S. Soskin, “Rotational transformations and transverse energy flow in paraxial light beams: linear azimuthons,” Opt. Lett. 31(14), 2199–2201 (2006).
[CrossRef] [PubMed]

M. V. Vasnetsov, V. N. Gorshkov, I. G. Marienko, and M. S. Soskin, “Wavefront motion in the vicinity of a phase dislocation: “optical vortex,” Opt. Spectrosc. 88(2), 260–265 (2000).
[CrossRef]

Spalding, G. C.

V. Garcés-Chavez, D. McGloin, M. D. Summers, A. Fernandez-Nieves, G. C. Spalding, G. Cristobal, and K. Dholakia, “The reconstruction of optical angular momentum after distortion in amplitude, phase and polarization,” J. Opt. A, Pure Appl. Opt. 6(5), S235–S238 (2004).
[CrossRef]

Stilgoe, A. B.

T. A. Nieminen, A. B. Stilgoe, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Angular momentum of a strongly focused Gaussian beam,” J. Opt. A, Pure Appl. Opt. 10(11), 115005 (2008).
[CrossRef]

Summers, M. D.

V. Garcés-Chavez, D. McGloin, M. D. Summers, A. Fernandez-Nieves, G. C. Spalding, G. Cristobal, and K. Dholakia, “The reconstruction of optical angular momentum after distortion in amplitude, phase and polarization,” J. Opt. A, Pure Appl. Opt. 6(5), S235–S238 (2004).
[CrossRef]

Sviridova, S. V.

A. Ya. Bekshaev, O. V. Angelsky, S. V. Sviridova, and C. Yu. Zenkova, “Mechanical action of inhomogeneously polarized optical fields and detection of the internal energy flows,” Adv. Opt. Technol. 2011, 723901 (2011).
[CrossRef]

Thoman, A.

Vasnetsov, M. V.

M. V. Vasnetsov, V. N. Gorshkov, I. G. Marienko, and M. S. Soskin, “Wavefront motion in the vicinity of a phase dislocation: “optical vortex,” Opt. Spectrosc. 88(2), 260–265 (2000).
[CrossRef]

Viktorovskaya, J.

R. Khrobatin, I. Mokhun, and J. Viktorovskaya, “Potentiality of experimental analysis for characteristics of the Poynting vector components,” Ukr. J. Phys. Opt. 9(3), 182–186 (2008).
[CrossRef]

Visser, T. D.

H. F. Schouten, T. D. Visser, and D. Lenstra, “Optical vortices near sub-wavelength structures,” J. Opt. B Quantum Semiclassical Opt. 6(5), S404–S409 (2004).
[CrossRef]

Vogelgesang, R.

Walther, M.

Ware, M.

Whitaker, J. F.

Zenkova, C. Y.

Zenkova, C. Yu.

O. V. Angelsky, A. Ya. Bekshaev, P. P. Maksimyak, A. P. Maksimyak, S. G. Hanson, and C. Yu. Zenkova, “Orbital rotation without orbital angular momentum: mechanical action of the spin part of the internal energy flow in light beams,” Opt. Express 20(4), 3563–3571 (2012).
[CrossRef] [PubMed]

A. Ya. Bekshaev, O. V. Angelsky, S. V. Sviridova, and C. Yu. Zenkova, “Mechanical action of inhomogeneously polarized optical fields and detection of the internal energy flows,” Adv. Opt. Technol. 2011, 723901 (2011).
[CrossRef]

Zentgraf, T.

Zhang, X.

N. Fang and X. Zhang, “Imaging properties of a metamaterial superlens,” Appl. Phys. Lett. 82(2), 161–163 (2003).
[CrossRef]

Zhao, Y.

Y. Zhao, J. S. Edgar, G. D. M. Jeffries, D. McGloin, and D. T. Chiu, “Spin-to-orbital angular momentum conversion in a strongly focused optical beam,” Phys. Rev. Lett. 99(7), 073901 (2007).
[CrossRef] [PubMed]

Adv. Opt. Technol.

A. Ya. Bekshaev, O. V. Angelsky, S. V. Sviridova, and C. Yu. Zenkova, “Mechanical action of inhomogeneously polarized optical fields and detection of the internal energy flows,” Adv. Opt. Technol. 2011, 723901 (2011).
[CrossRef]

Appl. Phys. Lett.

N. Fang and X. Zhang, “Imaging properties of a metamaterial superlens,” Appl. Phys. Lett. 82(2), 161–163 (2003).
[CrossRef]

Cent. Eur. J. Phys.

