Abstract

We propose a method based on quantitative theoretical analysis for achieving speckle contrast of 1% or less in images created by a full-frame laser projection display system. The method employs a stationary multimode optical fiber to achieve the effect of using a rapidly moving diffuser, but without moving the fiber or any other system component. When a suitably large projector lens is used, low-speckle illumination light delivered through the fiber acts in conjunction with wavelength diversity at the projection screen to achieve speckle contrast of 1% in viewed images. We describe in detail how the proposed method might be used with most types of high-power visible lasers being considered for large-venue displays. When used with visible laser diodes, the method may also be suitable for use in laser-based television.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. I. Trisnadi, “Speckle contrast reduction in laser projection displays,” Proc. SPIE 4657, 131–137 (2002).
    [CrossRef]
  2. D. Kohler, W. L. Seitz, T. R. Loree, and S. D. Gardner, “Speckle reduction in pulsed-laser photographs,” Opt. Commun. 12(1), 24–28 (1974).
    [CrossRef]
  3. B. Dingel, S. Kawata, and S. Minami, “Speckle reduction with virtual incoherent laser illumination using a modified fiber array,” Optik (Stuttg.) 94, 132–136 (1993).
  4. B. Dingel and S. Kawata, “Speckle-free image in a laser-diode microscope by using the optical feedback effect,” Opt. Lett. 18(7), 549–551 (1993).
    [CrossRef] [PubMed]
  5. J. Kim, E. Kim, D. T. Miller, and T. E. Milner, “Speckle reduction in OCT with multimode source fiber,” Proc. SPIE 5317, 246–250 (2004).
    [CrossRef]
  6. J. P. Parry, J. D. Shephard, J. D. C. Jones, and D. P. Hand, “Speckle contrast reduction in a large-core fiber delivering Q-switched pulses for fluid flow measurements,” Appl. Opt. 45(18), 4209–4218 (2006).
    [CrossRef] [PubMed]
  7. M. Busker, Laser Projection: Coupling Optics, Light Management, and Speckle Reduction (VDM Verlag, 2008), pp. 115–117.
  8. R. Grasser, H. Shi, and T. A. Bartlett, “Speckle reduction in display systems that employ coherent light sources,” US Patent 2010/0079848 A1 (2010).
  9. B. Lippey, W. Beck, and I. Turner, “Despeckling apparatus and method,” US Patent 2011/0134510 A1.
  10. P. Janssens and K. Malfait, “Future prospects of high-end laser projectors,” Proc. SPIE 7232, 20Y1–212 (2009).
  11. W. J. Wadsworth, R. M. Percival, G. Bouwmans, J. C. Knight, T. A. Birks, T. D. Hedley, and P. St. J. Russell, “Very high numerical aperture fibers,” IEEE Photon. Technol. Lett. 16, 843–845 (2004).
    [CrossRef]
  12. J. W. Goodman, Speckle Phenomena in Optics: Theory and Applications (Roberts & Co., 2007), p. 244.
  13. S. Savovic, A. Djordjevich, B. Drljaca, and M. S. Kovacevic, “Comparison of methods for calculating coupling length in step-index optical fibers,” Acta Phys. Pol. A 116, 652–654 (2009).
  14. S. Savović and A. Djordjevich, “Optical power flow in plastic-clad silica fibers,” Appl. Opt. 41(36), 7588–7591 (2002).
    [CrossRef] [PubMed]
  15. S. Savović, A. Djordjevich, A. Simović, and B. Drljača, “Equilibrium mode distribution and steady-state distribution in 100-400 μm core step-index silica optical fibers,” Appl. Opt. 50(21), 4170–4173 (2011).
    [CrossRef] [PubMed]
  16. S. Alaruri, A. Brewington, and G. Bijak, “Measurement of modal dispersion for a step index multimode optical fiber in the UV-visible region using a pulsed laser,” Appl. Spectrosc. 48(2), 228–231 (1994).
    [CrossRef]
  17. J. W. Goodman, Speckle Phenomena in Optics: Theory and Applications (Roberts & Co., 2007), p. 246.
  18. B. Drljaca, S. Savovic, and A. Djordjevich, “Calculation of the impulse response of step-index plastic optical fibers using the time dependent power flow equation,” Acta Phys. Pol. A 116, 658–660 (2009).
  19. D. Gloge, “Optical power flow in multimode fibers,” Bell Syst. Tech. J. 51, 1767–1783 (1972).
  20. R. Dandliker, A. Bertholds, and F. Maystre, “How modal noise in multimode fibers depends on source spectrum and fiber dispersion,” J. Lightwave Technol. 3(1), 7–12 (1985).
    [CrossRef]
  21. P. Hlubina, “Spectral and dispersion analysis of laser sources and multimode fibers via the statistics of the intensity pattern,” J. Mod. Opt. 41(5), 1001–1014 (1994).
    [CrossRef]
