Abstract

Brillouin scattering property in a highly nonlinear photonic crystal fiber (HNL-PCF) with hybrid-core structure is experimentally investigated. The HNL-PCF comprises a highly Ge-doped core surrounded by a triangularly-arranged F-doped buffer. It is experimentally shown that there exist five Brillouin resonance peaks with ~300 MHz frequency spacing in the Brillouin gain spectrum, which can be classified into two groups physcially attributed to two spatially separated layers of Ge-doped and F-doped regions. These peaks have similar linear dispersion characteristics and their effective acoustic velocities increase monotonically by the order of the peaks. The acousto-optic overlapping efficiency in the fiber is measured to be ~50%, which indicates that the stimulated Brillouin scattering threshold in the HNL-PCF is twofold enhanced. The temperature and strain dependences of the first resonance peak are also investigated, showing the similar behaviors as those in all-silica optical fibers.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. C. Knight, “Photonic crystal fibres,” Nature 424(6950), 847–851 (2003).
    [CrossRef] [PubMed]
  2. K. Chow, C. Shu, C. Lin, and A. Bjarklev, “Polarization-insensitive widely tunable wavelength converter based on four-wave mixing in a dispersion-flattened nonlinear photonic crystal fiber,” IEEE Photon. Technol. Lett. 17(3), 624–626 (2005).
    [CrossRef]
  3. J. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
    [CrossRef]
  4. L. Zou, X. Bao, and L. Chen, “Brillouin scattering spectrum in photonic crystal fiber with a partially germanium-doped core,” Opt. Lett. 28(21), 2022–2024 (2003).
    [CrossRef] [PubMed]
  5. A. Yeniay, J. M. Delavaux, and J. Toulouse, “Spontaneous and stimulated Brillouin scattering gain spectra in optical fibers,” J. Lightwave Technol. 20(8), 1425–1432 (2002).
    [CrossRef]
  6. Y. Koyamada, S. Sato, S. Nakamura, H. Sotobayashi, and W. Chujo, “Simulating and designing Brillouin gain spectrum in single-mode fibers,” J. Lightwave Technol. 22(2), 631–639 (2004).
    [CrossRef]
  7. W. Zou, Z. He, M. Kishi, and K. Hotate, “Stimulated Brillouin scattering and its dependences on strain and temperature in a high-delta optical fiber with F-doped depressed inner cladding,” Opt. Lett. 32(6), 600–602 (2007).
    [CrossRef] [PubMed]
  8. P. Dainese, P. St. J. Russell, N. Joly, J. C. Knight, G. S. Wiederhecker, H. L. Fragnito, V. Laude, and A. Khelif, “Stimulated Brillouin scattering from multi-GHz-guided acoustic phonons in nanostructured photonic crystal fibers,” Nat. Phys. 2(6), 388–392 (2006).
    [CrossRef]
  9. P. Dainese, P. St. J. Russell, G. S. Wiederhecker, N. Joly, H. L. Fragnito, V. Laude, and A. Khelif, “Raman-like light scattering from acoustic phonons in photonic crystal fiber,” Opt. Express 14(9), 4141–4150 (2006).
    [CrossRef] [PubMed]
  10. A. Kobyakov, S. Kumar, D. Q. Chowdhury, A. B. Ruffin, M. Sauer, S. R. Bickham, and R. Mishra, “Design concept for optical fibers with enhanced SBS threshold,” Opt. Express 13(14), 5338–5346 (2005).
    [CrossRef] [PubMed]
  11. W. Zou, Z. He, and K. Hotate, “Experimental study of Brillouin scattering in fluorine-doped single-mode optical fibers,” Opt. Express 16(23), 18804–18812 (2008).
    [CrossRef] [PubMed]
  12. T. Horiguchi, T. Kurashima, and M. Tateda, “Tensile strain dependence of Brillouin frequency shift in silica optical fibers,” IEEE Photon. Technol. Lett. 1(5), 107–108 (1989).
    [CrossRef]
  13. W. Zou, Z. He, and K. Hotate, “Investigation of strain- and temperature-dependences of Brillouin frequency shifts in GeO2-doped optical fibers,” J. Lightwave Technol. 26(13), 1854–1861 (2008).
    [CrossRef]
  14. J. E. McElhenny, R. K. Pattnaik, J. Toulouse, K. Saitoh, and M. Koshiba; “Unique characteristic features of stimulated Brillouin scattering in small-core photonic crystal fibers,” J. Opt. Soc. Am. B 25(4), 582–593 (2008).
    [CrossRef]
  15. W. Zhang, Y. Wang, Y. Pi, Y. Huang, and J. Peng, “Influences of pump wavelength and environment temperature on the dual-peaked Brillouin property of a small-core microstructure fiber,” Opt. Lett. 32(16), 2303–2305 (2007).
    [CrossRef] [PubMed]
  16. W. Zou, Z. He, and K. Hotate, “Complete discrimination of strain and temperature using Brillouin frequency shift and birefringence in a polarization-maintaining fiber,” Opt. Express 17(3), 1248–1255 (2009).
    [CrossRef] [PubMed]
  17. W. Zou, Z. He, K.-Y. Song, and K. Hotate, “Correlation-based distributed measurement of a dynamic grating spectrum generated in stimulated Brillouin scattering in a polarization-maintaining optical fiber,” Opt. Lett. 34(7), 1126–1128 (2009).
    [CrossRef] [PubMed]
  18. W. Zou, Z. He, and K. Hotate, “Demonstration of Brillouin distributed discrimination of strain and temperature using a polarization-maintaining optical fiber,” IEEE Photon. Technol. Lett. 22(8), 526–528 (2010).
    [CrossRef]
  19. W. Zou, Z. He, and K. Hotate, “One-laser-based generation/detection of Brillouin dynamic grating and its application to distributed discrimination of strain and temperature,” Opt. Express 19(3), 2363–2370 (2011).
    [CrossRef] [PubMed]
  20. K. Hotate and T. Hasegawa, “Measurement of Brillouin gain spectrum distribution along an optical fiber using a correlation-based technique — Proposal, experiment and simulation,” IEICE Trans. Electron, E 83-C, 405–412 (2000).
  21. K.-Y. Song, Z. He, and K. Hotate, “Distributed strain measurement with millimeter-order spatial resolution based on Brillouin optical correlation domain analysis,” Opt. Lett. 31(17), 2526–2528 (2006).
    [CrossRef] [PubMed]
  22. K. Hansen, “Dispersion flattened hybrid-core nonlinear photonic crystal fiber,” Opt. Express 11(13), 1503–1509 (2003).
    [CrossRef] [PubMed]
  23. W. Zou, Z. He, and K. Hotate, “Acoustic modal analysis and control in w-shaped triple-layer optical fibers with highly-germanium-doped core and F-doped inner cladding,” Opt. Express 16(14), 10006–10017 (2008).
    [CrossRef] [PubMed]
  24. W. Zou, Z. He, and K. Hotate, “Two-dimensional finite element modal analysis of Brillouin gain spectra in optical fibers,” IEEE Photon. Technol. Lett. 18(23), 2487–2489 (2006).
    [CrossRef]

