Abstract

We report on direct measurements of the magnetic near-field of metamaterial split ring resonators at terahertz frequencies using a magnetic field sensitive material. Specifically, planar split ring resonators are fabricated on a single magneto-optically active terbium gallium garnet crystal. Normally incident terahertz radiation couples to the resonator inducing a magnetic dipole oscillating perpendicular to the crystal surface. Faraday rotation of the polarisation of a near-infrared probe beam directly measures the magnetic near-field with 100 femtosecond temporal resolution and (λ/200) spatial resolution. Numerical simulations suggest that the magnetic field can be enhanced in the plane of the resonator by as much as a factor of 200 compared to the incident field strength. Our results provide a route towards hybrid devices for dynamic magneto-active control of light such as isolators, and highlight the utility of split ring resonators as compact probes of magnetic phenomena in condensed matter.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966–3969 (2000).
    [CrossRef] [PubMed]
  2. M. A. Seo, A. J. L. Adam, J. H. Kang, J. W. Lee, S. C. Jeoung, Q. H. Park, P. C. M. Planken, and D. S. Kim, “Fourier-transform terahertz near-field imaging of one-dimensional slit arrays: mapping of electric-field-, magnetic-field-, and poynting vectors,” Opt. Express 15, 11781–11789 (2007).
    [CrossRef] [PubMed]
  3. Y. Kawano and K. Ishibashi, “An on-chip near-field terahertz probe and detector,” Nat. Photonics 2, 618–621 (2008).
    [CrossRef]
  4. A. Bitzer, H. Merbold, A. Thoman, T. Feurer, H. Helm, and M. Walther, “Terahertz near-field imaging of electric and magnetic resonances of a planar metamaterial,” Opt. Express 17, 3826–3834 (2009).
    [CrossRef] [PubMed]
  5. M. Burresi, D. van Oosten, T. Kampfrath, H. Schoenmaker, R. Heideman, A. Leinse, and L. Kuipers, “Probing the magnetic field of light at optical frequencies,” Science 326, 550–553 (2009).
    [CrossRef] [PubMed]
  6. E. Devaux, A. Dereux, E. Bourillot, J. -C. Weeber, Y. Lacroute, and J. -P. Goudonnet, “Local detection of the optical magnetic field in the near zone of dielectric samples,” Phys. Rev. B 62, 10504–10514 (2000).
    [CrossRef]
  7. H. W. Kihm, S. M. Koo, Q. H. Kim, K. Bao, J. E. Kihm, W. S. Bak, S. H. Eah, C. Lienau, H. Kim, P. Nordlander, N. J. Halas, N. K. Park, and D. -S. Kim, “Bethe-hole polarization analyser for the magnetic vector of light,” Nat. Commun. 2, 451 (2011).
    [CrossRef] [PubMed]
  8. C. -C. Chen and J. F. Whitaker, “An optically-interrogated microwave-poynting-vector sensor using cadmium manganese telluride,” Opt. Express 18, 12239–12248 (2010).
    [CrossRef] [PubMed]
  9. J. A. Riordan, F. G. Sun, Z. G. Lu, and X. C. Zhang, “Free-space transient magneto-optic sampling,” Appl. Phys. Lett. 71, 1452–1454 (1997).
    [CrossRef]
  10. W. J. Padilla, A. J. Taylor, C. Highstrete, M. Lee, and R. D. Averitt, “Dynamical electric and magnetic metamate-rial response at terahertz frequencies,” Phys. Rev. Lett. 96, 107401 (2006).
    [CrossRef] [PubMed]
  11. W. J. Padilla, M. T. Aronsson, C. Highstrete, M. Lee, A. J. Taylor, and R. D. Averitt, “Electrically resonant terahertz metamaterials:theoretical and experimental investigations,” Phys. Rev. B 75, 041102 (2007).
    [CrossRef]
  12. H. -T. Chen, J. F. O’Hara, A. J. Taylor, and R. D. Averitt, “Complementary planar terahertz metamaterials,” Opt. Express 15, 1084–1095 (2007).
    [CrossRef] [PubMed]
  13. N. Liu, H. Guo, L. Fu, H. Schweizer, S. Kaiser, and H. Giessen, “Electromagnetic resonances in single and double split-ring resonator metamaterials in the near infrared spectral region,” Phys. Status Solidi B,  244, 1251–1255 (2007).
    [CrossRef]
  14. T. Zentgraf, J. Dorfmuller, C. Rockstuhl, C. Etrich, R. Vogelgesang, K. Kern, T. Pertsch, F. Lederer, and H. Giessen, “Amplitude- and phase-resolved optical near fields of split-ring-resonator-based metamaterials,” Opt. Lett. 33, 848–850 (2008).
    [CrossRef] [PubMed]
  15. A. Bitzer, A. Ortner, H. Merbold, T. Feurer, and M. Walther, “Terahertz near-field microscopy of complementary planar metamaterials: Babinet’s principle,” Opt. Express 19, 2537–2545 (2011).
    [CrossRef] [PubMed]
  16. G. Zhao, R. N. Schouten, N. van der Valk, W. T. Wenckebach, and P. C. M. Planken, “Design and performance of a THz emission and detection setup based on a semi-insulating GaAs emitter,” Rev. Sci. Instrum. 73, 1715–1719 (2002).
    [CrossRef]
  17. J. Riordan and X. -C. Zhang, “Sampling of free-space magnetic pulses,” Opt. Quant. Electron. 32, 489–502 (2000).
    [CrossRef]
  18. A. J. L. Adam, J. M. Brok, M. A. Seo, K. J. Ahn, D. S. Kim, J. H. Kang, Q. H. Park, M. Nagel, and P. C. M. Planken, “Advanced terahertz electric near-field measurements at sub-wavelength diameter metallic apertures,” Opt. Express 16, 7407–7417 (2008).
    [CrossRef] [PubMed]
  19. A. Sell, A. Leitenstorfer, and R. Huber, “Phase-locked generation and field-resolved detection of widely tunable terahertz pulses with amplitudes exceeding 100 MV/cm,” Opt. Lett. 33, 2767–2769 (2008).
    [CrossRef] [PubMed]

