Abstract

We propose and demonstrate a thinned fiber based Mach-Zehnder interferometer for multi-purpose sensing applications. The sensor head is formed by all-fiber in-line singlemode-multimode-thinned-singlemode (SMTS) fiber structure, only using the splicing method. The principle of operation relies on the effect that the thinned fiber cladding modes interference with the core mode by employing a multimode fiber as a mode coupler. Experimental results showed that the liquid refractive index information can be simultaneously provided from measuring the sensitivity of the liquid level. A 9.00 mm long thinned fiber sensor at a wavelength of 1538.7228 nm exhibits a water level sensitivity of −175.8 pm/mm, and refractive index sensitivity as high as −1868.42 (pm/mm)/RIU, respectively. The measuring method is novel, for the first time to our knowledge. In addition, it also demonstrates that by monitoring the wavelength shift, the sensor at a wavelength of 1566.4785 nm exhibits a refractive index sensitivity of −25.2935 nm/RIU, temperature sensitivity of 0.0615 nm/°C, and axial strain sensitivity of −2.99 pm/με, respectively. Moreover, the sensor fabrication process is very simple and cost effective.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. P. Zhang, L. Y. Shao, J. F. Ding, and S. He, “Sandwiched long-period gratings for simultaneous measurement of refractive index and temperature,” IEEE Photon. Technol. Lett. 17(11), 2397–2399 (2005).
    [CrossRef]
  2. H. J. Patrick, A. D. Kersey, F. Bucholtz, K. J. Ewing, J. B. Judkins, and A. M. Vengsarkar, ““Chemical sensor based on long-period fiber grating response to index of refraction,” Proc. Lasers and Electro-Optics. 11, 420–421 (1997).
  3. P. L. Swart, “Long-period grating Michelson refractometric sensor,” Meas. Sci. Technol. 15(8), 1576–1580 (2004).
    [CrossRef]
  4. A. Iadicicco, S. Campopiano, A. Cutolo, M. Giordano, and A. Cusano, “Nonuniform thinned fiber bragg gratings for simultaneous refractive index and temperature measurements,” IEEE Photon. Technol. Lett. 17(7), 1495–1497 (2005).
    [CrossRef]
  5. P. Lu and Q. Chen, “Fiber Bragg grating sensor for simultaneous measurement of flow rate and direction,” Meas. Sci. Technol. 19(12), 125302–125309 (2008).
    [CrossRef]
  6. Y. J. Rao, “Recent progress in fiber optic extrinsic Fabry-Perot interferometric sensors,” Opt. Fiber Technol. 12(3), 227–237 (2006).
    [CrossRef]
  7. Z. L. Ran, Y. J. Rao, W. J. Liu, X. Liao, and K. S. Chiang, “Laser-micromachined Fabry-Perot optical fiber tip sensor for high-resolution temperature-independent measurement of refractive index,” Opt. Express 16(3), 2252–2263 (2008).
    [CrossRef] [PubMed]
  8. Y. J. Rao, M. Deng, T. Zhu, and H. Li, “In-line Fabry-Perot Etalons based on hollow-core photonic bandgap fibers for high temperature applications,” J. Lightwave Technol. 27(19), 4360–4365 (2009).
    [CrossRef]
  9. Y. J. Rao, T. Zhu, X. C. Yang, and D. W. Duan, “In-line fiber-optic etalon formed by hollow-core photonic crystal fiber,” Opt. Lett. 32(18), 2662–2664 (2007).
    [CrossRef] [PubMed]
  10. H. Y. Choi, M. J. Kim, and B. H. Lee, “All-fiber Mach-Zehnder type interferometers formed in photonic crystal fiber,” Opt. Express 15(9), 5711–5720 (2007).
    [CrossRef] [PubMed]
  11. J. H. Lim, H. S. Jang, K. S. Lee, J. C. Kim, and B. H. Lee, “Mach-Zehnder interferometer formed in a photonic crystal fiber based on a pair of long-period fiber gratings,” Opt. Lett. 29(4), 346–348 (2004).
    [CrossRef] [PubMed]
  12. L. Jiang, J. Yang, S. Wang, B. Li, and M. Wang, “Fiber Mach-Zehnder interferometer based on microcavities for high-temperature sensing with high sensitivity,” Opt. Lett. 36(19), 3753–3755 (2011).