2011

2010

W. Zou, Z. He, and K. Hotate, “Demonstration of Brillouin distributed discrimination of strain and temperature using a polarization-maintaining optical fiber,” IEEE Photon. Technol. Lett. 22(8), 526–528 (2010).
[CrossRef]

2009

2008

2007

2006

P. Dainese, P. St. J. Russell, G. S. Wiederhecker, N. Joly, H. L. Fragnito, V. Laude, and A. Khelif, “Raman-like light scattering from acoustic phonons in photonic crystal fiber,” Opt. Express 14(9), 4141–4150 (2006).
[CrossRef] [PubMed]

K.-Y. Song, Z. He, and K. Hotate, “Distributed strain measurement with millimeter-order spatial resolution based on Brillouin optical correlation domain analysis,” Opt. Lett. 31(17), 2526–2528 (2006).
[CrossRef] [PubMed]

W. Zou, Z. He, and K. Hotate, “Two-dimensional finite element modal analysis of Brillouin gain spectra in optical fibers,” IEEE Photon. Technol. Lett. 18(23), 2487–2489 (2006).
[CrossRef]

J. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[CrossRef]

P. Dainese, P. St. J. Russell, N. Joly, J. C. Knight, G. S. Wiederhecker, H. L. Fragnito, V. Laude, and A. Khelif, “Stimulated Brillouin scattering from multi-GHz-guided acoustic phonons in nanostructured photonic crystal fibers,” Nat. Phys. 2(6), 388–392 (2006).
[CrossRef]

2005

K. Chow, C. Shu, C. Lin, and A. Bjarklev, “Polarization-insensitive widely tunable wavelength converter based on four-wave mixing in a dispersion-flattened nonlinear photonic crystal fiber,” IEEE Photon. Technol. Lett. 17(3), 624–626 (2005).
[CrossRef]

A. Kobyakov, S. Kumar, D. Q. Chowdhury, A. B. Ruffin, M. Sauer, S. R. Bickham, and R. Mishra, “Design concept for optical fibers with enhanced SBS threshold,” Opt. Express 13(14), 5338–5346 (2005).
[CrossRef] [PubMed]

2004

2003

2002

2000

K. Hotate and T. Hasegawa, “Measurement of Brillouin gain spectrum distribution along an optical fiber using a correlation-based technique — Proposal, experiment and simulation,” IEICE Trans. Electron, E 83-C, 405–412 (2000).

1989

T. Horiguchi, T. Kurashima, and M. Tateda, “Tensile strain dependence of Brillouin frequency shift in silica optical fibers,” IEEE Photon. Technol. Lett. 1(5), 107–108 (1989).
[CrossRef]

Bao, X.

Bickham, S. R.

Bjarklev, A.

