Abstract

We propose and experimentally demonstrate a bidirectional measurement for Brillouin optical correlation domain analysis as a novel and simple way of the performance enhancement. Brillouin gain and loss spectra of two adjacent correlation peaks are simultaneously and independently analyzed by applying midpoint attenuation in a fiber under test, which doubles both the speed and the range of the distributed measurement.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. X. Bao and L. Chen, “Recent progress in Brillouin scattering based fiber sensors,” Sensors (Basel) 11(4), 4152–4187 (2011).
    [CrossRef] [PubMed]
  2. X. Bao, D. J. Webb, and D. A. Jackson, “32-km distributed temperature sensor using Brillouin loss in optical fiber,” Opt. Lett. 18(18), 1561–1563 (1993).
    [CrossRef] [PubMed]
  3. M. Nikles, L. Thévenaz, and Ph. Robert, “Brillouin Gain Spectrum Characterization in single-mode optical fibers,” J. Lightwave Technol. 15(10), 1842–1851 (1997).
    [CrossRef]
  4. M. N. Alahbabi, Y. T. Cho, and T. P. Newson, “150-km-range distributed temperature sensor based on coherent detection of spontaneous Brillouin backscatter and in-line Raman amplification,” J. Opt. Soc. Am. B 22(6), 1321–1324 (2005).
    [CrossRef]
  5. K. Hotate and T. Hasegawa, ““Measurement of Brillouin gain spectrum distribution along an optical fiber using a correlation-based technique - proposal, experiment and simulation,” IEICE Trans. Electron,” E 83-C, 405–412 (2000).
  6. K. Y. Song, Z. He, and K. Hotate, “Distributed strain measurement with millimeter-order spatial resolution based on Brillouin optical correlation domain analysis,” Opt. Lett. 31(17), 2526–2528 (2006).
    [CrossRef] [PubMed]
  7. K. Y. Song and K. Hotate, “Distributed fiber strain sensor at 1 kHz sampling rate based on Brillouin optical correlation domain analysis,” IEEE Photon. Technol. Lett. 19(23), 1928–1930 (2007).
    [CrossRef]
  8. K. Y. Song, M. Kishi, Z. He, and K. Hotate, “High-repetition-rate distributed Brillouin sensor based on optical correlation-domain analysis with differential frequency modulation,” Opt. Lett. 36(11), 2062–2064 (2011).
    [CrossRef] [PubMed]
  9. K. Hotate and M. Tanaka, “Correlation-based continuous-wave technique for optical fiber distributed strain measurement using Brillouin scattering with cm-order spatial resolution – applications to smart materials,” IEICE Trans. Electron. E 84-C, 1823–1828 (2001).
  10. K. Y. Song and K. Hotate, “Simplified Brillouin optical correlation domain analysis system with optimized time-gating scheme,” in CLEO/QELS 2007 OSA Technical Digest, paper CThO6 (2007).
  11. J. H. Jeong, K. Lee, K. Y. Song, J.-M. Jeong, and S. B. Lee, “Variable-frequency lock-in detection for the suppression of beat noise in Brillouin optical correlation domain analysis,” Opt. Express 19(19), 18721–18728 (2011).
    [CrossRef] [PubMed]
  12. K. Hotate, K. Abe, and K. Y. Song, “Suppression of signal fluctuation in Brillouin optical correlation domain analysis system using polarization diversity scheme,” IEEE Photon. Technol. Lett. 18(24), 2653–2655 (2006).
    [CrossRef]

2011 (3)

2007 (2)

K. Y. Song and K. Hotate, “Distributed fiber strain sensor at 1 kHz sampling rate based on Brillouin optical correlation domain analysis,” IEEE Photon. Technol. Lett. 19(23), 1928–1930 (2007).
[CrossRef]

K. Y. Song and K. Hotate, “Simplified Brillouin optical correlation domain analysis system with optimized time-gating scheme,” in CLEO/QELS 2007 OSA Technical Digest, paper CThO6 (2007).

2006 (2)

K. Hotate, K. Abe, and K. Y. Song, “Suppression of signal fluctuation in Brillouin optical correlation domain analysis system using polarization diversity scheme,” IEEE Photon. Technol. Lett. 18(24), 2653–2655 (2006).
[CrossRef]

K. Y. Song, Z. He, and K. Hotate, “Distributed strain measurement with millimeter-order spatial resolution based on Brillouin optical correlation domain analysis,” Opt. Lett. 31(17), 2526–2528 (2006).
[CrossRef] [PubMed]

2005 (1)

2001 (1)

K. Hotate and M. Tanaka, “Correlation-based continuous-wave technique for optical fiber distributed strain measurement using Brillouin scattering with cm-order spatial resolution – applications to smart materials,” IEICE Trans. Electron. E 84-C, 1823–1828 (2001).