    [CrossRef] [PubMed]
  13. Z. Tian, S. S. H. Yam, J. Barnes, W. Bock, P. Greig, J. M. Fraser, H. P. Loock, and R. D. Oleschuk, “Refractive index sensing with Mach-Zehnder interferometer based on concatenating two single-mode fiber tapers,” IEEE Photon. Technol. Lett. 20(8), 626–628 (2008).
    [CrossRef]
  14. L. V. Nguyen, D. Hwang, S. Moon, D. S. Moon, and Y. Chung, “High temperature fiber sensor with high sensitivity based on core diameter mismatch,” Opt. Express 16(15), 11369–11375 (2008).
    [CrossRef] [PubMed]
  15. Q. Wu, Y. Semenova, P. Wang, and G. Farrell, “High sensitivity SMS fiber structure based refractometer--analysis and experiment,” Opt. Express 19(9), 7937–7944 (2011).
    [CrossRef] [PubMed]
  16. J. Canning and A. L. G. Carter, “Modal interferometer for in situ measurements of induced core index change in optical fibers,” Opt. Lett. 22(8), 561–563 (1997).
    [CrossRef] [PubMed]
  17. P. R. Horche, M. Lopez-Amo, M. A. Muriel, and J. A. Martin-Pereda, “Spectral behavior of a low-cost all-fiber component based on untapered multifiber unions,” IEEE Photon. Technol. Lett. 1(7), 184–187 (1989).
    [CrossRef]
  18. X. Daxhelet, J. Bures, and R. Maciejko, “Temperature-independent all-fiber modal interferometer,” Opt. Fiber Technol. 1(4), 373–376 (1995).
    [CrossRef]
  19. J. Villatoro, V. P. Minkovich, and D. Monzon-Hernandez, “Compact modal interferometer built with tapered microstructured optical fiber,” IEEE Photon. Technol. Lett. 18(11), 1258–1260 (2006).
    [CrossRef]
  20. J. Villatoro, V. Finazzi, V. P. Minkovich, V. Pruneri, and G. Badenes, “Temperature-insensitive photonic crystal fiber interferometer for absolute strain sensing,” Appl. Phys. Lett. 91(9), 091109 (2007).
    [CrossRef]
  21. R. Jha, J. Villatoro, G. Badenes, and V. Pruneri, “Refractometry based on a photonic crystal fiber interferometer,” Opt. Lett. 34(5), 617–619 (2009).
    [CrossRef] [PubMed]
  22. C. Zhou, L. Ding, D. Wang, Y. Kuang, and D. Jiang, “Thinned fiber Bragg grating magnetic field sensor with magnetic fluid,” Proc. SPIE 8034, 803409, 803409-6 (2011).
    [CrossRef]
  23. S. M. Nalawade and H. V. Thakur, “Photonic crystal fiber strain-independent temperature sensing based on modal interferometer,” IEEE Photon. Technol. Lett. 23(21), 1600–1602 (2011).
    [CrossRef]
  24. H. Y. Choi, G. Mudhana, K. S. Park, U. C. Paek, and B. H. Lee, “Cross-talk free and ultra-compact fiber optic sensor for simultaneous measurement of temperature and refractive index,” Opt. Express 18(1), 141–149 (2010).
    [CrossRef] [PubMed]
  25. P. Lu, L. Men, K. Sooley, and Q. Chen, “Tapered fiber Mach-Zehnder interferometer for simultaneous measurement of refractive index and temperature,” Appl. Phys. Lett. 94(13), 131110 (2009).
    [CrossRef]
  26. B. Shuai, L. Xia, Y. Zhang, and D. Liu, “A multi-core holey fiber based plasmonic sensor with large detection range and high linearity,” Opt. Express 20(6), 5974–5986 (2012).
    [CrossRef] [PubMed]
  27. J. E. Antonio-Lopez, J. J. Sanchez-Mondragon, P. LiKamWa, and D. A. May-Arrioja, “Fiber-optic sensor for liquid level measurement,” Opt. Lett. 36(17), 3425–3427 (2011).
    [CrossRef] [PubMed]
  28. Q. Jiang, D. Hu, and M. Yang, “Simultaneous measurement of liquid level and surrounding refractive index using tilted fiber Bragg grating,” Sens. Actuators A Phys. 170(1-2), 62–65 (2011).
    [CrossRef]
  29. D. R. Lide, Handbook of Chemistry and Physics, 70th ed. (CRC Press, 2004), Chap. 6.
  30. J. Yan, A. P. Zhang, L. Y. Shao, J. F. Ding, and S. He, “Simultaneous measurement of refractive index and temperature by using dual long-period gratings with an etching process,” IEEE Sens. J. 7(9), 1360–1361 (2007).
    [CrossRef]