  22. J. W. Goodman, Speckle Phenomena in Optics: Theory and Applications (Roberts & Co., 2007), p. 214.
  23. J. W. Goodman, Speckle Phenomena in Optics: Theory and Applications (Roberts & Co., 2007), p. 221.
  24. G. Westheimer, “The eye as an optical instrument,” in Handbook of Perception, J. Thomas, ed. (Wiley & Sons, 1986), chap. 4.1–4.20.
  25. J. W. Goodman, Speckle Phenomena in Optics: Theory and Applications (Roberts & Co., 2007), p. 176.
  26. M. Busker, Laser Projection: Coupling Optics, Light Management, and Speckle Reduction (VDM Verlag, 2008), pp. 90–93.
  27. J. G. Manni and R. J. Martinsen, “Systems and methods for speckle reduction through bandwidth enhancement,” US 6,975,294 B2. Dec. 2005.
  28. V. Daneu, A. Sanchez, T. Y. Fan, H. K. Choi, G. W. Turner, and C. C. Cook, “Spectral beam combining of a broad-stripe diode laser array in an external cavity,” Opt. Lett. 25(6), 405–407 (2000).
    [CrossRef] [PubMed]
  29. T. Y. Fan, “Laser beam combining for high-power high-radiance sources,” IEEE J. Sel. Top. Quantum Electron. 11(3), 567–577 (2005).
    [CrossRef]
  30. B. Chann and R. Huang, “Scalable wavelength beam combining systems and method,” US2011 / 0216792A1, Sept. 2011.
  31. E. C. Cheung, J. G. Ho, T. S. McComb, and S. Palese, “High density spectral beam combination with spatial chirp precompensation,” Opt. Express 19(21), 20984–20990 (2011).
    [CrossRef] [PubMed]
  32. G. Hollemann, B. Braun, P. Heist, J. Symanowski, U. Krause, J. Kranert, and C. Deter, “High-power laser projection displays,” Proc. SPIE 4294, 36–46 (2001).
    [CrossRef]
  33. G. P. Agrawal, Nonlinear Fiber Optics (Academic Press; 2007), Chap. 4.
  34. Q. Z. Wang, D. Ji, L. Yang, P. P. Ho, and R. R. Alfano, “Self-phase modulation in multimode optical fibers produced by moderately high-powered picosecond pulses,” Opt. Lett. 14(11), 578–580 (1989).
    [CrossRef] [PubMed]
  35. J. Rothhardt, T. Eidam, S. Hädrich, F. Jansen, F. Stutzki, T. Gottschall, T. V. Andersen, J. Limpert, and A. Tünnermann, “135 W average-power femtosecond pulses at 520 nm from a frequency-doubled fiber laser system,” Opt. Lett. 36(3), 316–318 (2011).
    [CrossRef] [PubMed]
  36. J. Nakanishi, Y. Horiuchi, T. Yamada, O. Ishii, M. Yamazaki, M. Yoshida, and Y. Fujimoto, “High-power direct green laser oscillation of 598 mW in Pr(3+)-doped waterproof fluoroaluminate glass fiber excited by two-polarization-combined GaN laser diodes,” Opt. Lett. 36(10), 1836–1838 (2011).
    [CrossRef] [PubMed]
  37. P. F. Moulton, “Three-color coherent light system,” US 5,740,190, April 14, 1998.
  38. S. Yiou, P. Delaye, A. Rouvie, J. Chinaud, R. Frey, G. Roosen, P. Viale, S. Février, P. Roy, J. L. Auguste, and J. M. Blondy, “Stimulated Raman scattering in an ethanol core microstructured optical fiber,” Opt. Express 13(12), 4786–4791 (2005).
    [CrossRef] [PubMed]
  39. A. Bozolan, C. J. S. de Matos, C. M. B. Cordeiro, E. M. Dos Santos, and J. Travers, “Supercontinuum generation in a water-core photonic crystal fiber,” Opt. Express 16(13), 9671–9676 (2008).
    [CrossRef] [PubMed]
  40. R. Zhang, J. Teipel, and H. Giessen, “Theoretical design of a liquid-core photonic crystal fiber for supercontinuum generation,” Opt. Express 14(15), 6800–6812 (2006).
    [CrossRef] [PubMed]
  41. B. F. Mansour, H. Anis, D. Zeidler, P. B. Corkum, and D. M. Villeneuve, “Generation of 11 fs pulses by using hollow-core gas-filled fibers at a 100 kHz repetition rate,” Opt. Lett. 31(21), 3185–3187 (2006).
    [CrossRef] [PubMed]
  42. G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, 1995).
  43. E. Räikkönen, G. Genty, O. Kimmelma, M. Kaivola, K. P. Hansen, and S. C. Buchter, “Supercontinuum generation by nanosecond dual-wavelength pumping in microstructured optical fibers,” Opt. Express 14(17), 7914–7923 (2006).
    [CrossRef] [PubMed]
  44. M. Hirano and A. Morimoto, “Optical frequency comb generation using a quasi-velocity-matched Fabry-Perot phase modulator,” Opt. Rev. 15(5), 224–229 (2008).
    [CrossRef]
  45. M. Kourogi, K. Nakagawa, and M. Ohtsu, “Wide-span optical frequency comb generation for accurate optical frequency difference measurement,” IEEE J. Quantum Electron. 29(10), 2693–2701 (1993).
    [CrossRef]
  46. J. W. Goodman, Speckle Phenomena in Optics: Theory and Applications (Roberts & Co., 2007), p. 179.