2011 (2)

H. W. Kihm, S. M. Koo, Q. H. Kim, K. Bao, J. E. Kihm, W. S. Bak, S. H. Eah, C. Lienau, H. Kim, P. Nordlander, N. J. Halas, N. K. Park, and D. -S. Kim, “Bethe-hole polarization analyser for the magnetic vector of light,” Nat. Commun. 2, 451 (2011).
[CrossRef] [PubMed]

A. Bitzer, A. Ortner, H. Merbold, T. Feurer, and M. Walther, “Terahertz near-field microscopy of complementary planar metamaterials: Babinet’s principle,” Opt. Express 19, 2537–2545 (2011).
[CrossRef] [PubMed]

2010 (1)

2009 (2)

A. Bitzer, H. Merbold, A. Thoman, T. Feurer, H. Helm, and M. Walther, “Terahertz near-field imaging of electric and magnetic resonances of a planar metamaterial,” Opt. Express 17, 3826–3834 (2009).
[CrossRef] [PubMed]

M. Burresi, D. van Oosten, T. Kampfrath, H. Schoenmaker, R. Heideman, A. Leinse, and L. Kuipers, “Probing the magnetic field of light at optical frequencies,” Science 326, 550–553 (2009).
[CrossRef] [PubMed]

2008 (4)

2007 (4)

N. Liu, H. Guo, L. Fu, H. Schweizer, S. Kaiser, and H. Giessen, “Electromagnetic resonances in single and double split-ring resonator metamaterials in the near infrared spectral region,” Phys. Status Solidi B,  244, 1251–1255 (2007).
[CrossRef]

H. -T. Chen, J. F. O’Hara, A. J. Taylor, and R. D. Averitt, “Complementary planar terahertz metamaterials,” Opt. Express 15, 1084–1095 (2007).
[CrossRef] [PubMed]

M. A. Seo, A. J. L. Adam, J. H. Kang, J. W. Lee, S. C. Jeoung, Q. H. Park, P. C. M. Planken, and D. S. Kim, “Fourier-transform terahertz near-field imaging of one-dimensional slit arrays: mapping of electric-field-, magnetic-field-, and poynting vectors,” Opt. Express 15, 11781–11789 (2007).
[CrossRef] [PubMed]

W. J. Padilla, M. T. Aronsson, C. Highstrete, M. Lee, A. J. Taylor, and R. D. Averitt, “Electrically resonant terahertz metamaterials:theoretical and experimental investigations,” Phys. Rev. B 75, 041102 (2007).
[CrossRef]

2006 (1)

