Abstract

Electrically pumped lasing from Germanium-on-Silicon pnn heterojunction diode structures is demonstrated. Room temperature multimode laser with 1mW output power is measured. Phosphorous doping in Germanium at a concentration over 4x1019cm−3 is achieved. A Germanium gain spectrum of nearly 200nm is observed.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. J. Lockwood and L. Pavesi, Silicon Photonics (Springer-Verlag, 2004).
  2. M. E. Groenert, C. W. Leitz, A. J. Pitera, V. Yang, H. Lee, R. Ram, and E. A. Fitzgerald, “Monolithic integration of room-temperature cw GaAs/AlGaAs lasers on Si substrates via relaxed graded GeSi buffer layers,” J. Appl. Phys. 93(1), 362–367 (2003).
    [CrossRef]
  3. H. Park, A. Fang, S. Kodama, and J. Bowers, “Hybrid silicon evanescent laser fabricated with a silicon waveguide and III-V offset quantum wells,” Opt. Express 13(23), 9460–9464 (2005).
    [CrossRef] [PubMed]
  4. J. Liu, X. Sun, D. Pan, X. Wang, L. C. Kimerling, T. L. Koch, and J. Michel, “Tensile-strained, n-type Ge as a gain medium for monolithic laser integration on Si,” Opt. Express 15(18), 11272–11277 (2007).
    [CrossRef] [PubMed]
  5. J. Liu, X. Sun, Y. Bai, K. E. Lee, E. A. Fitzgerald, L. C. Kimerling, and J. Michel, “Efficient above-band-gap light emission in germanium,” Chin. Opt. Lett. 7(4), 271–273 (2009).
    [CrossRef]
  6. J. Liu, X. Sun, R. Camacho-Aguilera, L. C. Kimerling, and J. Michel, “Ge-on-Si laser operating at room temperature,” Opt. Lett. 35(5), 679–681 (2010).
    [CrossRef] [PubMed]
  7. G. Shambat, S.-L. Cheng, J. Lu, Y. Nishi, and J. Vuckovic, “Direct band Ge photoluminescence near 1.6 μm coupled to Ge-on-Si microdisk resonators,” Appl. Phys. Lett. 97(24), 241102 (2010).
    [CrossRef]
  8. S.-L. Cheng, J. Lu, G. Shambat, H.-Y. Yu, K. Saraswat, J. Vuckovic, and Y. Nishi, “Room temperature 1.6 μm electroluminescence from Ge light emitting diode on Si substrate,” Opt. Express 17(12), 10019–10024 (2009).
    [CrossRef] [PubMed]
  9. M. O. E. Kasper, T Aguirov, J. Werner, M. Kittler, J. Schulze, “Room temperature direct band gap emission from Ge p-i-n heterojunction photodiodes,” in Proceedings of Group IV Photonics 2010 (2010).
  10. X. Sun, J. Liu, L. C. Kimerling, and J. Michel, “Room-temperature direct bandgap electroluminesence from Ge-on-Si light-emitting diodes,” Opt. Lett. 34(8), 1198–1200 (2009).
    [CrossRef] [PubMed]
  11. J. Liu, X. Sun, L. C. Kimerling, and J. Michel, “Direct-gap optical gain of Ge on Si at room temperature,” Opt. Lett. 34(11), 1738–1740 (2009).
    [CrossRef] [PubMed]
  12. R. E. Camacho-Aguilera, Y. Cai, J. T. Bessette, D. Kita, L. C. Kimerling, and J. Michel, “High active carrier concentration in n-type, thin film Ge using delta-doping,” submitted for publication (2012).
  13. G. Scappucci, G. Capellini, W. M. Klesse, and M. Y. Simmons, “Phosphorus atomic layer doping of germanium by the stacking of multiple δ layers,” Nanotechnology 22(37), 375203 (2011).
    [CrossRef] [PubMed]
  14. R. E. Camacho-Aguilera, Y. Cai, J. T. Bessette, L. C. Kimerling, and J. Michel, “Electroluminescence of highly doped Ge pnn diodes for Si integrated lasers, ” Proc. 8th IEEE Intern. Conf. GFP, Vol. 190, 10.1109/GROUP1104.2011.6053759 (2011).
    [CrossRef]
  15. S. Xiaochen, L. Jifeng, L. C. Kimerling, and J. Michel, “Toward a Germanium Laser for integrated silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 16(1), 124–131 (2010).
    [CrossRef]