2011 (4)

2009 (3)

P. Janssens and K. Malfait, “Future prospects of high-end laser projectors,” Proc. SPIE 7232, 20Y1–212 (2009).

S. Savovic, A. Djordjevich, B. Drljaca, and M. S. Kovacevic, “Comparison of methods for calculating coupling length in step-index optical fibers,” Acta Phys. Pol. A 116, 652–654 (2009).

B. Drljaca, S. Savovic, and A. Djordjevich, “Calculation of the impulse response of step-index plastic optical fibers using the time dependent power flow equation,” Acta Phys. Pol. A 116, 658–660 (2009).

2008 (2)

M. Hirano and A. Morimoto, “Optical frequency comb generation using a quasi-velocity-matched Fabry-Perot phase modulator,” Opt. Rev. 15(5), 224–229 (2008).
[CrossRef]

A. Bozolan, C. J. S. de Matos, C. M. B. Cordeiro, E. M. Dos Santos, and J. Travers, “Supercontinuum generation in a water-core photonic crystal fiber,” Opt. Express 16(13), 9671–9676 (2008).
[CrossRef] [PubMed]

2006 (4)

2005 (2)

2004 (2)

J. Kim, E. Kim, D. T. Miller, and T. E. Milner, “Speckle reduction in OCT with multimode source fiber,” Proc. SPIE 5317, 246–250 (2004).
[CrossRef]

W. J. Wadsworth, R. M. Percival, G. Bouwmans, J. C. Knight, T. A. Birks, T. D. Hedley, and P. St. J. Russell, “Very high numerical aperture fibers,” IEEE Photon. Technol. Lett. 16, 843–845 (2004).
[CrossRef]

2002 (2)

J. I. Trisnadi, “Speckle contrast reduction in laser projection displays,” Proc. SPIE 4657, 131–137 (2002).
[CrossRef]

S. Savović and A. Djordjevich, “Optical power flow in plastic-clad silica fibers,” Appl. Opt. 41(36), 7588–7591 (2002).
[CrossRef] [PubMed]

2001 (1)

G. Hollemann, B. Braun, P. Heist, J. Symanowski, U. Krause, J. Kranert, and C. Deter, “High-power laser projection displays,” Proc. SPIE 4294, 36–46 (2001).
[CrossRef]

2000 (1)

1994 (2)

P. Hlubina, “Spectral and dispersion analysis of laser sources and multimode fibers via the statistics of the intensity pattern,” J. Mod. Opt. 41(5), 1001–1014 (1994).
[CrossRef]

S. Alaruri, A. Brewington, and G. Bijak, “Measurement of modal dispersion for a step index multimode optical fiber in the UV-visible region using a pulsed laser,” Appl. Spectrosc. 48(2), 228–231 (1994).
[CrossRef]

1993 (3)

B. Dingel and S. Kawata, “Speckle-free image in a laser-diode microscope by using the optical feedback effect,” Opt. Lett. 18(7), 549–551 (1993).
[CrossRef] [PubMed]

M. Kourogi, K. Nakagawa, and M. Ohtsu, “Wide-span optical frequency comb generation for accurate optical frequency difference measurement,” IEEE J. Quantum Electron. 29(10), 2693–2701 (1993).
[CrossRef]

B. Dingel, S. Kawata, and S. Minami, “Speckle reduction with virtual incoherent laser illumination using a modified fiber array,” Optik (Stuttg.) 94, 132–136 (1993).

1989 (1)

1985 (1)

R. Dandliker, A. Bertholds, and F. Maystre, “How modal noise in multimode fibers depends on source spectrum and fiber dispersion,” J. Lightwave Technol. 3(1), 7–12 (1985).
[CrossRef]

1974 (1)

D. Kohler, W. L. Seitz, T. R. Loree, and S. D. Gardner, “Speckle reduction in pulsed-laser photographs,” Opt. Commun. 12(1), 24–28 (1974).
[CrossRef]

1972 (1)

D. Gloge, “Optical power flow in multimode fibers,” Bell Syst. Tech. J. 51, 1767–1783 (1972).

Alaruri, S.

Alfano, R. R.

Andersen, T. V.

Anis, H.

Auguste, J. L.

Bertholds, A.

R. Dandliker, A. Bertholds, and F. Maystre, “How modal noise in multimode fibers depends on source spectrum and fiber dispersion,” J. Lightwave Technol. 3(1), 7–12 (1985).
[CrossRef]

Bijak, G.

Birks, T. A.

W. J. Wadsworth, R. M. Percival, G. Bouwmans, J. C. Knight, T. A. Birks, T. D. Hedley, and P. St. J. Russell, “Very high numerical aperture fibers,” IEEE Photon. Technol. Lett. 16, 843–845 (2004).
[CrossRef]

Blondy, J. M.

Bouwmans, G.