2012 (1)

2011 (6)

J. E. Antonio-Lopez, J. J. Sanchez-Mondragon, P. LiKamWa, and D. A. May-Arrioja, “Fiber-optic sensor for liquid level measurement,” Opt. Lett. 36(17), 3425–3427 (2011).
[CrossRef] [PubMed]

Q. Jiang, D. Hu, and M. Yang, “Simultaneous measurement of liquid level and surrounding refractive index using tilted fiber Bragg grating,” Sens. Actuators A Phys. 170(1-2), 62–65 (2011).
[CrossRef]

C. Zhou, L. Ding, D. Wang, Y. Kuang, and D. Jiang, “Thinned fiber Bragg grating magnetic field sensor with magnetic fluid,” Proc. SPIE 8034, 803409, 803409-6 (2011).
[CrossRef]

S. M. Nalawade and H. V. Thakur, “Photonic crystal fiber strain-independent temperature sensing based on modal interferometer,” IEEE Photon. Technol. Lett. 23(21), 1600–1602 (2011).
[CrossRef]

L. Jiang, J. Yang, S. Wang, B. Li, and M. Wang, “Fiber Mach-Zehnder interferometer based on microcavities for high-temperature sensing with high sensitivity,” Opt. Lett. 36(19), 3753–3755 (2011).
[CrossRef] [PubMed]

Q. Wu, Y. Semenova, P. Wang, and G. Farrell, “High sensitivity SMS fiber structure based refractometer--analysis and experiment,” Opt. Express 19(9), 7937–7944 (2011).
[CrossRef] [PubMed]

2010 (1)

2009 (3)

2008 (4)

Z. L. Ran, Y. J. Rao, W. J. Liu, X. Liao, and K. S. Chiang, “Laser-micromachined Fabry-Perot optical fiber tip sensor for high-resolution temperature-independent measurement of refractive index,” Opt. Express 16(3), 2252–2263 (2008).
[CrossRef] [PubMed]

Z. Tian, S. S. H. Yam, J. Barnes, W. Bock, P. Greig, J. M. Fraser, H. P. Loock, and R. D. Oleschuk, “Refractive index sensing with Mach-Zehnder interferometer based on concatenating two single-mode fiber tapers,” IEEE Photon. Technol. Lett. 20(8), 626–628 (2008).
[CrossRef]

L. V. Nguyen, D. Hwang, S. Moon, D. S. Moon, and Y. Chung, “High temperature fiber sensor with high sensitivity based on core diameter mismatch,” Opt. Express 16(15), 11369–11375 (2008).
[CrossRef] [PubMed]

P. Lu and Q. Chen, “Fiber Bragg grating sensor for simultaneous measurement of flow rate and direction,” Meas. Sci. Technol. 19(12), 125302–125309 (2008).
[CrossRef]

2007 (4)

Y. J. Rao, T. Zhu, X. C. Yang, and D. W. Duan, “In-line fiber-optic etalon formed by hollow-core photonic crystal fiber,” Opt. Lett. 32(18), 2662–2664 (2007).
[CrossRef] [PubMed]

H. Y. Choi, M. J. Kim, and B. H. Lee, “All-fiber Mach-Zehnder type interferometers formed in photonic crystal fiber,” Opt. Express 15(9), 5711–5720 (2007).
[CrossRef] [PubMed]

J. Villatoro, V. Finazzi, V. P. Minkovich, V. Pruneri, and G. Badenes, “Temperature-insensitive photonic crystal fiber interferometer for absolute strain sensing,” Appl. Phys. Lett. 91(9), 091109 (2007).
[CrossRef]

J. Yan, A. P. Zhang, L. Y. Shao, J. F. Ding, and S. He, “Simultaneous measurement of refractive index and temperature by using dual long-period gratings with an etching process,” IEEE Sens. J. 7(9), 1360–1361 (2007).
[CrossRef]

2006 (2)

J. Villatoro, V. P. Minkovich, and D. Monzon-Hernandez, “Compact modal interferometer built with tapered microstructured optical fiber,” IEEE Photon. Technol. Lett. 18(11), 1258–1260 (2006).
[CrossRef]

Y. J. Rao, “Recent progress in fiber optic extrinsic Fabry-Perot interferometric sensors,” Opt. Fiber Technol. 12(3), 227–237 (2006).
[CrossRef]

2005 (2)

A. P. Zhang, L. Y. Shao, J. F. Ding, and S. He, “Sandwiched long-period gratings for simultaneous measurement of refractive index and temperature,” IEEE Photon. Technol. Lett. 17(11), 2397–2399 (2005).
[CrossRef]

A. Iadicicco, S. Campopiano, A. Cutolo, M. Giordano, and A. Cusano, “Nonuniform thinned fiber bragg gratings for simultaneous refractive index and temperature measurements,” IEEE Photon. Technol. Lett. 17(7), 1495–1497 (2005).
[CrossRef]

2004 (2)

1997 (2)

H. J. Patrick, A. D. Kersey, F. Bucholtz, K. J. Ewing, J. B. Judkins, and A. M. Vengsarkar, ““Chemical sensor based on long-period fiber grating response to index of refraction,” Proc. Lasers and Electro-Optics. 11, 420–421 (1997).

J. Canning and A. L. G. Carter, “Modal interferometer for in situ measurements of induced core index change in optical fibers,” Opt. Lett. 22(8), 561–563 (1997).
[CrossRef] [PubMed]

1995 (1)

X. Daxhelet, J. Bures, and R. Maciejko, “Temperature-independent all-fiber modal interferometer,” Opt. Fiber Technol. 1(4), 373–376 (1995).
[CrossRef]

1989 (1)

P. R. Horche, M. Lopez-Amo, M. A. Muriel, and J. A. Martin-Pereda, “Spectral behavior of a low-cost all-fiber component based on untapered multifiber unions,” IEEE Photon. Technol. Lett. 1(7), 184–187 (1989).
[CrossRef]

Antonio-Lopez, J. E.

Badenes, G.