W. J. Padilla, A. J. Taylor, C. Highstrete, M. Lee, and R. D. Averitt, “Dynamical electric and magnetic metamate-rial response at terahertz frequencies,” Phys. Rev. Lett. 96, 107401 (2006).
[CrossRef] [PubMed]

2002 (1)

G. Zhao, R. N. Schouten, N. van der Valk, W. T. Wenckebach, and P. C. M. Planken, “Design and performance of a THz emission and detection setup based on a semi-insulating GaAs emitter,” Rev. Sci. Instrum. 73, 1715–1719 (2002).
[CrossRef]

2000 (3)

J. Riordan and X. -C. Zhang, “Sampling of free-space magnetic pulses,” Opt. Quant. Electron. 32, 489–502 (2000).
[CrossRef]

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966–3969 (2000).
[CrossRef] [PubMed]

E. Devaux, A. Dereux, E. Bourillot, J. -C. Weeber, Y. Lacroute, and J. -P. Goudonnet, “Local detection of the optical magnetic field in the near zone of dielectric samples,” Phys. Rev. B 62, 10504–10514 (2000).
[CrossRef]

1997 (1)

J. A. Riordan, F. G. Sun, Z. G. Lu, and X. C. Zhang, “Free-space transient magneto-optic sampling,” Appl. Phys. Lett. 71, 1452–1454 (1997).
[CrossRef]

Adam, A. J. L.

Ahn, K. J.

Aronsson, M. T.

W. J. Padilla, M. T. Aronsson, C. Highstrete, M. Lee, A. J. Taylor, and R. D. Averitt, “Electrically resonant terahertz metamaterials:theoretical and experimental investigations,” Phys. Rev. B 75, 041102 (2007).
[CrossRef]

Averitt, R. D.

W. J. Padilla, M. T. Aronsson, C. Highstrete, M. Lee, A. J. Taylor, and R. D. Averitt, “Electrically resonant terahertz metamaterials:theoretical and experimental investigations,” Phys. Rev. B 75, 041102 (2007).
[CrossRef]

H. -T. Chen, J. F. O’Hara, A. J. Taylor, and R. D. Averitt, “Complementary planar terahertz metamaterials,” Opt. Express 15, 1084–1095 (2007).
[CrossRef] [PubMed]

W. J. Padilla, A. J. Taylor, C. Highstrete, M. Lee, and R. D. Averitt, “Dynamical electric and magnetic metamate-rial response at terahertz frequencies,” Phys. Rev. Lett. 96, 107401 (2006).
[CrossRef] [PubMed]

Bak, W. S.

H. W. Kihm, S. M. Koo, Q. H. Kim, K. Bao, J. E. Kihm, W. S. Bak, S. H. Eah, C. Lienau, H. Kim, P. Nordlander, N. J. Halas, N. K. Park, and D. -S. Kim, “Bethe-hole polarization analyser for the magnetic vector of light,” Nat. Commun. 2, 451 (2011).
[CrossRef] [PubMed]

Bao, K.

H. W. Kihm, S. M. Koo, Q. H. Kim, K. Bao, J. E. Kihm, W. S. Bak, S. H. Eah, C. Lienau, H. Kim, P. Nordlander, N. J. Halas, N. K. Park, and D. -S. Kim, “Bethe-hole polarization analyser for the magnetic vector of light,” Nat. Commun. 2, 451 (2011).
[CrossRef] [PubMed]

Bitzer, A.

Bourillot, E.

E. Devaux, A. Dereux, E. Bourillot, J. -C. Weeber, Y. Lacroute, and J. -P. Goudonnet, “Local detection of the optical magnetic field in the near zone of dielectric samples,” Phys. Rev. B 62, 10504–10514 (2000).
[CrossRef]

Brok, J. M.

Burresi, M.

M. Burresi, D. van Oosten, T. Kampfrath, H. Schoenmaker, R. Heideman, A. Leinse, and L. Kuipers, “Probing the magnetic field of light at optical frequencies,” Science 326, 550–553 (2009).
[CrossRef] [PubMed]

Chen, C. -C.

Chen, H. -T.

Dereux, A.

E. Devaux, A. Dereux, E. Bourillot, J. -C. Weeber, Y. Lacroute, and J. -P. Goudonnet, “Local detection of the optical magnetic field in the near zone of dielectric samples,” Phys. Rev. B 62, 10504–10514 (2000).
[CrossRef]

Devaux, E.