W. J. Wadsworth, R. M. Percival, G. Bouwmans, J. C. Knight, T. A. Birks, T. D. Hedley, and P. St. J. Russell, “Very high numerical aperture fibers,” IEEE Photon. Technol. Lett. 16, 843–845 (2004).
[CrossRef]

Bozolan, A.

Braun, B.

G. Hollemann, B. Braun, P. Heist, J. Symanowski, U. Krause, J. Kranert, and C. Deter, “High-power laser projection displays,” Proc. SPIE 4294, 36–46 (2001).
[CrossRef]

Brewington, A.

Buchter, S. C.

Cheung, E. C.

Chinaud, J.

Choi, H. K.

Cook, C. C.

Cordeiro, C. M. B.

Corkum, P. B.

Dandliker, R.

R. Dandliker, A. Bertholds, and F. Maystre, “How modal noise in multimode fibers depends on source spectrum and fiber dispersion,” J. Lightwave Technol. 3(1), 7–12 (1985).
[CrossRef]

Daneu, V.

de Matos, C. J. S.

Delaye, P.

Deter, C.

G. Hollemann, B. Braun, P. Heist, J. Symanowski, U. Krause, J. Kranert, and C. Deter, “High-power laser projection displays,” Proc. SPIE 4294, 36–46 (2001).
[CrossRef]

Dingel, B.

B. Dingel and S. Kawata, “Speckle-free image in a laser-diode microscope by using the optical feedback effect,” Opt. Lett. 18(7), 549–551 (1993).
[CrossRef] [PubMed]

B. Dingel, S. Kawata, and S. Minami, “Speckle reduction with virtual incoherent laser illumination using a modified fiber array,” Optik (Stuttg.) 94, 132–136 (1993).

Djordjevich, A.

S. Savović, A. Djordjevich, A. Simović, and B. Drljača, “Equilibrium mode distribution and steady-state distribution in 100-400 μm core step-index silica optical fibers,” Appl. Opt. 50(21), 4170–4173 (2011).
[CrossRef] [PubMed]

S. Savovic, A. Djordjevich, B. Drljaca, and M. S. Kovacevic, “Comparison of methods for calculating coupling length in step-index optical fibers,” Acta Phys. Pol. A 116, 652–654 (2009).

B. Drljaca, S. Savovic, and A. Djordjevich, “Calculation of the impulse response of step-index plastic optical fibers using the time dependent power flow equation,” Acta Phys. Pol. A 116, 658–660 (2009).

S. Savović and A. Djordjevich, “Optical power flow in plastic-clad silica fibers,” Appl. Opt. 41(36), 7588–7591 (2002).
[CrossRef] [PubMed]

Dos Santos, E. M.

Drljaca, B.

S. Savović, A. Djordjevich, A. Simović, and B. Drljača, “Equilibrium mode distribution and steady-state distribution in 100-400 μm core step-index silica optical fibers,” Appl. Opt. 50(21), 4170–4173 (2011).
[CrossRef] [PubMed]

S. Savovic, A. Djordjevich, B. Drljaca, and M. S. Kovacevic, “Comparison of methods for calculating coupling length in step-index optical fibers,” Acta Phys. Pol. A 116, 652–654 (2009).

B. Drljaca, S. Savovic, and A. Djordjevich, “Calculation of the impulse response of step-index plastic optical fibers using the time dependent power flow equation,” Acta Phys. Pol. A 116, 658–660 (2009).

Eidam, T.

Fan, T. Y.

Février, S.

Frey, R.

Fujimoto, Y.

Gardner, S. D.

D. Kohler, W. L. Seitz, T. R. Loree, and S. D. Gardner, “Speckle reduction in pulsed-laser photographs,” Opt. Commun. 12(1), 24–28 (1974).
[CrossRef]

Genty, G.

Giessen, H.

Gloge, D.

D. Gloge, “Optical power flow in multimode fibers,” Bell Syst. Tech. J. 51, 1767–1783 (1972).

Gottschall, T.

Hädrich, S.

Hand, D. P.

Hansen, K. P.

Hedley, T. D.

W. J. Wadsworth, R. M. Percival, G. Bouwmans, J. C. Knight, T. A. Birks, T. D. Hedley, and P. St. J. Russell, “Very high numerical aperture fibers,” IEEE Photon. Technol. Lett. 16, 843–845 (2004).
[CrossRef]

Heist, P.

G. Hollemann, B. Braun, P. Heist, J. Symanowski, U. Krause, J. Kranert, and C. Deter, “High-power laser projection displays,” Proc. SPIE 4294, 36–46 (2001).
[CrossRef]

Hirano, M.

M. Hirano and A. Morimoto, “Optical frequency comb generation using a quasi-velocity-matched Fabry-Perot phase modulator,” Opt. Rev. 15(5), 224–229 (2008).
[CrossRef]

Hlubina, P.

P. Hlubina, “Spectral and dispersion analysis of laser sources and multimode fibers via the statistics of the intensity pattern,” J. Mod. Opt. 41(5), 1001–1014 (1994).
[CrossRef]

Ho, J. G.

Ho, P. P.

Hollemann, G.