R. Jha, J. Villatoro, G. Badenes, and V. Pruneri, “Refractometry based on a photonic crystal fiber interferometer,” Opt. Lett. 34(5), 617–619 (2009).
[CrossRef] [PubMed]

J. Villatoro, V. Finazzi, V. P. Minkovich, V. Pruneri, and G. Badenes, “Temperature-insensitive photonic crystal fiber interferometer for absolute strain sensing,” Appl. Phys. Lett. 91(9), 091109 (2007).
[CrossRef]

Barnes, J.

Z. Tian, S. S. H. Yam, J. Barnes, W. Bock, P. Greig, J. M. Fraser, H. P. Loock, and R. D. Oleschuk, “Refractive index sensing with Mach-Zehnder interferometer based on concatenating two single-mode fiber tapers,” IEEE Photon. Technol. Lett. 20(8), 626–628 (2008).
[CrossRef]

Bock, W.

Z. Tian, S. S. H. Yam, J. Barnes, W. Bock, P. Greig, J. M. Fraser, H. P. Loock, and R. D. Oleschuk, “Refractive index sensing with Mach-Zehnder interferometer based on concatenating two single-mode fiber tapers,” IEEE Photon. Technol. Lett. 20(8), 626–628 (2008).
[CrossRef]

Bucholtz, F.

H. J. Patrick, A. D. Kersey, F. Bucholtz, K. J. Ewing, J. B. Judkins, and A. M. Vengsarkar, ““Chemical sensor based on long-period fiber grating response to index of refraction,” Proc. Lasers and Electro-Optics. 11, 420–421 (1997).

Bures, J.

X. Daxhelet, J. Bures, and R. Maciejko, “Temperature-independent all-fiber modal interferometer,” Opt. Fiber Technol. 1(4), 373–376 (1995).
[CrossRef]

Campopiano, S.

A. Iadicicco, S. Campopiano, A. Cutolo, M. Giordano, and A. Cusano, “Nonuniform thinned fiber bragg gratings for simultaneous refractive index and temperature measurements,” IEEE Photon. Technol. Lett. 17(7), 1495–1497 (2005).
[CrossRef]

Canning, J.

Carter, A. L. G.

Chen, Q.

P. Lu, L. Men, K. Sooley, and Q. Chen, “Tapered fiber Mach-Zehnder interferometer for simultaneous measurement of refractive index and temperature,” Appl. Phys. Lett. 94(13), 131110 (2009).
[CrossRef]

P. Lu and Q. Chen, “Fiber Bragg grating sensor for simultaneous measurement of flow rate and direction,” Meas. Sci. Technol. 19(12), 125302–125309 (2008).
[CrossRef]

Chiang, K. S.

Choi, H. Y.

Chung, Y.

Cusano, A.

A. Iadicicco, S. Campopiano, A. Cutolo, M. Giordano, and A. Cusano, “Nonuniform thinned fiber bragg gratings for simultaneous refractive index and temperature measurements,” IEEE Photon. Technol. Lett. 17(7), 1495–1497 (2005).
[CrossRef]

Cutolo, A.

A. Iadicicco, S. Campopiano, A. Cutolo, M. Giordano, and A. Cusano, “Nonuniform thinned fiber bragg gratings for simultaneous refractive index and temperature measurements,” IEEE Photon. Technol. Lett. 17(7), 1495–1497 (2005).
[CrossRef]

Daxhelet, X.

X. Daxhelet, J. Bures, and R. Maciejko, “Temperature-independent all-fiber modal interferometer,” Opt. Fiber Technol. 1(4), 373–376 (1995).
[CrossRef]

Deng, M.

Ding, J. F.

J. Yan, A. P. Zhang, L. Y. Shao, J. F. Ding, and S. He, “Simultaneous measurement of refractive index and temperature by using dual long-period gratings with an etching process,” IEEE Sens. J. 7(9), 1360–1361 (2007).
[CrossRef]

A. P. Zhang, L. Y. Shao, J. F. Ding, and S. He, “Sandwiched long-period gratings for simultaneous measurement of refractive index and temperature,” IEEE Photon. Technol. Lett. 17(11), 2397–2399 (2005).
[CrossRef]

Ding, L.

C. Zhou, L. Ding, D. Wang, Y. Kuang, and D. Jiang, “Thinned fiber Bragg grating magnetic field sensor with magnetic fluid,” Proc. SPIE 8034, 803409, 803409-6 (2011).
[CrossRef]

Duan, D. W.

Ewing, K. J.

H. J. Patrick, A. D. Kersey, F. Bucholtz, K. J. Ewing, J. B. Judkins, and A. M. Vengsarkar, ““Chemical sensor based on long-period fiber grating response to index of refraction,” Proc. Lasers and Electro-Optics. 11, 420–421 (1997).

Farrell, G.

Finazzi, V.

J. Villatoro, V. Finazzi, V. P. Minkovich, V. Pruneri, and G. Badenes, “Temperature-insensitive photonic crystal fiber interferometer for absolute strain sensing,” Appl. Phys. Lett. 91(9), 091109 (2007).
[CrossRef]

Fraser, J. M.

Z. Tian, S. S. H. Yam, J. Barnes, W. Bock, P. Greig, J. M. Fraser, H. P. Loock, and R. D. Oleschuk, “Refractive index sensing with Mach-Zehnder interferometer based on concatenating two single-mode fiber tapers,” IEEE Photon. Technol. Lett. 20(8), 626–628 (2008).
[CrossRef]

Giordano, M.