2011 (1)

G. Scappucci, G. Capellini, W. M. Klesse, and M. Y. Simmons, “Phosphorus atomic layer doping of germanium by the stacking of multiple δ layers,” Nanotechnology 22(37), 375203 (2011).
[CrossRef] [PubMed]

2010 (3)

S. Xiaochen, L. Jifeng, L. C. Kimerling, and J. Michel, “Toward a Germanium Laser for integrated silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 16(1), 124–131 (2010).
[CrossRef]

J. Liu, X. Sun, R. Camacho-Aguilera, L. C. Kimerling, and J. Michel, “Ge-on-Si laser operating at room temperature,” Opt. Lett. 35(5), 679–681 (2010).
[CrossRef] [PubMed]

G. Shambat, S.-L. Cheng, J. Lu, Y. Nishi, and J. Vuckovic, “Direct band Ge photoluminescence near 1.6 μm coupled to Ge-on-Si microdisk resonators,” Appl. Phys. Lett. 97(24), 241102 (2010).
[CrossRef]

2009 (4)

2007 (1)

2005 (1)

2003 (1)

M. E. Groenert, C. W. Leitz, A. J. Pitera, V. Yang, H. Lee, R. Ram, and E. A. Fitzgerald, “Monolithic integration of room-temperature cw GaAs/AlGaAs lasers on Si substrates via relaxed graded GeSi buffer layers,” J. Appl. Phys. 93(1), 362–367 (2003).
[CrossRef]

Bai, Y.

Bowers, J.

Camacho-Aguilera, R.

Capellini, G.

G. Scappucci, G. Capellini, W. M. Klesse, and M. Y. Simmons, “Phosphorus atomic layer doping of germanium by the stacking of multiple δ layers,” Nanotechnology 22(37), 375203 (2011).
[CrossRef] [PubMed]

Cheng, S.-L.

G. Shambat, S.-L. Cheng, J. Lu, Y. Nishi, and J. Vuckovic, “Direct band Ge photoluminescence near 1.6 μm coupled to Ge-on-Si microdisk resonators,” Appl. Phys. Lett. 97(24), 241102 (2010).
[CrossRef]

S.-L. Cheng, J. Lu, G. Shambat, H.-Y. Yu, K. Saraswat, J. Vuckovic, and Y. Nishi, “Room temperature 1.6 μm electroluminescence from Ge light emitting diode on Si substrate,” Opt. Express 17(12), 10019–10024 (2009).
[CrossRef] [PubMed]

Fang, A.

Fitzgerald, E. A.

J. Liu, X. Sun, Y. Bai, K. E. Lee, E. A. Fitzgerald, L. C. Kimerling, and J. Michel, “Efficient above-band-gap light emission in germanium,” Chin. Opt. Lett. 7(4), 271–273 (2009).
[CrossRef]

M. E. Groenert, C. W. Leitz, A. J. Pitera, V. Yang, H. Lee, R. Ram, and E. A. Fitzgerald, “Monolithic integration of room-temperature cw GaAs/AlGaAs lasers on Si substrates via relaxed graded GeSi buffer layers,” J. Appl. Phys. 93(1), 362–367 (2003).
[CrossRef]

Groenert, M. E.

M. E. Groenert, C. W. Leitz, A. J. Pitera, V. Yang, H. Lee, R. Ram, and E. A. Fitzgerald, “Monolithic integration of room-temperature cw GaAs/AlGaAs lasers on Si substrates via relaxed graded GeSi buffer layers,” J. Appl. Phys. 93(1), 362–367 (2003).
[CrossRef]

Jifeng, L.

S. Xiaochen, L. Jifeng, L. C. Kimerling, and J. Michel, “Toward a Germanium Laser for integrated silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 16(1), 124–131 (2010).
[CrossRef]

Kimerling, L. C.

Klesse, W. M.

G. Scappucci, G. Capellini, W. M. Klesse, and M. Y. Simmons, “Phosphorus atomic layer doping of germanium by the stacking of multiple δ layers,” Nanotechnology 22(37), 375203 (2011).
[CrossRef] [PubMed]

Koch, T. L.

Kodama, S.

Lee, H.