A. Ya. Bekshaev, “A simple analytical model of the angular momentum transformation in strongly focused light beams,” Cent. Eur. J. Phys. 8(6), 947–960 (2010).
[CrossRef]

J. Nanophotonics

M. Dienerowitz, M. Mazilu, and K. Dholakia, “Optical manipulation of nanoparticles: a review,” J. Nanophotonics 2(1), 021875 (2008).
[CrossRef]

J. Opt.

A. Bekshaev, K. Bliokh, and M. Soskin, “Internal flows and energy circulation in light beams,” J. Opt. 13(5), 053001 (2011).
[CrossRef]

J. Opt. A, Pure Appl. Opt.

M. V. Berry, “Optical currents,” J. Opt. A, Pure Appl. Opt. 11(9), 094001 (2009).
[CrossRef]

V. Garcés-Chavez, D. McGloin, M. D. Summers, A. Fernandez-Nieves, G. C. Spalding, G. Cristobal, and K. Dholakia, “The reconstruction of optical angular momentum after distortion in amplitude, phase and polarization,” J. Opt. A, Pure Appl. Opt. 6(5), S235–S238 (2004).
[CrossRef]

T. A. Nieminen, A. B. Stilgoe, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Angular momentum of a strongly focused Gaussian beam,” J. Opt. A, Pure Appl. Opt. 10(11), 115005 (2008).
[CrossRef]

J. Opt. B Quantum Semiclassical Opt.

H. F. Schouten, T. D. Visser, and D. Lenstra, “Optical vortices near sub-wavelength structures,” J. Opt. B Quantum Semiclassical Opt. 6(5), S404–S409 (2004).
[CrossRef]

J. Opt. Soc. Am. B

Opt. Commun.

L. Allen and M. J. Padgett, “The Poynting vector in Laguerre–Gaussian beams and the interpretation of their angular momentum density,” Opt. Commun. 184(1-4), 67–71 (2000).
[CrossRef]

A. Ya. Bekshaev and M. S. Soskin, “Transverse energy flows in vectorial fields of paraxial beams with singularities,” Opt. Commun. 271(2), 332–348 (2007).
[CrossRef]

Opt. Express

Opt. Lett.

Opt. Spectrosc.

M. V. Vasnetsov, V. N. Gorshkov, I. G. Marienko, and M. S. Soskin, “Wavefront motion in the vicinity of a phase dislocation: “optical vortex,” Opt. Spectrosc. 88(2), 260–265 (2000).
[CrossRef]

Phys. Rev. A

K. Y. Bliokh, M. A. Alonso, E. A. Ostrovskaya, and A. Aiello, “Angular momenta and spin-orbit interaction of non-paraxial light in free space,” Phys. Rev. A 82(6), 063825 (2010).
[CrossRef]

Phys. Rev. Lett.

A. T. O’Neil, I. MacVicar, L. Allen, and M. J. Padgett, “Intrinsic and extrinsic nature of the orbital angular momentum of a light beam,” Phys. Rev. Lett. 88(5), 053601 (2002).
[CrossRef] [PubMed]

Y. Zhao, J. S. Edgar, G. D. M. Jeffries, D. McGloin, and D. T. Chiu, “Spin-to-orbital angular momentum conversion in a strongly focused optical beam,” Phys. Rev. Lett. 99(7), 073901 (2007).
[CrossRef] [PubMed]

Proc. SPIE

A. Ya. Bekshaev, “Spin angular momentum of inhomogeneous and transversely limited light beams,” Proc. SPIE 6254, 625407, 625407-8 (2006).
[CrossRef]

Ukr. J. Phys. Opt.

R. Khrobatin, I. Mokhun, and J. Viktorovskaya, “Potentiality of experimental analysis for characteristics of the Poynting vector components,” Ukr. J. Phys. Opt. 9(3), 182–186 (2008).
[CrossRef]

Other

K. Volke-Sepulveda and R. A. Terborg, “Can diffraction provide quantitative information about energy flux in an optical vortex?” in Frontiers in Optics, OSA Technical Digest (Optical Society of America, 2011), paper JTuA38.

M. Born and E. Wolf, Principles of Optics, 7th ed. (Pergamon, London, 2005).

A. Bekshaev and M. Vasnetsov, “Vortex flow of light: “Spin” and “orbital” flows in a circularly polarized paraxial beam,” in Twisted Photons. Applications of Light with Orbital Angular Momentum (Weinheim: Wiley-VCH, 2011), 13–24.

Supplementary Material (2)

» Media 1: MOV (1904 KB)     
» Media 2: MOV (1602 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Schematic of the experimental setup: (LD) semiconductor laser, (TS) telescopic system, (QWP) quarter-wave plate, (MO) micro-objective, (CELL) cell with probing particles suspended in water, (M) microscope, (DC) digital camera.

Fig. 2
Fig. 2

(a) Theoretical map of the spin flow density pS in the focal plane of a circularly polarized Gaussian beam (the transverse intensity distribution with polarization ellipse map is shown as a background, polarization handedness is indicated in the upper right corner); (b) Experimental beam spot pattern in the cell of Fig. 1; (c) The spin flow map for the beam of panel (b) calculated via Eq. (2) (distribution of the spin flow magnitude is shown as a background). In panels (a) and (c) the lengths of the arrows reflect the relative spin flow magnitude.

Fig. 3
Fig. 3

Consecutive positions of the particle trapped within the beam with (1st row) left, spin + 1, and (2nd row) right, spin –1, circular polarization. Dashed circles show the particle orbits. In 2nd row, the orbital motion is not well accentuated because the particle shifts closer to the beam axis upon switching the polarization, see also Media 1. Similar behavior in other alignment conditions where the particle orbiting is observed in the right-polarized field is demonstrated in Media 2.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

S= c 2 p=gcRe( E * ×H ).
p S = 1 2ωc ( e x s 3 y e y s 3 x )= 1 2ωc [ e z × s 3 ],
p S = 1 2ωc r I( r ).

Metrics