G. Hollemann, B. Braun, P. Heist, J. Symanowski, U. Krause, J. Kranert, and C. Deter, “High-power laser projection displays,” Proc. SPIE 4294, 36–46 (2001).
[CrossRef]

Horiuchi, Y.

Ishii, O.

Jansen, F.

Janssens, P.

P. Janssens and K. Malfait, “Future prospects of high-end laser projectors,” Proc. SPIE 7232, 20Y1–212 (2009).

Ji, D.

Jones, J. D. C.

Kaivola, M.

Kawata, S.

B. Dingel and S. Kawata, “Speckle-free image in a laser-diode microscope by using the optical feedback effect,” Opt. Lett. 18(7), 549–551 (1993).
[CrossRef] [PubMed]

B. Dingel, S. Kawata, and S. Minami, “Speckle reduction with virtual incoherent laser illumination using a modified fiber array,” Optik (Stuttg.) 94, 132–136 (1993).

Kim, E.

J. Kim, E. Kim, D. T. Miller, and T. E. Milner, “Speckle reduction in OCT with multimode source fiber,” Proc. SPIE 5317, 246–250 (2004).
[CrossRef]

Kim, J.

J. Kim, E. Kim, D. T. Miller, and T. E. Milner, “Speckle reduction in OCT with multimode source fiber,” Proc. SPIE 5317, 246–250 (2004).
[CrossRef]

Kimmelma, O.

Knight, J. C.

W. J. Wadsworth, R. M. Percival, G. Bouwmans, J. C. Knight, T. A. Birks, T. D. Hedley, and P. St. J. Russell, “Very high numerical aperture fibers,” IEEE Photon. Technol. Lett. 16, 843–845 (2004).
[CrossRef]

Kohler, D.

D. Kohler, W. L. Seitz, T. R. Loree, and S. D. Gardner, “Speckle reduction in pulsed-laser photographs,” Opt. Commun. 12(1), 24–28 (1974).
[CrossRef]

Kourogi, M.

M. Kourogi, K. Nakagawa, and M. Ohtsu, “Wide-span optical frequency comb generation for accurate optical frequency difference measurement,” IEEE J. Quantum Electron. 29(10), 2693–2701 (1993).
[CrossRef]

Kovacevic, M. S.

S. Savovic, A. Djordjevich, B. Drljaca, and M. S. Kovacevic, “Comparison of methods for calculating coupling length in step-index optical fibers,” Acta Phys. Pol. A 116, 652–654 (2009).

Kranert, J.

G. Hollemann, B. Braun, P. Heist, J. Symanowski, U. Krause, J. Kranert, and C. Deter, “High-power laser projection displays,” Proc. SPIE 4294, 36–46 (2001).
[CrossRef]

Krause, U.

G. Hollemann, B. Braun, P. Heist, J. Symanowski, U. Krause, J. Kranert, and C. Deter, “High-power laser projection displays,” Proc. SPIE 4294, 36–46 (2001).
[CrossRef]

Limpert, J.

Loree, T. R.

D. Kohler, W. L. Seitz, T. R. Loree, and S. D. Gardner, “Speckle reduction in pulsed-laser photographs,” Opt. Commun. 12(1), 24–28 (1974).
[CrossRef]

Malfait, K.

P. Janssens and K. Malfait, “Future prospects of high-end laser projectors,” Proc. SPIE 7232, 20Y1–212 (2009).

Mansour, B. F.

Maystre, F.

R. Dandliker, A. Bertholds, and F. Maystre, “How modal noise in multimode fibers depends on source spectrum and fiber dispersion,” J. Lightwave Technol. 3(1), 7–12 (1985).
[CrossRef]

McComb, T. S.

Miller, D. T.

J. Kim, E. Kim, D. T. Miller, and T. E. Milner, “Speckle reduction in OCT with multimode source fiber,” Proc. SPIE 5317, 246–250 (2004).
[CrossRef]

Milner, T. E.

J. Kim, E. Kim, D. T. Miller, and T. E. Milner, “Speckle reduction in OCT with multimode source fiber,” Proc. SPIE 5317, 246–250 (2004).
[CrossRef]

Minami, S.

B. Dingel, S. Kawata, and S. Minami, “Speckle reduction with virtual incoherent laser illumination using a modified fiber array,” Optik (Stuttg.) 94, 132–136 (1993).

Morimoto, A.

M. Hirano and A. Morimoto, “Optical frequency comb generation using a quasi-velocity-matched Fabry-Perot phase modulator,” Opt. Rev. 15(5), 224–229 (2008).
[CrossRef]

Nakagawa, K.

M. Kourogi, K. Nakagawa, and M. Ohtsu, “Wide-span optical frequency comb generation for accurate optical frequency difference measurement,” IEEE J. Quantum Electron. 29(10), 2693–2701 (1993).
[CrossRef]

Nakanishi, J.

Ohtsu, M.

M. Kourogi, K. Nakagawa, and M. Ohtsu, “Wide-span optical frequency comb generation for accurate optical frequency difference measurement,” IEEE J. Quantum Electron. 29(10), 2693–2701 (1993).
[CrossRef]

Palese, S.

Parry, J. P.

Percival, R. M.

