Abstract

In this paper, a graded SiNx and SiOxNy structure is proposed as antireflection coatings deposited on top of amorphous silicon (α-Si) thin-film solar cell. The structural parameters are optimized by differential evolution in order to enhance the optical absorption of solar cells to the greatest degree. The optimal design result demonstrates that the nonlinear profile of dielectric constant is superior to the linear profile, and discrete multilayer graded antireflection coatings can outperform near continuously graded antireflection coatings. What’s more, the electric field intensity distributions clearly demonstrate the proposed graded SiNx and SiOxNy structure can remarkably increase the magnitude of electric field of a-Si:H layer and hence, enhance the light trapping of a-Si:H thin-film solar cells in the whole visible and near-infrared spectrum. Finally, we have compared the optical absorption enhancements of proposed graded SiNx and SiOxNy structure with nanoparticles structure, and demonstrated that it can result in higher enhancements compared to the dielectric SiC and TiO2 nanoparticles. We have shown that the optimal graded SiNx and SiOxNy structure optimized by differential evolution can reach 33.31% enhancement which has exceeded the ideal limit of 32% of nanoparticles structure including plasmonic Ag nanoparticles, dielectric SiC and TiO2 nanoparticles.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. V. Shah, H. Schade, M. Vanecek, J. Meier, E. Vallat-Sauvain, N. Wyrsch, U. Kroll, C. Droz, and J. Bailat, “Thin-film silicon solar cell technology,” Prog. Photovolt. Res. Appl. 12(23), 113–142 (2004).
    [CrossRef]
  2. D. E. Carlson and C. R. Wronski, “Amorphous silicon solar cell,” Appl. Phys. Lett. 28(11), 671–673 (1976).
    [CrossRef]
  3. K. L. Chopra, P. D. Paulson, and V. Dutta, “Thin-film solar cells: An overview,” Prog. Photovolt. Res. Appl. 12(23), 69–92 (2004).
    [CrossRef]
  4. M. A. Green, “Lambertian light trapping in textured solar cells and light-emitting diodes: analytical solution,” Prog. Photovolt. Res. Appl. 10(4), 235–241 (2002).
    [CrossRef]
  5. Y. J. Lee, D. S. Ruby, D. W. Peters, B. B. McKenzie, and J. W. P. Hsu, “ZnO nanostructures as efficient antireflection layers in solar cells,” Nano Lett. 8(5), 1501–1505 (2008).
    [CrossRef]
  6. S. Chhajed, M. F. Schubert, J. K. Kim, and E. F. Schubert, “Nanostructured multilayer graded-index antireflection coating for Si solar cells with broadband and omnidirectional characteristics,” Appl. Phys. Lett. 93(25), 251108 (2008).
    [CrossRef]
  7. L. Rayleigh, “On reflection of vibrations at the confines of two media between which the transition is gradual,” Proc. Lond. Math. Soc. S1–S11(1), 51–56 (1879).
    [CrossRef]
  8. Y. M. Song, J. S. Yu, and Y. T. Lee, “Antireflective submicrometer gratings on thin-film silicon solar cells for light-absorption enhancement,” Opt. Lett. 35(3), 276–278 (2010).
    [CrossRef]
  9. J. Y. Chyan, W. C. Hsu, and J. A. Yeh, “Broadband antireflective poly-Si nanosponge for thin film solar cells,” Opt. Express 17(6), 4646–4651 (2009).
    [CrossRef]
  10. X. Li, J. Gao, L. Xue, and Y. Han, “Porous polymer films with gradient-refractive-index structure for broadband and omnidirectional antireflection coatings,” Adv. Funct. Mater. 20(2), 259–265 (2010).
    [CrossRef]
  11. W. H. Southwell, “Gradient-index antireflection coatings,” Opt. Lett. 8(11), 584–586 (1983).
    [CrossRef]
  12. J. A. Dobrowolski, D. Poitras, P. Ma, H. Vakil, and M. Acree, “Toward perfect antireflection coatings: numerical investigation,” Appl. Opt. 41(16), 3075–3083 (2002).
    [CrossRef]
  13. W. Qiu, Y. M. Kang, and L. L. Goddard, “Quasicontinuous refractive index tailoring of SiNx and SiOxNy for broadband antireflective coatings,” Appl. Phys. Lett. 96(14), 141116 (2010).
    [CrossRef]
  14. K. S. Yee, “Numerical solution of intitial boundary value problems involving Maxwell's equations in isotropic media,” IEEE Trans. Antenn. Propag. 14(3), 302–307 (1966).
    [CrossRef]
  15. R. J. Luebbers, F. Hunsberger, K. S. Kunz, R. B. Standler, and M. Schneider, “A frequency-dependent finite-difference time-domain formulation for dispersive materials,” IEEE Trans. Electromagn. Compat. 32(3), 222–227 (1990).
    [CrossRef]
  16. http://www.sopra-sa.com .
  17. Y. X. Zhao, F. Chen, H. Y. Chen, N. Li, Q. Shen, and L. M. Zhang, “The microstructure design optimization of negative index metamaterials using genetic algorithm,” Prog. Electromag. Res. Lett. 22, 95–108 (2011).
  18. K. Siakavara, “Novel fractal antenna arrays for satellite networks: circular ring sierpinski carpet arrays optimized by genetic algorithms,” Prog. Electromag. Res. 103, 115–138 (2010).
    [CrossRef]
  19. R. Storn and K. Price, “Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces,” J. Glob. Optim. 11(4), 341–359 (1997).
    [CrossRef]
  20. Y. X. Zhao, F. Chen, Q. Shen, Q. W. Liu, and L. M. Zhang, “Optimizing low loss negative index metamaterial for visible spectrum using differential evolution,” Opt. Express 19(12), 11605–11614 (2011).
    [CrossRef]
  21. Y. X. Zhao, F. Chen, Q. Shen, and L. M. Zhang, “Optimizing low loss silver nanowires structure metamaterial at yellow light spectrum with differential evolution,” Phys. Lett. A 376(4), 252–256 (2012).
    [CrossRef]
  22. Yu. A. Akimov, W. S. Koh, and K. Ostrikov, “Enhancement of optical absorption in thin-film solar cells through the excitation of higher-order nanoparticle plasmon modes,” Opt. Express 17(12), 10195–10205 (2009).
    [CrossRef]
  23. Yu. A. Akimov, W. S. Koh, S. Y. Sian, and S. Ren, “Nanoparticle-enhanced thin film solar cells: metallic or dielectric nanoparticles?” Appl. Phys. Lett. 96(7), 073111–073113 (2010).
    [CrossRef]