E. Devaux, A. Dereux, E. Bourillot, J. -C. Weeber, Y. Lacroute, and J. -P. Goudonnet, “Local detection of the optical magnetic field in the near zone of dielectric samples,” Phys. Rev. B 62, 10504–10514 (2000).
[CrossRef]

Dorfmuller, J.

Eah, S. H.

H. W. Kihm, S. M. Koo, Q. H. Kim, K. Bao, J. E. Kihm, W. S. Bak, S. H. Eah, C. Lienau, H. Kim, P. Nordlander, N. J. Halas, N. K. Park, and D. -S. Kim, “Bethe-hole polarization analyser for the magnetic vector of light,” Nat. Commun. 2, 451 (2011).
[CrossRef] [PubMed]

Etrich, C.

Feurer, T.

Fu, L.

N. Liu, H. Guo, L. Fu, H. Schweizer, S. Kaiser, and H. Giessen, “Electromagnetic resonances in single and double split-ring resonator metamaterials in the near infrared spectral region,” Phys. Status Solidi B,  244, 1251–1255 (2007).
[CrossRef]

Giessen, H.

T. Zentgraf, J. Dorfmuller, C. Rockstuhl, C. Etrich, R. Vogelgesang, K. Kern, T. Pertsch, F. Lederer, and H. Giessen, “Amplitude- and phase-resolved optical near fields of split-ring-resonator-based metamaterials,” Opt. Lett. 33, 848–850 (2008).
[CrossRef] [PubMed]

N. Liu, H. Guo, L. Fu, H. Schweizer, S. Kaiser, and H. Giessen, “Electromagnetic resonances in single and double split-ring resonator metamaterials in the near infrared spectral region,” Phys. Status Solidi B,  244, 1251–1255 (2007).
[CrossRef]

Goudonnet, J. -P.

E. Devaux, A. Dereux, E. Bourillot, J. -C. Weeber, Y. Lacroute, and J. -P. Goudonnet, “Local detection of the optical magnetic field in the near zone of dielectric samples,” Phys. Rev. B 62, 10504–10514 (2000).
[CrossRef]

Guo, H.

N. Liu, H. Guo, L. Fu, H. Schweizer, S. Kaiser, and H. Giessen, “Electromagnetic resonances in single and double split-ring resonator metamaterials in the near infrared spectral region,” Phys. Status Solidi B,  244, 1251–1255 (2007).
[CrossRef]

Halas, N. J.

H. W. Kihm, S. M. Koo, Q. H. Kim, K. Bao, J. E. Kihm, W. S. Bak, S. H. Eah, C. Lienau, H. Kim, P. Nordlander, N. J. Halas, N. K. Park, and D. -S. Kim, “Bethe-hole polarization analyser for the magnetic vector of light,” Nat. Commun. 2, 451 (2011).
[CrossRef] [PubMed]

Heideman, R.

M. Burresi, D. van Oosten, T. Kampfrath, H. Schoenmaker, R. Heideman, A. Leinse, and L. Kuipers, “Probing the magnetic field of light at optical frequencies,” Science 326, 550–553 (2009).
[CrossRef] [PubMed]

Helm, H.

Highstrete, C.

W. J. Padilla, M. T. Aronsson, C. Highstrete, M. Lee, A. J. Taylor, and R. D. Averitt, “Electrically resonant terahertz metamaterials:theoretical and experimental investigations,” Phys. Rev. B 75, 041102 (2007).
[CrossRef]

W. J. Padilla, A. J. Taylor, C. Highstrete, M. Lee, and R. D. Averitt, “Dynamical electric and magnetic metamate-rial response at terahertz frequencies,” Phys. Rev. Lett. 96, 107401 (2006).
[CrossRef] [PubMed]

Huber, R.

Ishibashi, K.

Y. Kawano and K. Ishibashi, “An on-chip near-field terahertz probe and detector,” Nat. Photonics 2, 618–621 (2008).
[CrossRef]

Jeoung, S. C.

Kaiser, S.

N. Liu, H. Guo, L. Fu, H. Schweizer, S. Kaiser, and H. Giessen, “Electromagnetic resonances in single and double split-ring resonator metamaterials in the near infrared spectral region,” Phys. Status Solidi B,  244, 1251–1255 (2007).
[CrossRef]

Kampfrath, T.

M. Burresi, D. van Oosten, T. Kampfrath, H. Schoenmaker, R. Heideman, A. Leinse, and L. Kuipers, “Probing the magnetic field of light at optical frequencies,” Science 326, 550–553 (2009).
[CrossRef] [PubMed]

Kang, J. H.