M. E. Groenert, C. W. Leitz, A. J. Pitera, V. Yang, H. Lee, R. Ram, and E. A. Fitzgerald, “Monolithic integration of room-temperature cw GaAs/AlGaAs lasers on Si substrates via relaxed graded GeSi buffer layers,” J. Appl. Phys. 93(1), 362–367 (2003).
[CrossRef]

Lee, K. E.

Leitz, C. W.

M. E. Groenert, C. W. Leitz, A. J. Pitera, V. Yang, H. Lee, R. Ram, and E. A. Fitzgerald, “Monolithic integration of room-temperature cw GaAs/AlGaAs lasers on Si substrates via relaxed graded GeSi buffer layers,” J. Appl. Phys. 93(1), 362–367 (2003).
[CrossRef]

Liu, J.

Lu, J.

G. Shambat, S.-L. Cheng, J. Lu, Y. Nishi, and J. Vuckovic, “Direct band Ge photoluminescence near 1.6 μm coupled to Ge-on-Si microdisk resonators,” Appl. Phys. Lett. 97(24), 241102 (2010).
[CrossRef]

S.-L. Cheng, J. Lu, G. Shambat, H.-Y. Yu, K. Saraswat, J. Vuckovic, and Y. Nishi, “Room temperature 1.6 μm electroluminescence from Ge light emitting diode on Si substrate,” Opt. Express 17(12), 10019–10024 (2009).
[CrossRef] [PubMed]

Michel, J.

Nishi, Y.

G. Shambat, S.-L. Cheng, J. Lu, Y. Nishi, and J. Vuckovic, “Direct band Ge photoluminescence near 1.6 μm coupled to Ge-on-Si microdisk resonators,” Appl. Phys. Lett. 97(24), 241102 (2010).
[CrossRef]

S.-L. Cheng, J. Lu, G. Shambat, H.-Y. Yu, K. Saraswat, J. Vuckovic, and Y. Nishi, “Room temperature 1.6 μm electroluminescence from Ge light emitting diode on Si substrate,” Opt. Express 17(12), 10019–10024 (2009).
[CrossRef] [PubMed]

Pan, D.

Park, H.

Pitera, A. J.

M. E. Groenert, C. W. Leitz, A. J. Pitera, V. Yang, H. Lee, R. Ram, and E. A. Fitzgerald, “Monolithic integration of room-temperature cw GaAs/AlGaAs lasers on Si substrates via relaxed graded GeSi buffer layers,” J. Appl. Phys. 93(1), 362–367 (2003).
[CrossRef]

Ram, R.

M. E. Groenert, C. W. Leitz, A. J. Pitera, V. Yang, H. Lee, R. Ram, and E. A. Fitzgerald, “Monolithic integration of room-temperature cw GaAs/AlGaAs lasers on Si substrates via relaxed graded GeSi buffer layers,” J. Appl. Phys. 93(1), 362–367 (2003).
[CrossRef]

Saraswat, K.

Scappucci, G.

G. Scappucci, G. Capellini, W. M. Klesse, and M. Y. Simmons, “Phosphorus atomic layer doping of germanium by the stacking of multiple δ layers,” Nanotechnology 22(37), 375203 (2011).
[CrossRef] [PubMed]

Shambat, G.

G. Shambat, S.-L. Cheng, J. Lu, Y. Nishi, and J. Vuckovic, “Direct band Ge photoluminescence near 1.6 μm coupled to Ge-on-Si microdisk resonators,” Appl. Phys. Lett. 97(24), 241102 (2010).
[CrossRef]

S.-L. Cheng, J. Lu, G. Shambat, H.-Y. Yu, K. Saraswat, J. Vuckovic, and Y. Nishi, “Room temperature 1.6 μm electroluminescence from Ge light emitting diode on Si substrate,” Opt. Express 17(12), 10019–10024 (2009).
[CrossRef] [PubMed]

Simmons, M. Y.

G. Scappucci, G. Capellini, W. M. Klesse, and M. Y. Simmons, “Phosphorus atomic layer doping of germanium by the stacking of multiple δ layers,” Nanotechnology 22(37), 375203 (2011).
[CrossRef] [PubMed]

Sun, X.

Vuckovic, J.