2012 (1)

Y. X. Zhao, F. Chen, Q. Shen, and L. M. Zhang, “Optimizing low loss silver nanowires structure metamaterial at yellow light spectrum with differential evolution,” Phys. Lett. A 376(4), 252–256 (2012).
[CrossRef]

2011 (2)

Y. X. Zhao, F. Chen, H. Y. Chen, N. Li, Q. Shen, and L. M. Zhang, “The microstructure design optimization of negative index metamaterials using genetic algorithm,” Prog. Electromag. Res. Lett. 22, 95–108 (2011).

Y. X. Zhao, F. Chen, Q. Shen, Q. W. Liu, and L. M. Zhang, “Optimizing low loss negative index metamaterial for visible spectrum using differential evolution,” Opt. Express 19(12), 11605–11614 (2011).
[CrossRef]

2010 (5)

Y. M. Song, J. S. Yu, and Y. T. Lee, “Antireflective submicrometer gratings on thin-film silicon solar cells for light-absorption enhancement,” Opt. Lett. 35(3), 276–278 (2010).
[CrossRef]

K. Siakavara, “Novel fractal antenna arrays for satellite networks: circular ring sierpinski carpet arrays optimized by genetic algorithms,” Prog. Electromag. Res. 103, 115–138 (2010).
[CrossRef]

X. Li, J. Gao, L. Xue, and Y. Han, “Porous polymer films with gradient-refractive-index structure for broadband and omnidirectional antireflection coatings,” Adv. Funct. Mater. 20(2), 259–265 (2010).
[CrossRef]

Yu. A. Akimov, W. S. Koh, S. Y. Sian, and S. Ren, “Nanoparticle-enhanced thin film solar cells: metallic or dielectric nanoparticles?” Appl. Phys. Lett. 96(7), 073111–073113 (2010).
[CrossRef]

W. Qiu, Y. M. Kang, and L. L. Goddard, “Quasicontinuous refractive index tailoring of SiNx and SiOxNy for broadband antireflective coatings,” Appl. Phys. Lett. 96(14), 141116 (2010).
[CrossRef]

2009 (2)

2008 (2)

Y. J. Lee, D. S. Ruby, D. W. Peters, B. B. McKenzie, and J. W. P. Hsu, “ZnO nanostructures as efficient antireflection layers in solar cells,” Nano Lett. 8(5), 1501–1505 (2008).
[CrossRef]

S. Chhajed, M. F. Schubert, J. K. Kim, and E. F. Schubert, “Nanostructured multilayer graded-index antireflection coating for Si solar cells with broadband and omnidirectional characteristics,” Appl. Phys. Lett. 93(25), 251108 (2008).
[CrossRef]

