Abstract

Here we present a novel waveguide providing > 70% optical power confinement in a relatively small area, 0.12μm2, which could be used to fabricate quantum dot or other sub-wavelength-sized active regions, modulators or detectors on Si. This structure forms a novel, low-index waveguide which can be engineered to have properties similar to high-index or slot waveguides, showing that there is in fact a continuum between these two waveguides.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. W. Fang, H. Park, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, “Electrically pumped hybrid AlGaInAs-silicon evanescent laser,” Opt. Express 14(20), 9203–9210 (2006).
    [CrossRef] [PubMed]
  2. ITRS, “International technology roadmap for semiconductors interconnect” http://www.itrs.net/reports.html , (2009).
  3. F. E. Doany, B. G. Lee, S. Assefa, W. M. J. Green, M. Yang, C. L. Schow, C. V. Jahnes, S. Zhang, J. Singer, V. I. Kopp, J. A. Kash, and Y. A. Vlasov, “Multichannel high-bandwidth coupling of ultradense silicon photonic waveguide array to standard-pitch fiber array,” J. Lightwave Technol.  29(4), 475–482 (2011).
    [CrossRef]
  4. V. Almeida, Q. Xu, C. Barrios, and M. Lipson, “Guiding and confining light in void nanostructure,” Opt. Lett. 29(11), 1209–1211 (2004).
    [CrossRef] [PubMed]
  5. Q. Xu, V. Almeida, R. Panepucci, and M. Lipson, “Experimental demonstration of guiding and confining light in nanometer-size low-refractive-index material,” Opt. Lett. 29(14), 1626–1628 (2004).
    [CrossRef] [PubMed]
  6. J. T. Robinson, K. Preston, O. Painter, and M. Lipson, “First-principle derivation of gain in high-index-contrast waveguides,” Opt. Express 16(21), 16659–16669 (2008).
    [CrossRef] [PubMed]
  7. K. Srinivasan, M. Borselli, and O. Painter, “Cavity q, mode volume, and lasing threshold in small diameter AlGaAs microdisks with embedded quantum dots,” Opt. Express 14(3), 1094–1105 (2006).
    [CrossRef] [PubMed]
  8. E. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681–681 (1946).
  9. Q. Liu, S. Gao, Z. Li, Y. Xie, and S. He, “Dispersion engineering of a silicon-nanocrystal-based slot waveguide for broadband wavelength conversion,” Appl. Opt. 50(9), 1260–1265 (2011).
    [CrossRef] [PubMed]
  10. O. Painter, R. Lee, A. Scherer, A. Yariv, J. O’Brien, P. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284(5421), 1819–1821 (1999).
    [CrossRef] [PubMed]
  11. Z. Zheng, M. Iqbal, and J. Liu, “Dispersion characteristics of SOI-based slot optical waveguides,” Opt. Comm. 281(20), 5151–5155 (2008).
    [CrossRef]

2011 (2)

F. E. Doany, B. G. Lee, S. Assefa, W. M. J. Green, M. Yang, C. L. Schow, C. V. Jahnes, S. Zhang, J. Singer, V. I. Kopp, J. A. Kash, and Y. A. Vlasov, “Multichannel high-bandwidth coupling of ultradense silicon photonic waveguide array to standard-pitch fiber array,” J. Lightwave Technol.  29(4), 475–482 (2011).
[CrossRef]

Q. Liu, S. Gao, Z. Li, Y. Xie, and S. He, “Dispersion engineering of a silicon-nanocrystal-based slot waveguide for broadband wavelength conversion,” Appl. Opt. 50(9), 1260–1265 (2011).
[CrossRef] [PubMed]

2008 (2)

Z. Zheng, M. Iqbal, and J. Liu, “Dispersion characteristics of SOI-based slot optical waveguides,” Opt. Comm. 281(20), 5151–5155 (2008).
[CrossRef]

J. T. Robinson, K. Preston, O. Painter, and M. Lipson, “First-principle derivation of gain in high-index-contrast waveguides,” Opt. Express 16(21), 16659–16669 (2008).
[CrossRef] [PubMed]

2006 (2)

2004 (2)

1999 (1)

O. Painter, R. Lee, A. Scherer, A. Yariv, J. O’Brien, P. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284(5421), 1819–1821 (1999).
[CrossRef] [PubMed]

1946 (1)

E. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681–681 (1946).

Almeida, V.

Assefa, S.

F. E. Doany, B. G. Lee, S. Assefa, W. M. J. Green, M. Yang, C. L. Schow, C. V. Jahnes, S. Zhang, J. Singer, V. I. Kopp, J. A. Kash, and Y. A. Vlasov, “Multichannel high-bandwidth coupling of ultradense silicon photonic waveguide array to standard-pitch fiber array,” J. Lightwave Technol.  29(4), 475–482 (2011).
[CrossRef]

Barrios, C.

Borselli, M.

Bowers, J. E.

Cohen, O.

Dapkus, P.

O. Painter, R. Lee, A. Scherer, A. Yariv, J. O’Brien, P. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284(5421), 1819–1821 (1999).
[CrossRef] [PubMed]

Doany, F. E.