Kawano, Y.

Y. Kawano and K. Ishibashi, “An on-chip near-field terahertz probe and detector,” Nat. Photonics 2, 618–621 (2008).
[CrossRef]

Kern, K.

Kihm, H. W.

H. W. Kihm, S. M. Koo, Q. H. Kim, K. Bao, J. E. Kihm, W. S. Bak, S. H. Eah, C. Lienau, H. Kim, P. Nordlander, N. J. Halas, N. K. Park, and D. -S. Kim, “Bethe-hole polarization analyser for the magnetic vector of light,” Nat. Commun. 2, 451 (2011).
[CrossRef] [PubMed]

Kihm, J. E.

H. W. Kihm, S. M. Koo, Q. H. Kim, K. Bao, J. E. Kihm, W. S. Bak, S. H. Eah, C. Lienau, H. Kim, P. Nordlander, N. J. Halas, N. K. Park, and D. -S. Kim, “Bethe-hole polarization analyser for the magnetic vector of light,” Nat. Commun. 2, 451 (2011).
[CrossRef] [PubMed]

Kim, D. S.

Kim, D. -S.

H. W. Kihm, S. M. Koo, Q. H. Kim, K. Bao, J. E. Kihm, W. S. Bak, S. H. Eah, C. Lienau, H. Kim, P. Nordlander, N. J. Halas, N. K. Park, and D. -S. Kim, “Bethe-hole polarization analyser for the magnetic vector of light,” Nat. Commun. 2, 451 (2011).
[CrossRef] [PubMed]

Kim, H.

H. W. Kihm, S. M. Koo, Q. H. Kim, K. Bao, J. E. Kihm, W. S. Bak, S. H. Eah, C. Lienau, H. Kim, P. Nordlander, N. J. Halas, N. K. Park, and D. -S. Kim, “Bethe-hole polarization analyser for the magnetic vector of light,” Nat. Commun. 2, 451 (2011).
[CrossRef] [PubMed]

Kim, Q. H.

H. W. Kihm, S. M. Koo, Q. H. Kim, K. Bao, J. E. Kihm, W. S. Bak, S. H. Eah, C. Lienau, H. Kim, P. Nordlander, N. J. Halas, N. K. Park, and D. -S. Kim, “Bethe-hole polarization analyser for the magnetic vector of light,” Nat. Commun. 2, 451 (2011).
[CrossRef] [PubMed]

Koo, S. M.

H. W. Kihm, S. M. Koo, Q. H. Kim, K. Bao, J. E. Kihm, W. S. Bak, S. H. Eah, C. Lienau, H. Kim, P. Nordlander, N. J. Halas, N. K. Park, and D. -S. Kim, “Bethe-hole polarization analyser for the magnetic vector of light,” Nat. Commun. 2, 451 (2011).
[CrossRef] [PubMed]

Kuipers, L.

M. Burresi, D. van Oosten, T. Kampfrath, H. Schoenmaker, R. Heideman, A. Leinse, and L. Kuipers, “Probing the magnetic field of light at optical frequencies,” Science 326, 550–553 (2009).
[CrossRef] [PubMed]

Lacroute, Y.

E. Devaux, A. Dereux, E. Bourillot, J. -C. Weeber, Y. Lacroute, and J. -P. Goudonnet, “Local detection of the optical magnetic field in the near zone of dielectric samples,” Phys. Rev. B 62, 10504–10514 (2000).
[CrossRef]

Lederer, F.

Lee, J. W.

Lee, M.

W. J. Padilla, M. T. Aronsson, C. Highstrete, M. Lee, A. J. Taylor, and R. D. Averitt, “Electrically resonant terahertz metamaterials:theoretical and experimental investigations,” Phys. Rev. B 75, 041102 (2007).
[CrossRef]

W. J. Padilla, A. J. Taylor, C. Highstrete, M. Lee, and R. D. Averitt, “Dynamical electric and magnetic metamate-rial response at terahertz frequencies,” Phys. Rev. Lett. 96, 107401 (2006).
[CrossRef] [PubMed]

Leinse, A.

M. Burresi, D. van Oosten, T. Kampfrath, H. Schoenmaker, R. Heideman, A. Leinse, and L. Kuipers, “Probing the magnetic field of light at optical frequencies,” Science 326, 550–553 (2009).
[CrossRef] [PubMed]

Leitenstorfer, A.