2004 (2)

A. V. Shah, H. Schade, M. Vanecek, J. Meier, E. Vallat-Sauvain, N. Wyrsch, U. Kroll, C. Droz, and J. Bailat, “Thin-film silicon solar cell technology,” Prog. Photovolt. Res. Appl. 12(23), 113–142 (2004).
[CrossRef]

K. L. Chopra, P. D. Paulson, and V. Dutta, “Thin-film solar cells: An overview,” Prog. Photovolt. Res. Appl. 12(23), 69–92 (2004).
[CrossRef]

2002 (2)

M. A. Green, “Lambertian light trapping in textured solar cells and light-emitting diodes: analytical solution,” Prog. Photovolt. Res. Appl. 10(4), 235–241 (2002).
[CrossRef]

J. A. Dobrowolski, D. Poitras, P. Ma, H. Vakil, and M. Acree, “Toward perfect antireflection coatings: numerical investigation,” Appl. Opt. 41(16), 3075–3083 (2002).
[CrossRef]

1997 (1)

R. Storn and K. Price, “Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces,” J. Glob. Optim. 11(4), 341–359 (1997).
[CrossRef]

1990 (1)

R. J. Luebbers, F. Hunsberger, K. S. Kunz, R. B. Standler, and M. Schneider, “A frequency-dependent finite-difference time-domain formulation for dispersive materials,” IEEE Trans. Electromagn. Compat. 32(3), 222–227 (1990).
[CrossRef]

1983 (1)

1976 (1)

D. E. Carlson and C. R. Wronski, “Amorphous silicon solar cell,” Appl. Phys. Lett. 28(11), 671–673 (1976).
[CrossRef]

1966 (1)

K. S. Yee, “Numerical solution of intitial boundary value problems involving Maxwell's equations in isotropic media,” IEEE Trans. Antenn. Propag. 14(3), 302–307 (1966).
[CrossRef]

1879 (1)

L. Rayleigh, “On reflection of vibrations at the confines of two media between which the transition is gradual,” Proc. Lond. Math. Soc. S1–S11(1), 51–56 (1879).
[CrossRef]

Acree, M.

Akimov, Yu. A.

Yu. A. Akimov, W. S. Koh, S. Y. Sian, and S. Ren, “Nanoparticle-enhanced thin film solar cells: metallic or dielectric nanoparticles?” Appl. Phys. Lett. 96(7), 073111–073113 (2010).
[CrossRef]

Yu. A. Akimov, W. S. Koh, and K. Ostrikov, “Enhancement of optical absorption in thin-film solar cells through the excitation of higher-order nanoparticle plasmon modes,” Opt. Express 17(12), 10195–10205 (2009).
[CrossRef]

Bailat, J.

A. V. Shah, H. Schade, M. Vanecek, J. Meier, E. Vallat-Sauvain, N. Wyrsch, U. Kroll, C. Droz, and J. Bailat, “Thin-film silicon solar cell technology,” Prog. Photovolt. Res. Appl. 12(23), 113–142 (2004).
[CrossRef]

Carlson, D. E.

D. E. Carlson and C. R. Wronski, “Amorphous silicon solar cell,” Appl. Phys. Lett. 28(11), 671–673 (1976).
[CrossRef]

Chen, F.

Y. X. Zhao, F. Chen, Q. Shen, and L. M. Zhang, “Optimizing low loss silver nanowires structure metamaterial at yellow light spectrum with differential evolution,” Phys. Lett. A 376(4), 252–256 (2012).
[CrossRef]

Y. X. Zhao, F. Chen, H. Y. Chen, N. Li, Q. Shen, and L. M. Zhang, “The microstructure design optimization of negative index metamaterials using genetic algorithm,” Prog. Electromag. Res. Lett. 22, 95–108 (2011).

Y. X. Zhao, F. Chen, Q. Shen, Q. W. Liu, and L. M. Zhang, “Optimizing low loss negative index metamaterial for visible spectrum using differential evolution,” Opt. Express 19(12), 11605–11614 (2011).
[CrossRef]

Chen, H. Y.

Y. X. Zhao, F. Chen, H. Y. Chen, N. Li, Q. Shen, and L. M. Zhang, “The microstructure design optimization of negative index metamaterials using genetic algorithm,” Prog. Electromag. Res. Lett. 22, 95–108 (2011).

Chhajed, S.