W. J. Wadsworth, R. M. Percival, G. Bouwmans, J. C. Knight, T. A. Birks, T. D. Hedley, and P. St. J. Russell, “Very high numerical aperture fibers,” IEEE Photon. Technol. Lett. 16, 843–845 (2004).
[CrossRef]

Räikkönen, E.

Roosen, G.

Rothhardt, J.

Rouvie, A.

Roy, P.

Sanchez, A.

Savovic, S.

S. Savović, A. Djordjevich, A. Simović, and B. Drljača, “Equilibrium mode distribution and steady-state distribution in 100-400 μm core step-index silica optical fibers,” Appl. Opt. 50(21), 4170–4173 (2011).
[CrossRef] [PubMed]

S. Savovic, A. Djordjevich, B. Drljaca, and M. S. Kovacevic, “Comparison of methods for calculating coupling length in step-index optical fibers,” Acta Phys. Pol. A 116, 652–654 (2009).

B. Drljaca, S. Savovic, and A. Djordjevich, “Calculation of the impulse response of step-index plastic optical fibers using the time dependent power flow equation,” Acta Phys. Pol. A 116, 658–660 (2009).

S. Savović and A. Djordjevich, “Optical power flow in plastic-clad silica fibers,” Appl. Opt. 41(36), 7588–7591 (2002).
[CrossRef] [PubMed]

Seitz, W. L.

D. Kohler, W. L. Seitz, T. R. Loree, and S. D. Gardner, “Speckle reduction in pulsed-laser photographs,” Opt. Commun. 12(1), 24–28 (1974).
[CrossRef]

Shephard, J. D.

Simovic, A.

St. J. Russell, P.

W. J. Wadsworth, R. M. Percival, G. Bouwmans, J. C. Knight, T. A. Birks, T. D. Hedley, and P. St. J. Russell, “Very high numerical aperture fibers,” IEEE Photon. Technol. Lett. 16, 843–845 (2004).
[CrossRef]

Stutzki, F.

Symanowski, J.

G. Hollemann, B. Braun, P. Heist, J. Symanowski, U. Krause, J. Kranert, and C. Deter, “High-power laser projection displays,” Proc. SPIE 4294, 36–46 (2001).
[CrossRef]

Teipel, J.

Travers, J.

Trisnadi, J. I.

J. I. Trisnadi, “Speckle contrast reduction in laser projection displays,” Proc. SPIE 4657, 131–137 (2002).
[CrossRef]

Tünnermann, A.

Turner, G. W.

Viale, P.

Villeneuve, D. M.

Wadsworth, W. J.

W. J. Wadsworth, R. M. Percival, G. Bouwmans, J. C. Knight, T. A. Birks, T. D. Hedley, and P. St. J. Russell, “Very high numerical aperture fibers,” IEEE Photon. Technol. Lett. 16, 843–845 (2004).
[CrossRef]

Wang, Q. Z.

Yamada, T.

Yamazaki, M.

Yang, L.

Yiou, S.

Yoshida, M.

Zeidler, D.

Zhang, R.

Acta Phys. Pol. A (2)

B. Drljaca, S. Savovic, and A. Djordjevich, “Calculation of the impulse response of step-index plastic optical fibers using the time dependent power flow equation,” Acta Phys. Pol. A 116, 658–660 (2009).

S. Savovic, A. Djordjevich, B. Drljaca, and M. S. Kovacevic, “Comparison of methods for calculating coupling length in step-index optical fibers,” Acta Phys. Pol. A 116, 652–654 (2009).

Appl. Opt. (3)

Appl. Spectrosc. (1)

Bell Syst. Tech. J. (1)

D. Gloge, “Optical power flow in multimode fibers,” Bell Syst. Tech. J. 51, 1767–1783 (1972).

IEEE J. Quantum Electron. (1)

M. Kourogi, K. Nakagawa, and M. Ohtsu, “Wide-span optical frequency comb generation for accurate optical frequency difference measurement,” IEEE J. Quantum Electron. 29(10), 2693–2701 (1993).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

T. Y. Fan, “Laser beam combining for high-power high-radiance sources,” IEEE J. Sel. Top. Quantum Electron. 11(3), 567–577 (2005).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

W. J. Wadsworth, R. M. Percival, G. Bouwmans, J. C. Knight, T. A. Birks, T. D. Hedley, and P. St. J. Russell, “Very high numerical aperture fibers,” IEEE Photon. Technol. Lett. 16, 843–845 (2004).
[CrossRef]

J. Lightwave Technol. (1)

R. Dandliker, A. Bertholds, and F. Maystre, “How modal noise in multimode fibers depends on source spectrum and fiber dispersion,” J. Lightwave Technol. 3(1), 7–12 (1985).
[CrossRef]

J. Mod. Opt. (1)

P. Hlubina, “Spectral and dispersion analysis of laser sources and multimode fibers via the statistics of the intensity pattern,” J. Mod. Opt. 41(5), 1001–1014 (1994).
[CrossRef]

Opt. Commun. (1)

D. Kohler, W. L. Seitz, T. R. Loree, and S. D. Gardner, “Speckle reduction in pulsed-laser photographs,” Opt. Commun. 12(1), 24–28 (1974).
[CrossRef]

Opt. Express (5)

Opt. Lett. (6)

Opt. Rev. (1)

M. Hirano and A. Morimoto, “Optical frequency comb generation using a quasi-velocity-matched Fabry-Perot phase modulator,” Opt. Rev. 15(5), 224–229 (2008).
[CrossRef]

Optik (Stuttg.) (1)

B. Dingel, S. Kawata, and S. Minami, “Speckle reduction with virtual incoherent laser illumination using a modified fiber array,” Optik (Stuttg.) 94, 132–136 (1993).