Lienau, C.

H. W. Kihm, S. M. Koo, Q. H. Kim, K. Bao, J. E. Kihm, W. S. Bak, S. H. Eah, C. Lienau, H. Kim, P. Nordlander, N. J. Halas, N. K. Park, and D. -S. Kim, “Bethe-hole polarization analyser for the magnetic vector of light,” Nat. Commun. 2, 451 (2011).
[CrossRef] [PubMed]

Liu, N.

N. Liu, H. Guo, L. Fu, H. Schweizer, S. Kaiser, and H. Giessen, “Electromagnetic resonances in single and double split-ring resonator metamaterials in the near infrared spectral region,” Phys. Status Solidi B,  244, 1251–1255 (2007).
[CrossRef]

Lu, Z. G.

J. A. Riordan, F. G. Sun, Z. G. Lu, and X. C. Zhang, “Free-space transient magneto-optic sampling,” Appl. Phys. Lett. 71, 1452–1454 (1997).
[CrossRef]

Merbold, H.

Nagel, M.

Nordlander, P.

H. W. Kihm, S. M. Koo, Q. H. Kim, K. Bao, J. E. Kihm, W. S. Bak, S. H. Eah, C. Lienau, H. Kim, P. Nordlander, N. J. Halas, N. K. Park, and D. -S. Kim, “Bethe-hole polarization analyser for the magnetic vector of light,” Nat. Commun. 2, 451 (2011).
[CrossRef] [PubMed]

O’Hara, J. F.

Ortner, A.

Padilla, W. J.

W. J. Padilla, M. T. Aronsson, C. Highstrete, M. Lee, A. J. Taylor, and R. D. Averitt, “Electrically resonant terahertz metamaterials:theoretical and experimental investigations,” Phys. Rev. B 75, 041102 (2007).
[CrossRef]

W. J. Padilla, A. J. Taylor, C. Highstrete, M. Lee, and R. D. Averitt, “Dynamical electric and magnetic metamate-rial response at terahertz frequencies,” Phys. Rev. Lett. 96, 107401 (2006).
[CrossRef] [PubMed]

Park, N. K.

H. W. Kihm, S. M. Koo, Q. H. Kim, K. Bao, J. E. Kihm, W. S. Bak, S. H. Eah, C. Lienau, H. Kim, P. Nordlander, N. J. Halas, N. K. Park, and D. -S. Kim, “Bethe-hole polarization analyser for the magnetic vector of light,” Nat. Commun. 2, 451 (2011).
[CrossRef] [PubMed]

Park, Q. H.

Pendry, J. B.

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966–3969 (2000).
[CrossRef] [PubMed]

Pertsch, T.

Planken, P. C. M.

Riordan, J.

J. Riordan and X. -C. Zhang, “Sampling of free-space magnetic pulses,” Opt. Quant. Electron. 32, 489–502 (2000).
[CrossRef]

Riordan, J. A.

J. A. Riordan, F. G. Sun, Z. G. Lu, and X. C. Zhang, “Free-space transient magneto-optic sampling,” Appl. Phys. Lett. 71, 1452–1454 (1997).
[CrossRef]

Rockstuhl, C.

Schoenmaker, H.

M. Burresi, D. van Oosten, T. Kampfrath, H. Schoenmaker, R. Heideman, A. Leinse, and L. Kuipers, “Probing the magnetic field of light at optical frequencies,” Science 326, 550–553 (2009).
[CrossRef] [PubMed]

Schouten, R. N.

G. Zhao, R. N. Schouten, N. van der Valk, W. T. Wenckebach, and P. C. M. Planken, “Design and performance of a THz emission and detection setup based on a semi-insulating GaAs emitter,” Rev. Sci. Instrum. 73, 1715–1719 (2002).
[CrossRef]

Schweizer, H.

N. Liu, H. Guo, L. Fu, H. Schweizer, S. Kaiser, and H. Giessen, “Electromagnetic resonances in single and double split-ring resonator metamaterials in the near infrared spectral region,” Phys. Status Solidi B,  244, 1251–1255 (2007).
[CrossRef]

Sell, A.

Seo, M. A.

Sun, F. G.

J. A. Riordan, F. G. Sun, Z. G. Lu, and X. C. Zhang, “Free-space transient magneto-optic sampling,” Appl. Phys. Lett. 71, 1452–1454 (1997).
[CrossRef]

Taylor, A. J.