S. Chhajed, M. F. Schubert, J. K. Kim, and E. F. Schubert, “Nanostructured multilayer graded-index antireflection coating for Si solar cells with broadband and omnidirectional characteristics,” Appl. Phys. Lett. 93(25), 251108 (2008).
[CrossRef]

Chopra, K. L.

K. L. Chopra, P. D. Paulson, and V. Dutta, “Thin-film solar cells: An overview,” Prog. Photovolt. Res. Appl. 12(23), 69–92 (2004).
[CrossRef]

Chyan, J. Y.

Dobrowolski, J. A.

Droz, C.

A. V. Shah, H. Schade, M. Vanecek, J. Meier, E. Vallat-Sauvain, N. Wyrsch, U. Kroll, C. Droz, and J. Bailat, “Thin-film silicon solar cell technology,” Prog. Photovolt. Res. Appl. 12(23), 113–142 (2004).
[CrossRef]

Dutta, V.

K. L. Chopra, P. D. Paulson, and V. Dutta, “Thin-film solar cells: An overview,” Prog. Photovolt. Res. Appl. 12(23), 69–92 (2004).
[CrossRef]

Gao, J.

X. Li, J. Gao, L. Xue, and Y. Han, “Porous polymer films with gradient-refractive-index structure for broadband and omnidirectional antireflection coatings,” Adv. Funct. Mater. 20(2), 259–265 (2010).
[CrossRef]

Goddard, L. L.

W. Qiu, Y. M. Kang, and L. L. Goddard, “Quasicontinuous refractive index tailoring of SiNx and SiOxNy for broadband antireflective coatings,” Appl. Phys. Lett. 96(14), 141116 (2010).
[CrossRef]

Green, M. A.

M. A. Green, “Lambertian light trapping in textured solar cells and light-emitting diodes: analytical solution,” Prog. Photovolt. Res. Appl. 10(4), 235–241 (2002).
[CrossRef]

Han, Y.

X. Li, J. Gao, L. Xue, and Y. Han, “Porous polymer films with gradient-refractive-index structure for broadband and omnidirectional antireflection coatings,” Adv. Funct. Mater. 20(2), 259–265 (2010).
[CrossRef]

Hsu, J. W. P.

Y. J. Lee, D. S. Ruby, D. W. Peters, B. B. McKenzie, and J. W. P. Hsu, “ZnO nanostructures as efficient antireflection layers in solar cells,” Nano Lett. 8(5), 1501–1505 (2008).
[CrossRef]

Hsu, W. C.

Hunsberger, F.

R. J. Luebbers, F. Hunsberger, K. S. Kunz, R. B. Standler, and M. Schneider, “A frequency-dependent finite-difference time-domain formulation for dispersive materials,” IEEE Trans. Electromagn. Compat. 32(3), 222–227 (1990).
[CrossRef]

Kang, Y. M.

W. Qiu, Y. M. Kang, and L. L. Goddard, “Quasicontinuous refractive index tailoring of SiNx and SiOxNy for broadband antireflective coatings,” Appl. Phys. Lett. 96(14), 141116 (2010).
[CrossRef]

Kim, J. K.

S. Chhajed, M. F. Schubert, J. K. Kim, and E. F. Schubert, “Nanostructured multilayer graded-index antireflection coating for Si solar cells with broadband and omnidirectional characteristics,” Appl. Phys. Lett. 93(25), 251108 (2008).
[CrossRef]

Koh, W. S.

Yu. A. Akimov, W. S. Koh, S. Y. Sian, and S. Ren, “Nanoparticle-enhanced thin film solar cells: metallic or dielectric nanoparticles?” Appl. Phys. Lett. 96(7), 073111–073113 (2010).
[CrossRef]

Yu. A. Akimov, W. S. Koh, and K. Ostrikov, “Enhancement of optical absorption in thin-film solar cells through the excitation of higher-order nanoparticle plasmon modes,” Opt. Express 17(12), 10195–10205 (2009).
[CrossRef]

Kroll, U.

A. V. Shah, H. Schade, M. Vanecek, J. Meier, E. Vallat-Sauvain, N. Wyrsch, U. Kroll, C. Droz, and J. Bailat, “Thin-film silicon solar cell technology,” Prog. Photovolt. Res. Appl. 12(23), 113–142 (2004).
[CrossRef]

Kunz, K. S.

R. J. Luebbers, F. Hunsberger, K. S. Kunz, R. B. Standler, and M. Schneider, “A frequency-dependent finite-difference time-domain formulation for dispersive materials,” IEEE Trans. Electromagn. Compat. 32(3), 222–227 (1990).
[CrossRef]

Lee, Y. J.