Proc. SPIE (4)

J. Kim, E. Kim, D. T. Miller, and T. E. Milner, “Speckle reduction in OCT with multimode source fiber,” Proc. SPIE 5317, 246–250 (2004).
[CrossRef]

G. Hollemann, B. Braun, P. Heist, J. Symanowski, U. Krause, J. Kranert, and C. Deter, “High-power laser projection displays,” Proc. SPIE 4294, 36–46 (2001).
[CrossRef]

P. Janssens and K. Malfait, “Future prospects of high-end laser projectors,” Proc. SPIE 7232, 20Y1–212 (2009).

J. I. Trisnadi, “Speckle contrast reduction in laser projection displays,” Proc. SPIE 4657, 131–137 (2002).
[CrossRef]

Other (16)

J. W. Goodman, Speckle Phenomena in Optics: Theory and Applications (Roberts & Co., 2007), p. 246.

J. W. Goodman, Speckle Phenomena in Optics: Theory and Applications (Roberts & Co., 2007), p. 244.

M. Busker, Laser Projection: Coupling Optics, Light Management, and Speckle Reduction (VDM Verlag, 2008), pp. 115–117.

R. Grasser, H. Shi, and T. A. Bartlett, “Speckle reduction in display systems that employ coherent light sources,” US Patent 2010/0079848 A1 (2010).

B. Lippey, W. Beck, and I. Turner, “Despeckling apparatus and method,” US Patent 2011/0134510 A1.

J. W. Goodman, Speckle Phenomena in Optics: Theory and Applications (Roberts & Co., 2007), p. 214.

J. W. Goodman, Speckle Phenomena in Optics: Theory and Applications (Roberts & Co., 2007), p. 221.

G. Westheimer, “The eye as an optical instrument,” in Handbook of Perception, J. Thomas, ed. (Wiley & Sons, 1986), chap. 4.1–4.20.

J. W. Goodman, Speckle Phenomena in Optics: Theory and Applications (Roberts & Co., 2007), p. 176.

M. Busker, Laser Projection: Coupling Optics, Light Management, and Speckle Reduction (VDM Verlag, 2008), pp. 90–93.

J. G. Manni and R. J. Martinsen, “Systems and methods for speckle reduction through bandwidth enhancement,” US 6,975,294 B2. Dec. 2005.

G. P. Agrawal, Nonlinear Fiber Optics (Academic Press; 2007), Chap. 4.

P. F. Moulton, “Three-color coherent light system,” US 5,740,190, April 14, 1998.

G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, 1995).

B. Chann and R. Huang, “Scalable wavelength beam combining systems and method,” US2011 / 0216792A1, Sept. 2011.

J. W. Goodman, Speckle Phenomena in Optics: Theory and Applications (Roberts & Co., 2007), p. 179.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

(a) Speckle without carbon disulfide cell or fiber bundle. (b) Speckle with fiber bundle only. (c) Speckle with disulfide cell and fiber bundle. From [2] with permission.

Fig. 2
Fig. 2

Schematic layout of envisioned low-speckle laser projection system

Fig. 3
Fig. 3

Speckle contrast, C(L), versus fiber length for fiber NAs of 0.11 (solid red), 0.22 (dotted blue), and 0.44 (dashed green), assuming a Gaussian spectral profile with 1/e half-width = 1.0 nm. Fiber length is in meters and is shown on a log scale.

Fig. 4
Fig. 4

Speckle contrast as a function of Y = (2πΔν NA2 L) / (2√3n1c) when the source spectrum has a multi-line structure with linewidth, Δλ, much smaller than the line spacing, Δλs.

Fig. 5
Fig. 5

Speckle contrast versus fiber length for Δλs = 0.2 nm and Δλe = 2 nm, and four different values of Δλ: 0.01 nm (solid red), 0.025 nm (dotted blue), 0.05 nm (dashed green), and 0.1 nm (dashed red).

Fig. 6
Fig. 6

Same as Fig. 5 except Δλs = 0.2 nm and Δλe = 0.5 nm. Δλ = 0.01 nm (solid red), 0.025 nm (dotted blue), 0.05 nm (dashed green), and 0.1 nm (dashed red).

Fig. 7
Fig. 7

Typical setup for wavelength beam combining of emitters in a diode array bar using a grating and external cavity. From [28].

Fig. 8
Fig. 8

Typical wavelength beam combined spectrum. From [28].