H. -T. Chen, J. F. O’Hara, A. J. Taylor, and R. D. Averitt, “Complementary planar terahertz metamaterials,” Opt. Express 15, 1084–1095 (2007).
[CrossRef] [PubMed]

W. J. Padilla, M. T. Aronsson, C. Highstrete, M. Lee, A. J. Taylor, and R. D. Averitt, “Electrically resonant terahertz metamaterials:theoretical and experimental investigations,” Phys. Rev. B 75, 041102 (2007).
[CrossRef]

W. J. Padilla, A. J. Taylor, C. Highstrete, M. Lee, and R. D. Averitt, “Dynamical electric and magnetic metamate-rial response at terahertz frequencies,” Phys. Rev. Lett. 96, 107401 (2006).
[CrossRef] [PubMed]

Thoman, A.

van der Valk, N.

G. Zhao, R. N. Schouten, N. van der Valk, W. T. Wenckebach, and P. C. M. Planken, “Design and performance of a THz emission and detection setup based on a semi-insulating GaAs emitter,” Rev. Sci. Instrum. 73, 1715–1719 (2002).
[CrossRef]

van Oosten, D.

M. Burresi, D. van Oosten, T. Kampfrath, H. Schoenmaker, R. Heideman, A. Leinse, and L. Kuipers, “Probing the magnetic field of light at optical frequencies,” Science 326, 550–553 (2009).
[CrossRef] [PubMed]

Vogelgesang, R.

Walther, M.

Weeber, J. -C.

E. Devaux, A. Dereux, E. Bourillot, J. -C. Weeber, Y. Lacroute, and J. -P. Goudonnet, “Local detection of the optical magnetic field in the near zone of dielectric samples,” Phys. Rev. B 62, 10504–10514 (2000).
[CrossRef]

Wenckebach, W. T.

G. Zhao, R. N. Schouten, N. van der Valk, W. T. Wenckebach, and P. C. M. Planken, “Design and performance of a THz emission and detection setup based on a semi-insulating GaAs emitter,” Rev. Sci. Instrum. 73, 1715–1719 (2002).
[CrossRef]

Whitaker, J. F.

Zentgraf, T.

Zhang, X. C.

J. A. Riordan, F. G. Sun, Z. G. Lu, and X. C. Zhang, “Free-space transient magneto-optic sampling,” Appl. Phys. Lett. 71, 1452–1454 (1997).
[CrossRef]

Zhang, X. -C.

J. Riordan and X. -C. Zhang, “Sampling of free-space magnetic pulses,” Opt. Quant. Electron. 32, 489–502 (2000).
[CrossRef]

Zhao, G.

G. Zhao, R. N. Schouten, N. van der Valk, W. T. Wenckebach, and P. C. M. Planken, “Design and performance of a THz emission and detection setup based on a semi-insulating GaAs emitter,” Rev. Sci. Instrum. 73, 1715–1719 (2002).
[CrossRef]

Appl. Phys. Lett. (1)

J. A. Riordan, F. G. Sun, Z. G. Lu, and X. C. Zhang, “Free-space transient magneto-optic sampling,” Appl. Phys. Lett. 71, 1452–1454 (1997).
[CrossRef]

Nat. Commun. (1)

H. W. Kihm, S. M. Koo, Q. H. Kim, K. Bao, J. E. Kihm, W. S. Bak, S. H. Eah, C. Lienau, H. Kim, P. Nordlander, N. J. Halas, N. K. Park, and D. -S. Kim, “Bethe-hole polarization analyser for the magnetic vector of light,” Nat. Commun. 2, 451 (2011).
[CrossRef] [PubMed]

Nat. Photonics (1)

Y. Kawano and K. Ishibashi, “An on-chip near-field terahertz probe and detector,” Nat. Photonics 2, 618–621 (2008).
[CrossRef]

Opt. Express (6)

Opt. Lett. (2)

Opt. Quant. Electron. (1)

J. Riordan and X. -C. Zhang, “Sampling of free-space magnetic pulses,” Opt. Quant. Electron. 32, 489–502 (2000).
[CrossRef]

Phys. Rev. B (2)

E. Devaux, A. Dereux, E. Bourillot, J. -C. Weeber, Y. Lacroute, and J. -P. Goudonnet, “Local detection of the optical magnetic field in the near zone of dielectric samples,” Phys. Rev. B 62, 10504–10514 (2000).
[CrossRef]