A. Iadicicco, S. Campopiano, A. Cutolo, M. Giordano, and A. Cusano, “Nonuniform thinned fiber bragg gratings for simultaneous refractive index and temperature measurements,” IEEE Photon. Technol. Lett. 17(7), 1495–1497 (2005).
[CrossRef]

Greig, P.

Z. Tian, S. S. H. Yam, J. Barnes, W. Bock, P. Greig, J. M. Fraser, H. P. Loock, and R. D. Oleschuk, “Refractive index sensing with Mach-Zehnder interferometer based on concatenating two single-mode fiber tapers,” IEEE Photon. Technol. Lett. 20(8), 626–628 (2008).
[CrossRef]

He, S.

J. Yan, A. P. Zhang, L. Y. Shao, J. F. Ding, and S. He, “Simultaneous measurement of refractive index and temperature by using dual long-period gratings with an etching process,” IEEE Sens. J. 7(9), 1360–1361 (2007).
[CrossRef]

A. P. Zhang, L. Y. Shao, J. F. Ding, and S. He, “Sandwiched long-period gratings for simultaneous measurement of refractive index and temperature,” IEEE Photon. Technol. Lett. 17(11), 2397–2399 (2005).
[CrossRef]

Horche, P. R.

P. R. Horche, M. Lopez-Amo, M. A. Muriel, and J. A. Martin-Pereda, “Spectral behavior of a low-cost all-fiber component based on untapered multifiber unions,” IEEE Photon. Technol. Lett. 1(7), 184–187 (1989).
[CrossRef]

Hu, D.

Q. Jiang, D. Hu, and M. Yang, “Simultaneous measurement of liquid level and surrounding refractive index using tilted fiber Bragg grating,” Sens. Actuators A Phys. 170(1-2), 62–65 (2011).
[CrossRef]

Hwang, D.

Iadicicco, A.

A. Iadicicco, S. Campopiano, A. Cutolo, M. Giordano, and A. Cusano, “Nonuniform thinned fiber bragg gratings for simultaneous refractive index and temperature measurements,” IEEE Photon. Technol. Lett. 17(7), 1495–1497 (2005).
[CrossRef]

Jang, H. S.

Jha, R.

Jiang, D.

C. Zhou, L. Ding, D. Wang, Y. Kuang, and D. Jiang, “Thinned fiber Bragg grating magnetic field sensor with magnetic fluid,” Proc. SPIE 8034, 803409, 803409-6 (2011).
[CrossRef]

Jiang, L.

Jiang, Q.

Q. Jiang, D. Hu, and M. Yang, “Simultaneous measurement of liquid level and surrounding refractive index using tilted fiber Bragg grating,” Sens. Actuators A Phys. 170(1-2), 62–65 (2011).
[CrossRef]

Judkins, J. B.

H. J. Patrick, A. D. Kersey, F. Bucholtz, K. J. Ewing, J. B. Judkins, and A. M. Vengsarkar, ““Chemical sensor based on long-period fiber grating response to index of refraction,” Proc. Lasers and Electro-Optics. 11, 420–421 (1997).

Kersey, A. D.

H. J. Patrick, A. D. Kersey, F. Bucholtz, K. J. Ewing, J. B. Judkins, and A. M. Vengsarkar, ““Chemical sensor based on long-period fiber grating response to index of refraction,” Proc. Lasers and Electro-Optics. 11, 420–421 (1997).

Kim, J. C.

Kim, M. J.

Kuang, Y.

C. Zhou, L. Ding, D. Wang, Y. Kuang, and D. Jiang, “Thinned fiber Bragg grating magnetic field sensor with magnetic fluid,” Proc. SPIE 8034, 803409, 803409-6 (2011).
[CrossRef]

Lee, B. H.

Lee, K. S.

Li, B.

Li, H.

Liao, X.

LiKamWa, P.

Lim, J. H.

Liu, D.

Liu, W. J.

Loock, H. P.

Z. Tian, S. S. H. Yam, J. Barnes, W. Bock, P. Greig, J. M. Fraser, H. P. Loock, and R. D. Oleschuk, “Refractive index sensing with Mach-Zehnder interferometer based on concatenating two single-mode fiber tapers,” IEEE Photon. Technol. Lett. 20(8), 626–628 (2008).
[CrossRef]

Lopez-Amo, M.

P. R. Horche, M. Lopez-Amo, M. A. Muriel, and J. A. Martin-Pereda, “Spectral behavior of a low-cost all-fiber component based on untapered multifiber unions,” IEEE Photon. Technol. Lett. 1(7), 184–187 (1989).
[CrossRef]

Lu, P.

P. Lu, L. Men, K. Sooley, and Q. Chen, “Tapered fiber Mach-Zehnder interferometer for simultaneous measurement of refractive index and temperature,” Appl. Phys. Lett. 94(13), 131110 (2009).
[CrossRef]

P. Lu and Q. Chen, “Fiber Bragg grating sensor for simultaneous measurement of flow rate and direction,” Meas. Sci. Technol. 19(12), 125302–125309 (2008).
[CrossRef]

Maciejko, R.