F. E. Doany, B. G. Lee, S. Assefa, W. M. J. Green, M. Yang, C. L. Schow, C. V. Jahnes, S. Zhang, J. Singer, V. I. Kopp, J. A. Kash, and Y. A. Vlasov, “Multichannel high-bandwidth coupling of ultradense silicon photonic waveguide array to standard-pitch fiber array,” J. Lightwave Technol.  29(4), 475–482 (2011).
[CrossRef]

Fang, A. W.

Gao, S.

Green, W. M. J.

F. E. Doany, B. G. Lee, S. Assefa, W. M. J. Green, M. Yang, C. L. Schow, C. V. Jahnes, S. Zhang, J. Singer, V. I. Kopp, J. A. Kash, and Y. A. Vlasov, “Multichannel high-bandwidth coupling of ultradense silicon photonic waveguide array to standard-pitch fiber array,” J. Lightwave Technol.  29(4), 475–482 (2011).
[CrossRef]

He, S.

Iqbal, M.

Z. Zheng, M. Iqbal, and J. Liu, “Dispersion characteristics of SOI-based slot optical waveguides,” Opt. Comm. 281(20), 5151–5155 (2008).
[CrossRef]

Jahnes, C. V.

F. E. Doany, B. G. Lee, S. Assefa, W. M. J. Green, M. Yang, C. L. Schow, C. V. Jahnes, S. Zhang, J. Singer, V. I. Kopp, J. A. Kash, and Y. A. Vlasov, “Multichannel high-bandwidth coupling of ultradense silicon photonic waveguide array to standard-pitch fiber array,” J. Lightwave Technol.  29(4), 475–482 (2011).
[CrossRef]

Jones, R.

Kash, J. A.

F. E. Doany, B. G. Lee, S. Assefa, W. M. J. Green, M. Yang, C. L. Schow, C. V. Jahnes, S. Zhang, J. Singer, V. I. Kopp, J. A. Kash, and Y. A. Vlasov, “Multichannel high-bandwidth coupling of ultradense silicon photonic waveguide array to standard-pitch fiber array,” J. Lightwave Technol.  29(4), 475–482 (2011).
[CrossRef]

Kim, I.

O. Painter, R. Lee, A. Scherer, A. Yariv, J. O’Brien, P. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284(5421), 1819–1821 (1999).
[CrossRef] [PubMed]

Kopp, V. I.

F. E. Doany, B. G. Lee, S. Assefa, W. M. J. Green, M. Yang, C. L. Schow, C. V. Jahnes, S. Zhang, J. Singer, V. I. Kopp, J. A. Kash, and Y. A. Vlasov, “Multichannel high-bandwidth coupling of ultradense silicon photonic waveguide array to standard-pitch fiber array,” J. Lightwave Technol.  29(4), 475–482 (2011).
[CrossRef]

Lee, B. G.

F. E. Doany, B. G. Lee, S. Assefa, W. M. J. Green, M. Yang, C. L. Schow, C. V. Jahnes, S. Zhang, J. Singer, V. I. Kopp, J. A. Kash, and Y. A. Vlasov, “Multichannel high-bandwidth coupling of ultradense silicon photonic waveguide array to standard-pitch fiber array,” J. Lightwave Technol.  29(4), 475–482 (2011).
[CrossRef]

Lee, R.

O. Painter, R. Lee, A. Scherer, A. Yariv, J. O’Brien, P. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284(5421), 1819–1821 (1999).
[CrossRef] [PubMed]

Li, Z.

Lipson, M.

Liu, J.

Z. Zheng, M. Iqbal, and J. Liu, “Dispersion characteristics of SOI-based slot optical waveguides,” Opt. Comm. 281(20), 5151–5155 (2008).
[CrossRef]

Liu, Q.

O’Brien, J.

O. Painter, R. Lee, A. Scherer, A. Yariv, J. O’Brien, P. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284(5421), 1819–1821 (1999).
[CrossRef] [PubMed]

Painter, O.

Panepucci, R.

Paniccia, M. J.

Park, H.

Preston, K.

Purcell, E.

E. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681–681 (1946).

Robinson, J. T.

Scherer, A.

O. Painter, R. Lee, A. Scherer, A. Yariv, J. O’Brien, P. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284(5421), 1819–1821 (1999).
[CrossRef] [PubMed]

Schow, C. L.

F. E. Doany, B. G. Lee, S. Assefa, W. M. J. Green, M. Yang, C. L. Schow, C. V. Jahnes, S. Zhang, J. Singer, V. I. Kopp, J. A. Kash, and Y. A. Vlasov, “Multichannel high-bandwidth coupling of ultradense silicon photonic waveguide array to standard-pitch fiber array,” J. Lightwave Technol.  29(4), 475–482 (2011).
[CrossRef]

Singer, J.

F. E. Doany, B. G. Lee, S. Assefa, W. M. J. Green, M. Yang, C. L. Schow, C. V. Jahnes, S. Zhang, J. Singer, V. I. Kopp, J. A. Kash, and Y. A. Vlasov, “Multichannel high-bandwidth coupling of ultradense silicon photonic waveguide array to standard-pitch fiber array,” J. Lightwave Technol.  29(4), 475–482 (2011).
[CrossRef]

Srinivasan, K.