W. J. Padilla, M. T. Aronsson, C. Highstrete, M. Lee, A. J. Taylor, and R. D. Averitt, “Electrically resonant terahertz metamaterials:theoretical and experimental investigations,” Phys. Rev. B 75, 041102 (2007).
[CrossRef]

Phys. Rev. Lett. (2)

W. J. Padilla, A. J. Taylor, C. Highstrete, M. Lee, and R. D. Averitt, “Dynamical electric and magnetic metamate-rial response at terahertz frequencies,” Phys. Rev. Lett. 96, 107401 (2006).
[CrossRef] [PubMed]

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966–3969 (2000).
[CrossRef] [PubMed]

Phys. Status Solidi B (1)

N. Liu, H. Guo, L. Fu, H. Schweizer, S. Kaiser, and H. Giessen, “Electromagnetic resonances in single and double split-ring resonator metamaterials in the near infrared spectral region,” Phys. Status Solidi B,  244, 1251–1255 (2007).
[CrossRef]

Rev. Sci. Instrum. (1)

G. Zhao, R. N. Schouten, N. van der Valk, W. T. Wenckebach, and P. C. M. Planken, “Design and performance of a THz emission and detection setup based on a semi-insulating GaAs emitter,” Rev. Sci. Instrum. 73, 1715–1719 (2002).
[CrossRef]

Science (1)

M. Burresi, D. van Oosten, T. Kampfrath, H. Schoenmaker, R. Heideman, A. Leinse, and L. Kuipers, “Probing the magnetic field of light at optical frequencies,” Science 326, 550–553 (2009).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Design of the (a) single split ring resonator (sSRR) and of the (b) double split ring resonator (dSRR) The incident THz electric-field (blue) is polarised parallel along ŷ across the gap. It generates current flowing in the arms of the resonator, leading to a single magnetic dipole (green) for the sSRR and two magnetic dipoles of inverse polarisation for the dSRR. (c) Rotation of the probe polarisation due to the magnetic near-field present inside the TGG crystal. (d) Cross sectional view of the structure indicating different layers and the geometry of the beams.

Fig. 2
Fig. 2

(a) Measurement of the time dependent out-of-plane magnetic near-field Hz(t), induced by the electric field incident for the two different orientations of the sSRR shown in the insets. Measurements are taken at the positions indicated by the crosses. (b) Amplitude spectra calculated from the time-dependent magnetic field Hz(t) for the three different sSRR with dimensions given in Table 1. (c) Calculated surface current density at the resonance and two dimensional spatial distribution of the calculated amplitude d) and phase e) of Hz at the crystal surface at the resonance frequency of 166 GHz. One can see the 180° phase difference between the fields on the inside and outside of the structure.

Fig. 3
Fig. 3

Measured (left) and calculated (right) two-dimensional spatial distributions of the magnetic near-field Hz at the resonance frequency of sample sSRR-1: for z = 0, −10, −20 and −30 μm. The 2D measurement agrees mostly with the calculated spatial distributions between 10 and 20 μm below the surface.

Fig. 4
Fig. 4

(a) Magnitude of the magnetic near-field, Hz, inside the TGG crystal, vs. distance to the structure at the surface. The line has been taken below the cross indicated in the drawing. (b) Two dimensional spatial distribution of magnetic near-field after integration from z = 0 to z = −300 μm inside the crystal. The magnetic field distribution matches exactly to the distribution calculated at z = −20 μm distance, shown in Fig. 3.

Fig. 5
Fig. 5

(a) Measurement of the time dependent magnetic near-field Hz at positions indicated by the crosses in the Fig. 5(a), induced by the electric field incident on the structure. The field is reversed in sign for the left and right part of the structure as shown in the inset. (b) Associated spectrum of the out of plane magnetic near-field (c) Calculated surface current density and (d) two dimensional spatial distribution of the calculated amplitude and (e) phase of Hz at the crystal surface z = 0, immediately below the structure for the resonance frequency of 174 GHz.

Fig. 6
Fig. 6

Measured (left) and calculated (right) two-dimensional spatial distributions of the magnetic near-field Hz at the resonance frequency of sample dSRR-1: for z = 0, −10, −20 and −30 μm. The 2D measurement agrees mostly with the calculated spatial distributions between 10 and 20 μm below the surface.

Tables (1)

Tables Icon

Table 1 Summary of different single split resonators and the double split resonator simulated and measured in the near-field with the parameters indicated in the drawings on the right side.

Metrics