X. Daxhelet, J. Bures, and R. Maciejko, “Temperature-independent all-fiber modal interferometer,” Opt. Fiber Technol. 1(4), 373–376 (1995).
[CrossRef]

Martin-Pereda, J. A.

P. R. Horche, M. Lopez-Amo, M. A. Muriel, and J. A. Martin-Pereda, “Spectral behavior of a low-cost all-fiber component based on untapered multifiber unions,” IEEE Photon. Technol. Lett. 1(7), 184–187 (1989).
[CrossRef]

May-Arrioja, D. A.

Men, L.

P. Lu, L. Men, K. Sooley, and Q. Chen, “Tapered fiber Mach-Zehnder interferometer for simultaneous measurement of refractive index and temperature,” Appl. Phys. Lett. 94(13), 131110 (2009).
[CrossRef]

Minkovich, V. P.

J. Villatoro, V. Finazzi, V. P. Minkovich, V. Pruneri, and G. Badenes, “Temperature-insensitive photonic crystal fiber interferometer for absolute strain sensing,” Appl. Phys. Lett. 91(9), 091109 (2007).
[CrossRef]

J. Villatoro, V. P. Minkovich, and D. Monzon-Hernandez, “Compact modal interferometer built with tapered microstructured optical fiber,” IEEE Photon. Technol. Lett. 18(11), 1258–1260 (2006).
[CrossRef]

Monzon-Hernandez, D.

J. Villatoro, V. P. Minkovich, and D. Monzon-Hernandez, “Compact modal interferometer built with tapered microstructured optical fiber,” IEEE Photon. Technol. Lett. 18(11), 1258–1260 (2006).
[CrossRef]

Moon, D. S.

Moon, S.

Mudhana, G.

Muriel, M. A.

P. R. Horche, M. Lopez-Amo, M. A. Muriel, and J. A. Martin-Pereda, “Spectral behavior of a low-cost all-fiber component based on untapered multifiber unions,” IEEE Photon. Technol. Lett. 1(7), 184–187 (1989).
[CrossRef]

Nalawade, S. M.

S. M. Nalawade and H. V. Thakur, “Photonic crystal fiber strain-independent temperature sensing based on modal interferometer,” IEEE Photon. Technol. Lett. 23(21), 1600–1602 (2011).
[CrossRef]

Nguyen, L. V.

Oleschuk, R. D.

Z. Tian, S. S. H. Yam, J. Barnes, W. Bock, P. Greig, J. M. Fraser, H. P. Loock, and R. D. Oleschuk, “Refractive index sensing with Mach-Zehnder interferometer based on concatenating two single-mode fiber tapers,” IEEE Photon. Technol. Lett. 20(8), 626–628 (2008).
[CrossRef]

Paek, U. C.

Park, K. S.

Patrick, H. J.

H. J. Patrick, A. D. Kersey, F. Bucholtz, K. J. Ewing, J. B. Judkins, and A. M. Vengsarkar, ““Chemical sensor based on long-period fiber grating response to index of refraction,” Proc. Lasers and Electro-Optics. 11, 420–421 (1997).

Pruneri, V.

R. Jha, J. Villatoro, G. Badenes, and V. Pruneri, “Refractometry based on a photonic crystal fiber interferometer,” Opt. Lett. 34(5), 617–619 (2009).
[CrossRef] [PubMed]

J. Villatoro, V. Finazzi, V. P. Minkovich, V. Pruneri, and G. Badenes, “Temperature-insensitive photonic crystal fiber interferometer for absolute strain sensing,” Appl. Phys. Lett. 91(9), 091109 (2007).
[CrossRef]

Ran, Z. L.

Rao, Y. J.

Sanchez-Mondragon, J. J.

Semenova, Y.

Shao, L. Y.

J. Yan, A. P. Zhang, L. Y. Shao, J. F. Ding, and S. He, “Simultaneous measurement of refractive index and temperature by using dual long-period gratings with an etching process,” IEEE Sens. J. 7(9), 1360–1361 (2007).
[CrossRef]

A. P. Zhang, L. Y. Shao, J. F. Ding, and S. He, “Sandwiched long-period gratings for simultaneous measurement of refractive index and temperature,” IEEE Photon. Technol. Lett. 17(11), 2397–2399 (2005).
[CrossRef]

Shuai, B.

Sooley, K.

P. Lu, L. Men, K. Sooley, and Q. Chen, “Tapered fiber Mach-Zehnder interferometer for simultaneous measurement of refractive index and temperature,” Appl. Phys. Lett. 94(13), 131110 (2009).
[CrossRef]

Swart, P. L.

P. L. Swart, “Long-period grating Michelson refractometric sensor,” Meas. Sci. Technol. 15(8), 1576–1580 (2004).
[CrossRef]

Thakur, H. V.