Y. J. Lee, D. S. Ruby, D. W. Peters, B. B. McKenzie, and J. W. P. Hsu, “ZnO nanostructures as efficient antireflection layers in solar cells,” Nano Lett. 8(5), 1501–1505 (2008).
[CrossRef]

Lee, Y. T.

Li, N.

Y. X. Zhao, F. Chen, H. Y. Chen, N. Li, Q. Shen, and L. M. Zhang, “The microstructure design optimization of negative index metamaterials using genetic algorithm,” Prog. Electromag. Res. Lett. 22, 95–108 (2011).

Li, X.

X. Li, J. Gao, L. Xue, and Y. Han, “Porous polymer films with gradient-refractive-index structure for broadband and omnidirectional antireflection coatings,” Adv. Funct. Mater. 20(2), 259–265 (2010).
[CrossRef]

Liu, Q. W.

Luebbers, R. J.

R. J. Luebbers, F. Hunsberger, K. S. Kunz, R. B. Standler, and M. Schneider, “A frequency-dependent finite-difference time-domain formulation for dispersive materials,” IEEE Trans. Electromagn. Compat. 32(3), 222–227 (1990).
[CrossRef]

Ma, P.

McKenzie, B. B.

Y. J. Lee, D. S. Ruby, D. W. Peters, B. B. McKenzie, and J. W. P. Hsu, “ZnO nanostructures as efficient antireflection layers in solar cells,” Nano Lett. 8(5), 1501–1505 (2008).
[CrossRef]

Meier, J.

A. V. Shah, H. Schade, M. Vanecek, J. Meier, E. Vallat-Sauvain, N. Wyrsch, U. Kroll, C. Droz, and J. Bailat, “Thin-film silicon solar cell technology,” Prog. Photovolt. Res. Appl. 12(23), 113–142 (2004).
[CrossRef]

Ostrikov, K.

Paulson, P. D.

K. L. Chopra, P. D. Paulson, and V. Dutta, “Thin-film solar cells: An overview,” Prog. Photovolt. Res. Appl. 12(23), 69–92 (2004).
[CrossRef]

Peters, D. W.

Y. J. Lee, D. S. Ruby, D. W. Peters, B. B. McKenzie, and J. W. P. Hsu, “ZnO nanostructures as efficient antireflection layers in solar cells,” Nano Lett. 8(5), 1501–1505 (2008).
[CrossRef]

Poitras, D.

Price, K.

R. Storn and K. Price, “Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces,” J. Glob. Optim. 11(4), 341–359 (1997).
[CrossRef]

Qiu, W.

W. Qiu, Y. M. Kang, and L. L. Goddard, “Quasicontinuous refractive index tailoring of SiNx and SiOxNy for broadband antireflective coatings,” Appl. Phys. Lett. 96(14), 141116 (2010).
[CrossRef]

Rayleigh, L.

L. Rayleigh, “On reflection of vibrations at the confines of two media between which the transition is gradual,” Proc. Lond. Math. Soc. S1–S11(1), 51–56 (1879).
[CrossRef]

Ren, S.

Yu. A. Akimov, W. S. Koh, S. Y. Sian, and S. Ren, “Nanoparticle-enhanced thin film solar cells: metallic or dielectric nanoparticles?” Appl. Phys. Lett. 96(7), 073111–073113 (2010).
[CrossRef]

Ruby, D. S.

Y. J. Lee, D. S. Ruby, D. W. Peters, B. B. McKenzie, and J. W. P. Hsu, “ZnO nanostructures as efficient antireflection layers in solar cells,” Nano Lett. 8(5), 1501–1505 (2008).
[CrossRef]

Schade, H.

A. V. Shah, H. Schade, M. Vanecek, J. Meier, E. Vallat-Sauvain, N. Wyrsch, U. Kroll, C. Droz, and J. Bailat, “Thin-film silicon solar cell technology,” Prog. Photovolt. Res. Appl. 12(23), 113–142 (2004).
[CrossRef]

Schneider, M.

R. J. Luebbers, F. Hunsberger, K. S. Kunz, R. B. Standler, and M. Schneider, “A frequency-dependent finite-difference time-domain formulation for dispersive materials,” IEEE Trans. Electromagn. Compat. 32(3), 222–227 (1990).
[CrossRef]

Schubert, E. F.

S. Chhajed, M. F. Schubert, J. K. Kim, and E. F. Schubert, “Nanostructured multilayer graded-index antireflection coating for Si solar cells with broadband and omnidirectional characteristics,” Appl. Phys. Lett. 93(25), 251108 (2008).
[CrossRef]

Schubert, M. F.