Vlasov, Y. A.

F. E. Doany, B. G. Lee, S. Assefa, W. M. J. Green, M. Yang, C. L. Schow, C. V. Jahnes, S. Zhang, J. Singer, V. I. Kopp, J. A. Kash, and Y. A. Vlasov, “Multichannel high-bandwidth coupling of ultradense silicon photonic waveguide array to standard-pitch fiber array,” J. Lightwave Technol.  29(4), 475–482 (2011).
[CrossRef]

Xie, Y.

Xu, Q.

Yang, M.

F. E. Doany, B. G. Lee, S. Assefa, W. M. J. Green, M. Yang, C. L. Schow, C. V. Jahnes, S. Zhang, J. Singer, V. I. Kopp, J. A. Kash, and Y. A. Vlasov, “Multichannel high-bandwidth coupling of ultradense silicon photonic waveguide array to standard-pitch fiber array,” J. Lightwave Technol.  29(4), 475–482 (2011).
[CrossRef]

Yariv, A.

O. Painter, R. Lee, A. Scherer, A. Yariv, J. O’Brien, P. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284(5421), 1819–1821 (1999).
[CrossRef] [PubMed]

Zhang, S.

F. E. Doany, B. G. Lee, S. Assefa, W. M. J. Green, M. Yang, C. L. Schow, C. V. Jahnes, S. Zhang, J. Singer, V. I. Kopp, J. A. Kash, and Y. A. Vlasov, “Multichannel high-bandwidth coupling of ultradense silicon photonic waveguide array to standard-pitch fiber array,” J. Lightwave Technol.  29(4), 475–482 (2011).
[CrossRef]

Zheng, Z.

Z. Zheng, M. Iqbal, and J. Liu, “Dispersion characteristics of SOI-based slot optical waveguides,” Opt. Comm. 281(20), 5151–5155 (2008).
[CrossRef]

Appl. Opt. (1)

J. Lightwave Technol (1)

F. E. Doany, B. G. Lee, S. Assefa, W. M. J. Green, M. Yang, C. L. Schow, C. V. Jahnes, S. Zhang, J. Singer, V. I. Kopp, J. A. Kash, and Y. A. Vlasov, “Multichannel high-bandwidth coupling of ultradense silicon photonic waveguide array to standard-pitch fiber array,” J. Lightwave Technol.  29(4), 475–482 (2011).
[CrossRef]

Opt. Comm. (1)

Z. Zheng, M. Iqbal, and J. Liu, “Dispersion characteristics of SOI-based slot optical waveguides,” Opt. Comm. 281(20), 5151–5155 (2008).
[CrossRef]

Opt. Express (3)

Opt. Lett. (2)

Phys. Rev. (1)

E. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681–681 (1946).

Science (1)

O. Painter, R. Lee, A. Scherer, A. Yariv, J. O’Brien, P. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284(5421), 1819–1821 (1999).
[CrossRef] [PubMed]

Other (1)

ITRS, “International technology roadmap for semiconductors interconnect” http://www.itrs.net/reports.html , (2009).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic cross-section of the low-index waveguide. A SOI wafer is used for the base of the structure which is composed of a thin Si device layer on top of which QDs (blue) can be patterned and embedded in a transparent low-index material (light gray) and finally capped with a thin layer of silicon. The low-index, buried oxide (white) is used for keeping the guided mode isolated from the handle layer of the substrate.

Fig. 2
Fig. 2

Basic confinement schemes. (a) Proposed 1D waveguide (b) Major component of the electric field Ex for hclad = 130 nm and for (c) hclad = 100 nm both structures have constant hcore = 300 nm.

Fig. 3
Fig. 3

2D waveguide cladding optimization. (a) Magnitude of the Electric field showing high optical confinement within the core for the optimized structure at hclad = 130 nm. (b) Electric field of the structure for hclad = 350, showing confinement in the cladding layers similarly to index-contrasted WGs (c) Electric field in a thin core (50 nm), thick claddings (350 nm), slot-like WG (d) Γ′ within the core region versus the cladding thickness. Each plot (a)–(c) is normalized to the electric field maximum as per the color bar and the scale bar is given below (c)

Fig. 4
Fig. 4

Core’s thickness and width dependencies. (a) Γ′ vs. hcore, Γ′ saturates at about 500 nm. From 300 nm to 500 nm little enhancement is observed for Γ′ (4–6% of enhancement). (b) Γ′ vs. wcore again going from 350 nm to 500 nm enhances confinement by only 4–6%.

Fig. 5
Fig. 5

Dispersion curves. The 1D low-index waveguide (hclad = 130 nm and hcore = 300 nm) dispersion is compared to bulk Si material dispersion. For WG dispersion, the materials are assumed to have negligible dispersion around 1.55 μm.

Tables (1)

Tables Icon

Table 1 Waveguide Comparison

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

E x exp ( k 0 2 n eff 2 k 0 2 n core 2 x )
Γ = modal gain / material gain .

Metrics