2000 (1)

K. Hotate and T. Hasegawa, ““Measurement of Brillouin gain spectrum distribution along an optical fiber using a correlation-based technique - proposal, experiment and simulation,” IEICE Trans. Electron,” E 83-C, 405–412 (2000).

1997 (1)

M. Nikles, L. Thévenaz, and Ph. Robert, “Brillouin Gain Spectrum Characterization in single-mode optical fibers,” J. Lightwave Technol. 15(10), 1842–1851 (1997).
[CrossRef]

1993 (1)

Abe, K.

K. Hotate, K. Abe, and K. Y. Song, “Suppression of signal fluctuation in Brillouin optical correlation domain analysis system using polarization diversity scheme,” IEEE Photon. Technol. Lett. 18(24), 2653–2655 (2006).
[CrossRef]

Alahbabi, M. N.

Bao, X.

Chen, L.

X. Bao and L. Chen, “Recent progress in Brillouin scattering based fiber sensors,” Sensors (Basel) 11(4), 4152–4187 (2011).
[CrossRef] [PubMed]

Cho, Y. T.

Hasegawa, T.

K. Hotate and T. Hasegawa, ““Measurement of Brillouin gain spectrum distribution along an optical fiber using a correlation-based technique - proposal, experiment and simulation,” IEICE Trans. Electron,” E 83-C, 405–412 (2000).

He, Z.

Hotate, K.

K. Y. Song, M. Kishi, Z. He, and K. Hotate, “High-repetition-rate distributed Brillouin sensor based on optical correlation-domain analysis with differential frequency modulation,” Opt. Lett. 36(11), 2062–2064 (2011).
[CrossRef] [PubMed]

K. Y. Song and K. Hotate, “Distributed fiber strain sensor at 1 kHz sampling rate based on Brillouin optical correlation domain analysis,” IEEE Photon. Technol. Lett. 19(23), 1928–1930 (2007).
[CrossRef]

K. Y. Song and K. Hotate, “Simplified Brillouin optical correlation domain analysis system with optimized time-gating scheme,” in CLEO/QELS 2007 OSA Technical Digest, paper CThO6 (2007).

K. Y. Song, Z. He, and K. Hotate, “Distributed strain measurement with millimeter-order spatial resolution based on Brillouin optical correlation domain analysis,” Opt. Lett. 31(17), 2526–2528 (2006).
[CrossRef] [PubMed]

K. Hotate, K. Abe, and K. Y. Song, “Suppression of signal fluctuation in Brillouin optical correlation domain analysis system using polarization diversity scheme,” IEEE Photon. Technol. Lett. 18(24), 2653–2655 (2006).
[CrossRef]

K. Hotate and M. Tanaka, “Correlation-based continuous-wave technique for optical fiber distributed strain measurement using Brillouin scattering with cm-order spatial resolution – applications to smart materials,” IEICE Trans. Electron. E 84-C, 1823–1828 (2001).

K. Hotate and T. Hasegawa, ““Measurement of Brillouin gain spectrum distribution along an optical fiber using a correlation-based technique - proposal, experiment and simulation,” IEICE Trans. Electron,” E 83-C, 405–412 (2000).

Jackson, D. A.

Jeong, J. H.

Jeong, J.-M.

Kishi, M.

Lee, K.

Lee, S. B.

Newson, T. P.

Nikles, M.

M. Nikles, L. Thévenaz, and Ph. Robert, “Brillouin Gain Spectrum Characterization in single-mode optical fibers,” J. Lightwave Technol. 15(10), 1842–1851 (1997).
[CrossRef]

Robert, Ph.

M. Nikles, L. Thévenaz, and Ph. Robert, “Brillouin Gain Spectrum Characterization in single-mode optical fibers,” J. Lightwave Technol. 15(10), 1842–1851 (1997).
[CrossRef]

Song, K. Y.

J. H. Jeong, K. Lee, K. Y. Song, J.-M. Jeong, and S. B. Lee, “Variable-frequency lock-in detection for the suppression of beat noise in Brillouin optical correlation domain analysis,” Opt. Express 19(19), 18721–18728 (2011).
[CrossRef] [PubMed]

K. Y. Song, M. Kishi, Z. He, and K. Hotate, “High-repetition-rate distributed Brillouin sensor based on optical correlation-domain analysis with differential frequency modulation,” Opt. Lett. 36(11), 2062–2064 (2011).
[CrossRef] [PubMed]

K. Y. Song and K. Hotate, “Distributed fiber strain sensor at 1 kHz sampling rate based on Brillouin optical correlation domain analysis,” IEEE Photon. Technol. Lett. 19(23), 1928–1930 (2007).
[CrossRef]

K. Y. Song and K. Hotate, “Simplified Brillouin optical correlation domain analysis system with optimized time-gating scheme,” in CLEO/QELS 2007 OSA Technical Digest, paper CThO6 (2007).