Fig. 9
Fig. 9

Output spectra for 8-psec pulses at 527 nm propagating through different lengths of 100-micron-core glass fiber: (a) No fiber (b) 22 cm (c) 42 cm and (d) 84 cm. From [34].

Fig. 10
Fig. 10

Optical system for extended method.

Tables (1)

Tables Icon

Table 1 Lengths of multimode delivery fiber needed to achieve a speckle contrast of 0.01 at fiber end given values of spectral bandwidth and fiber NA, and assuming a true Gaussian spectrum with a 500 nm center wavelength. The calculated fiber lengths are in meters.

Equations (33)

Equations on this page are rendered with MathJax. Learn more.

C= [ P i 2 P i 2 ] 0.5 P i
R= R λ R σ R Ω
C=1/R
R λ = [Δλ/δλ] 0.5 ,δλ= λ 2 /(2Δd)
R λ =[2Δd/ L c ] 0.5 [ N eff ] 0.5 , L c = λ 2 /Δλ
δτ= n 1 LΔ c ;Δ ( n 1 n 2 ) n 1
δτ= L (NA) 2 2 n 1 c
δτ= (NA) 2 L L c 2 n 1 c
Contrast=γ, γ 2 = dνCp(ν)| h ^ (ν) | 2 = dν C p (ν) C ^ h (ν)
C p (ν)= d ν P( ν ) P( ν ν) I 2 , dν C p (ν)=1
h ^ (ν)= dth(t) e i2πνt , dth(t)=1
C ^ h (ν)= dt e i2πνt d t h( t )h( t t)
C (L) 2 = [ 1+ 1 2 (2πΔν) 2 T g '2 ] 1/2 ;| Δν |= c λ 2 Δλ; T g ' δτ 3
C 2 (L)= [ 1+ 1 2 (2πΔνT ' g ) 2 ] 1/2 m n exp( ( m 2 + n 2 )Δ ν s 2 Δ ν e 2 )exp{ ( (mn)Δ ν s 2 1/2 Δν ) 2 {1 [1+ 1 2 (2πΔνT ' g ) 2 ] 1 } } m n exp( ( m 2 + n 2 )Δ ν s 2 Δ ν e 2 )
C 2 (L)= [ 1+ 1 2 (2πc Δλ λ 2 T g ' ) 2 ] 1/2 m n exp( ( m 2 + n 2 )Δ λ s 2 Δ λ e 2 )exp{ ( (mn)Δ λ s 2 1/2 Δλ ) 2 {1 [1+ 1 2 (2πc Δλ λ 2 T g ' ) 2 ] 1 } } m n exp( ( m 2 + n 2 )Δ λ s 2 Δ λ e 2 )
C I 2 (L) [ 1+ 1 2 (2πΔ ν e ) 2 T g '2 ] 1/2 ;Δ ν e = c λ 2 Δ λ e ; T g ' LN A 2 3 2 n 1 c
C II 2 m exp( 2 m 2 Δ λ s 2 Δ λ e 2 ) m n exp( ( m 2 + n 2 )Δ λ s 2 Δ λ e 2 ) (RegimeII;plateauregion)
C II 2 1 (2π) 1/2 Δ λ s Δλe 1 N eff
C II 2 = n P n 2 ( n P n ) 2
C III 2 (L) C II 2 [ 1+ 1 2 (2πΔν) 2 T g '2 ] 1/2 Δν= c λ 2 Δλ; T g ' LN A 2 3 2 n 1 c
C= M+K1 MK (diffuserdoesnotoverfillprojectionlens) C= M+K+1 MK (diffuseroverfillsprojectionlens)
C= 1 R Ω M+K MK = 1 M + 1 K
K(4.7x 10 7 ) D 2 z e 2 λ 2 z p 2 (projectionlensoverfilled)
K(1.3x 10 6 ) z e 2 b 2 m 2 (projectionlensnotoverfilled)
C= 1 R λ = [ K G (Δν)exp[ σ h 2 ( 2πΔν c ) 2 ]dΔν ] 0.5
C= [ 2 πδν exp( 2Δ ν 2 δ ν 2 ) exp( σ h 2 ( 2πΔν c ) 2 dΔν ] 0.5
C= 1 R λ [ ( 1+8 π 2 ( δλ λ ) 2 ( σ h λ ) 2 ) 0.5 ] 0.5
C 2 = [ 1+ 1 2 (8π Δλ λ σ h λ ) 2 ] 1/2 m n exp( ( m 2 + n 2 )Δ λ s 2 Δ λ e 2 )exp{ ( (mn)Δ λ s 2 1/2 Δλ ) 2 {1 [1+ 1 2 (8π Δλ λ σ h λ ) 2 ] 1 } } m n exp( ( m 2 + n 2 )Δ λ s 2 Δ λ e 2 )
Δ λ s =Δx( d f )cosθ
Δν 2L n 2 I o λ o τ orΔλ λ o nc 2L n 2 I o τ
C= 1 R Ω = M+K MK = 1 M + 1 K
C= 1 R Ω = 1 N fiber 1/2 C end 2 + 1 K' ;K'=K [ N A collimator N A projector ] 2
Δx= f m proj θ eye

Metrics