G. Shambat, S.-L. Cheng, J. Lu, Y. Nishi, and J. Vuckovic, “Direct band Ge photoluminescence near 1.6 μm coupled to Ge-on-Si microdisk resonators,” Appl. Phys. Lett. 97(24), 241102 (2010).
[CrossRef]

S.-L. Cheng, J. Lu, G. Shambat, H.-Y. Yu, K. Saraswat, J. Vuckovic, and Y. Nishi, “Room temperature 1.6 μm electroluminescence from Ge light emitting diode on Si substrate,” Opt. Express 17(12), 10019–10024 (2009).
[CrossRef] [PubMed]

Wang, X.

Xiaochen, S.

S. Xiaochen, L. Jifeng, L. C. Kimerling, and J. Michel, “Toward a Germanium Laser for integrated silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 16(1), 124–131 (2010).
[CrossRef]

Yang, V.

M. E. Groenert, C. W. Leitz, A. J. Pitera, V. Yang, H. Lee, R. Ram, and E. A. Fitzgerald, “Monolithic integration of room-temperature cw GaAs/AlGaAs lasers on Si substrates via relaxed graded GeSi buffer layers,” J. Appl. Phys. 93(1), 362–367 (2003).
[CrossRef]

Yu, H.-Y.

Appl. Phys. Lett. (1)

G. Shambat, S.-L. Cheng, J. Lu, Y. Nishi, and J. Vuckovic, “Direct band Ge photoluminescence near 1.6 μm coupled to Ge-on-Si microdisk resonators,” Appl. Phys. Lett. 97(24), 241102 (2010).
[CrossRef]

Chin. Opt. Lett. (1)

IEEE J. Sel. Top. Quantum Electron. (1)

S. Xiaochen, L. Jifeng, L. C. Kimerling, and J. Michel, “Toward a Germanium Laser for integrated silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 16(1), 124–131 (2010).
[CrossRef]

J. Appl. Phys. (1)

M. E. Groenert, C. W. Leitz, A. J. Pitera, V. Yang, H. Lee, R. Ram, and E. A. Fitzgerald, “Monolithic integration of room-temperature cw GaAs/AlGaAs lasers on Si substrates via relaxed graded GeSi buffer layers,” J. Appl. Phys. 93(1), 362–367 (2003).
[CrossRef]

Nanotechnology (1)

G. Scappucci, G. Capellini, W. M. Klesse, and M. Y. Simmons, “Phosphorus atomic layer doping of germanium by the stacking of multiple δ layers,” Nanotechnology 22(37), 375203 (2011).
[CrossRef] [PubMed]

Opt. Express (3)

Opt. Lett. (3)

Other (4)

R. E. Camacho-Aguilera, Y. Cai, J. T. Bessette, D. Kita, L. C. Kimerling, and J. Michel, “High active carrier concentration in n-type, thin film Ge using delta-doping,” submitted for publication (2012).

M. O. E. Kasper, T Aguirov, J. Werner, M. Kittler, J. Schulze, “Room temperature direct band gap emission from Ge p-i-n heterojunction photodiodes,” in Proceedings of Group IV Photonics 2010 (2010).

R. E. Camacho-Aguilera, Y. Cai, J. T. Bessette, L. C. Kimerling, and J. Michel, “Electroluminescence of highly doped Ge pnn diodes for Si integrated lasers, ” Proc. 8th IEEE Intern. Conf. GFP, Vol. 190, 10.1109/GROUP1104.2011.6053759 (2011).
[CrossRef]

D. J. Lockwood and L. Pavesi, Silicon Photonics (Springer-Verlag, 2004).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic of the measurement set-up.

Fig. 2
Fig. 2

Ge laser emission spectrum before (a) and after (b) threshold. The cavity length of the waveguide is 333μm and the waveguide height about 100nm. Current injection employed pulse widths of 50μs at 800Hz and 15°C. The detector spectral resolution was 1.2nm.

Fig. 3
Fig. 3

L-I curve for a 270μm long waveguide device. 40μs electrical pulses were used at 1000Hz. Measurement temperature was 15°C.

Fig. 4
Fig. 4

Spectra of Ge lasers with different Ge waveguide heights. The measured laser line wavelengths are (a) 1576nm, (b) 1622nm, and (c) 1656nm.

Fig. 5
Fig. 5

Simulation of gain clamping condition for two different Ge waveguide thicknesses (100nm: solid line; 300nm: dashed line). The axes plot the corresponding modal loss and gain spectrum for the two different injection levels that are needed to overcome the respective modal losses and to achieve lasing.

Metrics