S. M. Nalawade and H. V. Thakur, “Photonic crystal fiber strain-independent temperature sensing based on modal interferometer,” IEEE Photon. Technol. Lett. 23(21), 1600–1602 (2011).
[CrossRef]

Tian, Z.

Z. Tian, S. S. H. Yam, J. Barnes, W. Bock, P. Greig, J. M. Fraser, H. P. Loock, and R. D. Oleschuk, “Refractive index sensing with Mach-Zehnder interferometer based on concatenating two single-mode fiber tapers,” IEEE Photon. Technol. Lett. 20(8), 626–628 (2008).
[CrossRef]

Vengsarkar, A. M.

H. J. Patrick, A. D. Kersey, F. Bucholtz, K. J. Ewing, J. B. Judkins, and A. M. Vengsarkar, ““Chemical sensor based on long-period fiber grating response to index of refraction,” Proc. Lasers and Electro-Optics. 11, 420–421 (1997).

Villatoro, J.

R. Jha, J. Villatoro, G. Badenes, and V. Pruneri, “Refractometry based on a photonic crystal fiber interferometer,” Opt. Lett. 34(5), 617–619 (2009).
[CrossRef] [PubMed]

J. Villatoro, V. Finazzi, V. P. Minkovich, V. Pruneri, and G. Badenes, “Temperature-insensitive photonic crystal fiber interferometer for absolute strain sensing,” Appl. Phys. Lett. 91(9), 091109 (2007).
[CrossRef]

J. Villatoro, V. P. Minkovich, and D. Monzon-Hernandez, “Compact modal interferometer built with tapered microstructured optical fiber,” IEEE Photon. Technol. Lett. 18(11), 1258–1260 (2006).
[CrossRef]

Wang, D.

C. Zhou, L. Ding, D. Wang, Y. Kuang, and D. Jiang, “Thinned fiber Bragg grating magnetic field sensor with magnetic fluid,” Proc. SPIE 8034, 803409, 803409-6 (2011).
[CrossRef]

Wang, M.

Wang, P.

Wang, S.

Wu, Q.

Xia, L.

Yam, S. S. H.

Z. Tian, S. S. H. Yam, J. Barnes, W. Bock, P. Greig, J. M. Fraser, H. P. Loock, and R. D. Oleschuk, “Refractive index sensing with Mach-Zehnder interferometer based on concatenating two single-mode fiber tapers,” IEEE Photon. Technol. Lett. 20(8), 626–628 (2008).
[CrossRef]

Yan, J.

J. Yan, A. P. Zhang, L. Y. Shao, J. F. Ding, and S. He, “Simultaneous measurement of refractive index and temperature by using dual long-period gratings with an etching process,” IEEE Sens. J. 7(9), 1360–1361 (2007).
[CrossRef]

Yang, J.

Yang, M.

Q. Jiang, D. Hu, and M. Yang, “Simultaneous measurement of liquid level and surrounding refractive index using tilted fiber Bragg grating,” Sens. Actuators A Phys. 170(1-2), 62–65 (2011).
[CrossRef]

Yang, X. C.

Zhang, A. P.

J. Yan, A. P. Zhang, L. Y. Shao, J. F. Ding, and S. He, “Simultaneous measurement of refractive index and temperature by using dual long-period gratings with an etching process,” IEEE Sens. J. 7(9), 1360–1361 (2007).
[CrossRef]

A. P. Zhang, L. Y. Shao, J. F. Ding, and S. He, “Sandwiched long-period gratings for simultaneous measurement of refractive index and temperature,” IEEE Photon. Technol. Lett. 17(11), 2397–2399 (2005).
[CrossRef]

Zhang, Y.

Zhou, C.

C. Zhou, L. Ding, D. Wang, Y. Kuang, and D. Jiang, “Thinned fiber Bragg grating magnetic field sensor with magnetic fluid,” Proc. SPIE 8034, 803409, 803409-6 (2011).
[CrossRef]

Zhu, T.

Appl. Phys. Lett. (2)

J. Villatoro, V. Finazzi, V. P. Minkovich, V. Pruneri, and G. Badenes, “Temperature-insensitive photonic crystal fiber interferometer for absolute strain sensing,” Appl. Phys. Lett. 91(9), 091109 (2007).
[CrossRef]

P. Lu, L. Men, K. Sooley, and Q. Chen, “Tapered fiber Mach-Zehnder interferometer for simultaneous measurement of refractive index and temperature,” Appl. Phys. Lett. 94(13), 131110 (2009).
[CrossRef]

IEEE Photon. Technol. Lett. (6)

S. M. Nalawade and H. V. Thakur, “Photonic crystal fiber strain-independent temperature sensing based on modal interferometer,” IEEE Photon. Technol. Lett. 23(21), 1600–1602 (2011).
[CrossRef]

J. Villatoro, V. P. Minkovich, and D. Monzon-Hernandez, “Compact modal interferometer built with tapered microstructured optical fiber,” IEEE Photon. Technol. Lett. 18(11), 1258–1260 (2006).
[CrossRef]

A. P. Zhang, L. Y. Shao, J. F. Ding, and S. He, “Sandwiched long-period gratings for simultaneous measurement of refractive index and temperature,” IEEE Photon. Technol. Lett. 17(11), 2397–2399 (2005).
[CrossRef]