K. Y. Song, Z. He, and K. Hotate, “Distributed strain measurement with millimeter-order spatial resolution based on Brillouin optical correlation domain analysis,” Opt. Lett. 31(17), 2526–2528 (2006).
[CrossRef] [PubMed]

K. Hotate, K. Abe, and K. Y. Song, “Suppression of signal fluctuation in Brillouin optical correlation domain analysis system using polarization diversity scheme,” IEEE Photon. Technol. Lett. 18(24), 2653–2655 (2006).
[CrossRef]

Tanaka, M.

K. Hotate and M. Tanaka, “Correlation-based continuous-wave technique for optical fiber distributed strain measurement using Brillouin scattering with cm-order spatial resolution – applications to smart materials,” IEICE Trans. Electron. E 84-C, 1823–1828 (2001).

Thévenaz, L.

M. Nikles, L. Thévenaz, and Ph. Robert, “Brillouin Gain Spectrum Characterization in single-mode optical fibers,” J. Lightwave Technol. 15(10), 1842–1851 (1997).
[CrossRef]

Webb, D. J.

E (1)

K. Hotate and T. Hasegawa, ““Measurement of Brillouin gain spectrum distribution along an optical fiber using a correlation-based technique - proposal, experiment and simulation,” IEICE Trans. Electron,” E 83-C, 405–412 (2000).

IEEE Photon. Technol. Lett. (2)

K. Y. Song and K. Hotate, “Distributed fiber strain sensor at 1 kHz sampling rate based on Brillouin optical correlation domain analysis,” IEEE Photon. Technol. Lett. 19(23), 1928–1930 (2007).
[CrossRef]

K. Hotate, K. Abe, and K. Y. Song, “Suppression of signal fluctuation in Brillouin optical correlation domain analysis system using polarization diversity scheme,” IEEE Photon. Technol. Lett. 18(24), 2653–2655 (2006).
[CrossRef]

IEICE Trans. Electron. E (1)

K. Hotate and M. Tanaka, “Correlation-based continuous-wave technique for optical fiber distributed strain measurement using Brillouin scattering with cm-order spatial resolution – applications to smart materials,” IEICE Trans. Electron. E 84-C, 1823–1828 (2001).

J. Lightwave Technol. (1)

M. Nikles, L. Thévenaz, and Ph. Robert, “Brillouin Gain Spectrum Characterization in single-mode optical fibers,” J. Lightwave Technol. 15(10), 1842–1851 (1997).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Express (1)

Opt. Lett. (3)

Sensors (Basel) (1)

X. Bao and L. Chen, “Recent progress in Brillouin scattering based fiber sensors,” Sensors (Basel) 11(4), 4152–4187 (2011).
[CrossRef] [PubMed]

Other (1)

K. Y. Song and K. Hotate, “Simplified Brillouin optical correlation domain analysis system with optimized time-gating scheme,” in CLEO/QELS 2007 OSA Technical Digest, paper CThO6 (2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematics of (a) ordinary BOCDA, and (b) BOCDA with bidirectional measurement.

Fig. 2
Fig. 2

Experimental setup of the BOCDA system for bidirectional measurement.

Fig. 3
Fig. 3

Structure of the FUT with strain-applied segments.

Fig. 4
Fig. 4

(a) 3D plots of the BGS distribution along the FUT. (b) Measured BGS at five sample points.

Fig. 5
Fig. 5

(a) 3D plot of the measured BGS of the segment II. (b) BGS at sample positions of z = 127, 129, 150, and 167 m, respectively, without the midpoint attenuation applied.

Fig. 6
Fig. 6

Distribution map of the Brillouin frequency along the 200 m FUT.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

L= V g 2 f m
I 2 =α I 20 e 0 L g B α I 10 dz e L 2L g B I 10 dz =α I 20 e ( α 0 L g B dz + L 2L g B dz ) I 10
I 2 α I 20 e I 10 L 2L g B dz
I 1 =α I 10 e 0 L g B I 20 dz e L 2L g B α I 20 dz =α I 10 e ( 0 L g B dz +α L 2L g B dz ) I 20
I 1 α I 10 e I 20 0 L g B dz
f L1 = f m 2m , f L2 = f m 2n
f LB =| f L1 f L2 |=| f m (mn) 2mn |

Metrics