S. Chhajed, M. F. Schubert, J. K. Kim, and E. F. Schubert, “Nanostructured multilayer graded-index antireflection coating for Si solar cells with broadband and omnidirectional characteristics,” Appl. Phys. Lett. 93(25), 251108 (2008).
[CrossRef]

Shah, A. V.

A. V. Shah, H. Schade, M. Vanecek, J. Meier, E. Vallat-Sauvain, N. Wyrsch, U. Kroll, C. Droz, and J. Bailat, “Thin-film silicon solar cell technology,” Prog. Photovolt. Res. Appl. 12(23), 113–142 (2004).
[CrossRef]

Shen, Q.

Y. X. Zhao, F. Chen, Q. Shen, and L. M. Zhang, “Optimizing low loss silver nanowires structure metamaterial at yellow light spectrum with differential evolution,” Phys. Lett. A 376(4), 252–256 (2012).
[CrossRef]

Y. X. Zhao, F. Chen, H. Y. Chen, N. Li, Q. Shen, and L. M. Zhang, “The microstructure design optimization of negative index metamaterials using genetic algorithm,” Prog. Electromag. Res. Lett. 22, 95–108 (2011).

Y. X. Zhao, F. Chen, Q. Shen, Q. W. Liu, and L. M. Zhang, “Optimizing low loss negative index metamaterial for visible spectrum using differential evolution,” Opt. Express 19(12), 11605–11614 (2011).
[CrossRef]

Siakavara, K.

K. Siakavara, “Novel fractal antenna arrays for satellite networks: circular ring sierpinski carpet arrays optimized by genetic algorithms,” Prog. Electromag. Res. 103, 115–138 (2010).
[CrossRef]

Sian, S. Y.

Yu. A. Akimov, W. S. Koh, S. Y. Sian, and S. Ren, “Nanoparticle-enhanced thin film solar cells: metallic or dielectric nanoparticles?” Appl. Phys. Lett. 96(7), 073111–073113 (2010).
[CrossRef]

Song, Y. M.

Southwell, W. H.

Standler, R. B.

R. J. Luebbers, F. Hunsberger, K. S. Kunz, R. B. Standler, and M. Schneider, “A frequency-dependent finite-difference time-domain formulation for dispersive materials,” IEEE Trans. Electromagn. Compat. 32(3), 222–227 (1990).
[CrossRef]

Storn, R.

R. Storn and K. Price, “Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces,” J. Glob. Optim. 11(4), 341–359 (1997).
[CrossRef]

Vakil, H.

Vallat-Sauvain, E.

A. V. Shah, H. Schade, M. Vanecek, J. Meier, E. Vallat-Sauvain, N. Wyrsch, U. Kroll, C. Droz, and J. Bailat, “Thin-film silicon solar cell technology,” Prog. Photovolt. Res. Appl. 12(23), 113–142 (2004).
[CrossRef]

Vanecek, M.

A. V. Shah, H. Schade, M. Vanecek, J. Meier, E. Vallat-Sauvain, N. Wyrsch, U. Kroll, C. Droz, and J. Bailat, “Thin-film silicon solar cell technology,” Prog. Photovolt. Res. Appl. 12(23), 113–142 (2004).
[CrossRef]

Wronski, C. R.

D. E. Carlson and C. R. Wronski, “Amorphous silicon solar cell,” Appl. Phys. Lett. 28(11), 671–673 (1976).
[CrossRef]

Wyrsch, N.

A. V. Shah, H. Schade, M. Vanecek, J. Meier, E. Vallat-Sauvain, N. Wyrsch, U. Kroll, C. Droz, and J. Bailat, “Thin-film silicon solar cell technology,” Prog. Photovolt. Res. Appl. 12(23), 113–142 (2004).
[CrossRef]

Xue, L.

X. Li, J. Gao, L. Xue, and Y. Han, “Porous polymer films with gradient-refractive-index structure for broadband and omnidirectional antireflection coatings,” Adv. Funct. Mater. 20(2), 259–265 (2010).
[CrossRef]

Yee, K. S.

K. S. Yee, “Numerical solution of intitial boundary value problems involving Maxwell's equations in isotropic media,” IEEE Trans. Antenn. Propag. 14(3), 302–307 (1966).
[CrossRef]

Yeh, J. A.

Yu, J. S.

Zhang, L. M.

Y. X. Zhao, F. Chen, Q. Shen, and L. M. Zhang, “Optimizing low loss silver nanowires structure metamaterial at yellow light spectrum with differential evolution,” Phys. Lett. A 376(4), 252–256 (2012).
[CrossRef]

Y. X. Zhao, F. Chen, H. Y. Chen, N. Li, Q. Shen, and L. M. Zhang, “The microstructure design optimization of negative index metamaterials using genetic algorithm,” Prog. Electromag. Res. Lett. 22, 95–108 (2011).