A. Iadicicco, S. Campopiano, A. Cutolo, M. Giordano, and A. Cusano, “Nonuniform thinned fiber bragg gratings for simultaneous refractive index and temperature measurements,” IEEE Photon. Technol. Lett. 17(7), 1495–1497 (2005).
[CrossRef]

Z. Tian, S. S. H. Yam, J. Barnes, W. Bock, P. Greig, J. M. Fraser, H. P. Loock, and R. D. Oleschuk, “Refractive index sensing with Mach-Zehnder interferometer based on concatenating two single-mode fiber tapers,” IEEE Photon. Technol. Lett. 20(8), 626–628 (2008).
[CrossRef]

P. R. Horche, M. Lopez-Amo, M. A. Muriel, and J. A. Martin-Pereda, “Spectral behavior of a low-cost all-fiber component based on untapered multifiber unions,” IEEE Photon. Technol. Lett. 1(7), 184–187 (1989).
[CrossRef]

IEEE Sens. J. (1)

J. Yan, A. P. Zhang, L. Y. Shao, J. F. Ding, and S. He, “Simultaneous measurement of refractive index and temperature by using dual long-period gratings with an etching process,” IEEE Sens. J. 7(9), 1360–1361 (2007).
[CrossRef]

J. Lightwave Technol. (1)

Meas. Sci. Technol. (2)

P. L. Swart, “Long-period grating Michelson refractometric sensor,” Meas. Sci. Technol. 15(8), 1576–1580 (2004).
[CrossRef]

P. Lu and Q. Chen, “Fiber Bragg grating sensor for simultaneous measurement of flow rate and direction,” Meas. Sci. Technol. 19(12), 125302–125309 (2008).
[CrossRef]

Opt. Express (6)

Opt. Fiber Technol. (2)

X. Daxhelet, J. Bures, and R. Maciejko, “Temperature-independent all-fiber modal interferometer,” Opt. Fiber Technol. 1(4), 373–376 (1995).
[CrossRef]

Y. J. Rao, “Recent progress in fiber optic extrinsic Fabry-Perot interferometric sensors,” Opt. Fiber Technol. 12(3), 227–237 (2006).
[CrossRef]

Opt. Lett. (6)

Proc. Lasers and Electro-Optics. (1)

H. J. Patrick, A. D. Kersey, F. Bucholtz, K. J. Ewing, J. B. Judkins, and A. M. Vengsarkar, ““Chemical sensor based on long-period fiber grating response to index of refraction,” Proc. Lasers and Electro-Optics. 11, 420–421 (1997).

Proc. SPIE (1)

C. Zhou, L. Ding, D. Wang, Y. Kuang, and D. Jiang, “Thinned fiber Bragg grating magnetic field sensor with magnetic fluid,” Proc. SPIE 8034, 803409, 803409-6 (2011).
[CrossRef]

Sens. Actuators A Phys. (1)

Q. Jiang, D. Hu, and M. Yang, “Simultaneous measurement of liquid level and surrounding refractive index using tilted fiber Bragg grating,” Sens. Actuators A Phys. 170(1-2), 62–65 (2011).
[CrossRef]

Other (1)

D. R. Lide, Handbook of Chemistry and Physics, 70th ed. (CRC Press, 2004), Chap. 6.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

The schematic diagram and principle of the sensor.

Fig. 2
Fig. 2

Measured transmission spectrum of the (a) singlemode-thinned-singlemode (STS), and (b) singlemode-multimode-thinned-singlemode (SMTS) fiber structure.

Fig. 3
Fig. 3

Measured transmission spectrum with the sensor TF in the air at different lengths of MMF and in the index matching oil of LMMF = 22cm.

Fig. 4
Fig. 4

Measured transmission spectrum of the SMTS sensor with different TF lengths.

Fig. 5
Fig. 5

Spatial frequency of the SMTS sensor with different TF lengths.

Fig. 6
Fig. 6

(a) The schematic diagram of the experimental system. (b) Measured wavelength shift for water level, and (c) sensor response at a wavelength of 1538.7228nm with different refractive indices.

Fig. 7
Fig. 7

The liquid level sensitivity as a function of refractive indices.

Fig. 8
Fig. 8

(a) Measured wavelength shift for various RI at a wavelength of 1566.47858nm, and (b) RI response at different wavelengths.

Fig. 9
Fig. 9

(a) Schematic diagram of the experimental setup. (b) Measured wavelength shift at a wavelength of 1566.4785nm as temperature varies, and (c) temperature response of the sensor.

Fig. 10
Fig. 10

The axial strain response of the sensor

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

I( λ )= I core + I clad +2 I core I clad cosϕ
λ m = 2Δ n eff L 2m+1
Δ λ m = 4 n eff L (2m+1)(2m1) λ m 2 Δ n eff L
λ m = 2Δ n eff (LL ) n 2m+1 + 2Δ n effn L n 2m+1
S n =1868.4233n+2314.9878,1.3345n1.3775
k= k T + k RI × R RI,T

Metrics