Y. X. Zhao, F. Chen, Q. Shen, Q. W. Liu, and L. M. Zhang, “Optimizing low loss negative index metamaterial for visible spectrum using differential evolution,” Opt. Express 19(12), 11605–11614 (2011).
[CrossRef]

Zhao, Y. X.

Y. X. Zhao, F. Chen, Q. Shen, and L. M. Zhang, “Optimizing low loss silver nanowires structure metamaterial at yellow light spectrum with differential evolution,” Phys. Lett. A 376(4), 252–256 (2012).
[CrossRef]

Y. X. Zhao, F. Chen, H. Y. Chen, N. Li, Q. Shen, and L. M. Zhang, “The microstructure design optimization of negative index metamaterials using genetic algorithm,” Prog. Electromag. Res. Lett. 22, 95–108 (2011).

Y. X. Zhao, F. Chen, Q. Shen, Q. W. Liu, and L. M. Zhang, “Optimizing low loss negative index metamaterial for visible spectrum using differential evolution,” Opt. Express 19(12), 11605–11614 (2011).
[CrossRef]

Adv. Funct. Mater. (1)

X. Li, J. Gao, L. Xue, and Y. Han, “Porous polymer films with gradient-refractive-index structure for broadband and omnidirectional antireflection coatings,” Adv. Funct. Mater. 20(2), 259–265 (2010).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (4)

Yu. A. Akimov, W. S. Koh, S. Y. Sian, and S. Ren, “Nanoparticle-enhanced thin film solar cells: metallic or dielectric nanoparticles?” Appl. Phys. Lett. 96(7), 073111–073113 (2010).
[CrossRef]

S. Chhajed, M. F. Schubert, J. K. Kim, and E. F. Schubert, “Nanostructured multilayer graded-index antireflection coating for Si solar cells with broadband and omnidirectional characteristics,” Appl. Phys. Lett. 93(25), 251108 (2008).
[CrossRef]

D. E. Carlson and C. R. Wronski, “Amorphous silicon solar cell,” Appl. Phys. Lett. 28(11), 671–673 (1976).
[CrossRef]

W. Qiu, Y. M. Kang, and L. L. Goddard, “Quasicontinuous refractive index tailoring of SiNx and SiOxNy for broadband antireflective coatings,” Appl. Phys. Lett. 96(14), 141116 (2010).
[CrossRef]

IEEE Trans. Antenn. Propag. (1)

K. S. Yee, “Numerical solution of intitial boundary value problems involving Maxwell's equations in isotropic media,” IEEE Trans. Antenn. Propag. 14(3), 302–307 (1966).
[CrossRef]

IEEE Trans. Electromagn. Compat. (1)

R. J. Luebbers, F. Hunsberger, K. S. Kunz, R. B. Standler, and M. Schneider, “A frequency-dependent finite-difference time-domain formulation for dispersive materials,” IEEE Trans. Electromagn. Compat. 32(3), 222–227 (1990).
[CrossRef]

J. Glob. Optim. (1)

R. Storn and K. Price, “Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces,” J. Glob. Optim. 11(4), 341–359 (1997).
[CrossRef]

Nano Lett. (1)

Y. J. Lee, D. S. Ruby, D. W. Peters, B. B. McKenzie, and J. W. P. Hsu, “ZnO nanostructures as efficient antireflection layers in solar cells,” Nano Lett. 8(5), 1501–1505 (2008).
[CrossRef]

Opt. Express (3)

Opt. Lett. (2)

Phys. Lett. A (1)

Y. X. Zhao, F. Chen, Q. Shen, and L. M. Zhang, “Optimizing low loss silver nanowires structure metamaterial at yellow light spectrum with differential evolution,” Phys. Lett. A 376(4), 252–256 (2012).
[CrossRef]

Proc. Lond. Math. Soc. (1)

L. Rayleigh, “On reflection of vibrations at the confines of two media between which the transition is gradual,” Proc. Lond. Math. Soc. S1–S11(1), 51–56 (1879).
[CrossRef]

Prog. Electromag. Res. (1)

K. Siakavara, “Novel fractal antenna arrays for satellite networks: circular ring sierpinski carpet arrays optimized by genetic algorithms,” Prog. Electromag. Res. 103, 115–138 (2010).
[CrossRef]

Prog. Electromag. Res. Lett. (1)

Y. X. Zhao, F. Chen, H. Y. Chen, N. Li, Q. Shen, and L. M. Zhang, “The microstructure design optimization of negative index metamaterials using genetic algorithm,” Prog. Electromag. Res. Lett. 22, 95–108 (2011).

Prog. Photovolt. Res. Appl. (3)

A. V. Shah, H. Schade, M. Vanecek, J. Meier, E. Vallat-Sauvain, N. Wyrsch, U. Kroll, C. Droz, and J. Bailat, “Thin-film silicon solar cell technology,” Prog. Photovolt. Res. Appl. 12(23), 113–142 (2004).
[CrossRef]

K. L. Chopra, P. D. Paulson, and V. Dutta, “Thin-film solar cells: An overview,” Prog. Photovolt. Res. Appl. 12(23), 69–92 (2004).
[CrossRef]

M. A. Green, “Lambertian light trapping in textured solar cells and light-emitting diodes: analytical solution,” Prog. Photovolt. Res. Appl. 10(4), 235–241 (2002).
[CrossRef]

Other (1)

http://www.sopra-sa.com .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

Sketch of a thin-film a-Si:H solar cell and geometric structure of graded SiNx and SiOxNy antireflection coatings deposited on top of the indium tin oxide (ITO) layer. hv: Light energy.

Fig. 2
Fig. 2

The dielectric constant (ε) of each layer as a function of the relative thickness (x) and structural coefficient (p) for the graded SiNx and SiOxNy structure.

Fig. 3
Fig. 3

The boundary conditions of the solar cell enhanced with graded SiNx and SiOxNy structure.

Fig. 4
Fig. 4

Spectral absorption rate A(ω) of the a-Si:H active region as functions of incident wavelength for different layer number n. The response of the reference cell without any graded SiNx and SiOxNy structure is shown by the black bold line.

Fig. 5
Fig. 5

Dependence of the broadband light-trapping enhancement G on layer number n of the graded SiNx and SiOxNy structure.

Fig. 6
Fig. 6

Spectral absorption rate A(ω) of the a-Si:H active region as functions of incident wavelength for different graded structural coefficient p. The response of the reference cell without any graded SiNx and SiOxNy structure is shown by the black bold line.

Fig. 7
Fig. 7

Dependence of the broadband light-trapping enhancement G on structural coefficient p of the graded SiNx and SiOxNy structure.

Fig. 8
Fig. 8

Spectral absorption rate A(ω) of the a-Si:H active region as functions of incident wavelength for different antireflection coatings thickness d. The response of the reference cell without any graded SiNx and SiOxNy structure is shown by the black bold line.

Fig. 9
Fig. 9

Dependence of the broadband light-trapping enhancement G on antireflection coatings thickness d of the graded SiNx and SiOxNy structure.

Fig. 10
Fig. 10

The convergence curves of DE for graded SiNx and SiOxNy structure optimization.

Fig. 11
Fig. 11

The electric field intensity distributions of a-Si:H thin film solar cell for reference cell without any antireflection coatings and cell with optimal graded SiNx and SiOxNy structure at the case of normal incidence at the (a) red light wavelength of 700 nm, (b) orange light of 625 nm, (c) yellow light of 600 nm, (d) green light of 525 nm, (e) blue light of 500 nm and (f) violet light of 400 nm, respectively.

Fig. 12
Fig. 12

Sketch of the thin-film a-Si:H solar cell and geometric structure of nanoparticles deposited on top of the indium tin oxide (ITO) layer. hv: Light energy.

Fig. 13
Fig. 13

Spectral absorption rate A(ω) of the a-Si:H active region as functions of incident wavelength for optimal SiC nanoparticles, TiO2 nanoparticles and graded SiNx and SiOxNy structure. The response of the reference cell without any graded SiNx and SiOxNy structure or nanoparticles is shown by the black bold line.

Tables (3)

Tables Icon

Table 1 Parameters for the DE optimization

Tables Icon

Table 2 The Optimal Solutions of Graded SiNx and SiOxNy Structure Design at Different Generations

Tables Icon

Table 3 The Optimal Solutions Comparisons of SiC, TiO2 Nanoparticles and Graded SiNx and SiOxNy Structure

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

ε= ε low +( ε high ε low )(1 x 1/p )
Q abs (ω)= ω ε 0 2 V Im[ε(ω)] | E | 2 dV
A(ω)= Q abs (ω) Q inc (ω)
Q abs total = A(ω) F(ω)dω
G= Q abs total Q abs total (Ref) Q abs total (Ref)
Maximize: G= Q abs total Q abs total (Ref) Q abs total (Ref)
Subject to: 0<p20
0 nm<d100 nm
2.2 ε low 7.0
2.2 ε high 7.0

Metrics