K. Chow, C. Shu, C. Lin, and A. Bjarklev, “Polarization-insensitive widely tunable wavelength converter based on four-wave mixing in a dispersion-flattened nonlinear photonic crystal fiber,” IEEE Photon. Technol. Lett. 17(3), 624–626 (2005).
[CrossRef]

Chen, L.

Chow, K.

K. Chow, C. Shu, C. Lin, and A. Bjarklev, “Polarization-insensitive widely tunable wavelength converter based on four-wave mixing in a dispersion-flattened nonlinear photonic crystal fiber,” IEEE Photon. Technol. Lett. 17(3), 624–626 (2005).
[CrossRef]

Chowdhury, D. Q.

Chujo, W.

Coen, S.

J. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[CrossRef]

Dainese, P.

P. Dainese, P. St. J. Russell, N. Joly, J. C. Knight, G. S. Wiederhecker, H. L. Fragnito, V. Laude, and A. Khelif, “Stimulated Brillouin scattering from multi-GHz-guided acoustic phonons in nanostructured photonic crystal fibers,” Nat. Phys. 2(6), 388–392 (2006).
[CrossRef]

P. Dainese, P. St. J. Russell, G. S. Wiederhecker, N. Joly, H. L. Fragnito, V. Laude, and A. Khelif, “Raman-like light scattering from acoustic phonons in photonic crystal fiber,” Opt. Express 14(9), 4141–4150 (2006).
[CrossRef] [PubMed]

Delavaux, J. M.

Dudley, J.

J. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[CrossRef]

Fragnito, H. L.

P. Dainese, P. St. J. Russell, N. Joly, J. C. Knight, G. S. Wiederhecker, H. L. Fragnito, V. Laude, and A. Khelif, “Stimulated Brillouin scattering from multi-GHz-guided acoustic phonons in nanostructured photonic crystal fibers,” Nat. Phys. 2(6), 388–392 (2006).
[CrossRef]

P. Dainese, P. St. J. Russell, G. S. Wiederhecker, N. Joly, H. L. Fragnito, V. Laude, and A. Khelif, “Raman-like light scattering from acoustic phonons in photonic crystal fiber,” Opt. Express 14(9), 4141–4150 (2006).
[CrossRef] [PubMed]

Genty, G.

J. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[CrossRef]

Hansen, K.

Hasegawa, T.

K. Hotate and T. Hasegawa, “Measurement of Brillouin gain spectrum distribution along an optical fiber using a correlation-based technique — Proposal, experiment and simulation,” IEICE Trans. Electron, E 83-C, 405–412 (2000).

He, Z.

W. Zou, Z. He, and K. Hotate, “One-laser-based generation/detection of Brillouin dynamic grating and its application to distributed discrimination of strain and temperature,” Opt. Express 19(3), 2363–2370 (2011).
[CrossRef] [PubMed]

W. Zou, Z. He, and K. Hotate, “Demonstration of Brillouin distributed discrimination of strain and temperature using a polarization-maintaining optical fiber,” IEEE Photon. Technol. Lett. 22(8), 526–528 (2010).
[CrossRef]

W. Zou, Z. He, and K. Hotate, “Complete discrimination of strain and temperature using Brillouin frequency shift and birefringence in a polarization-maintaining fiber,” Opt. Express 17(3), 1248–1255 (2009).
[CrossRef] [PubMed]

W. Zou, Z. He, K.-Y. Song, and K. Hotate, “Correlation-based distributed measurement of a dynamic grating spectrum generated in stimulated Brillouin scattering in a polarization-maintaining optical fiber,” Opt. Lett. 34(7), 1126–1128 (2009).
[CrossRef] [PubMed]

W. Zou, Z. He, and K. Hotate, “Experimental study of Brillouin scattering in fluorine-doped single-mode optical fibers,” Opt. Express 16(23), 18804–18812 (2008).
[CrossRef] [PubMed]

W. Zou, Z. He, and K. Hotate, “Investigation of strain- and temperature-dependences of Brillouin frequency shifts in GeO2-doped optical fibers,” J. Lightwave Technol. 26(13), 1854–1861 (2008).
[CrossRef]

W. Zou, Z. He, and K. Hotate, “Acoustic modal analysis and control in w-shaped triple-layer optical fibers with highly-germanium-doped core and F-doped inner cladding,” Opt. Express 16(14), 10006–10017 (2008).
[CrossRef] [PubMed]

W. Zou, Z. He, M. Kishi, and K. Hotate, “Stimulated Brillouin scattering and its dependences on strain and temperature in a high-delta optical fiber with F-doped depressed inner cladding,” Opt. Lett. 32(6), 600–602 (2007).
[CrossRef] [PubMed]

K.-Y. Song, Z. He, and K. Hotate, “Distributed strain measurement with millimeter-order spatial resolution based on Brillouin optical correlation domain analysis,” Opt. Lett. 31(17), 2526–2528 (2006).
[CrossRef] [PubMed]

W. Zou, Z. He, and K. Hotate, “Two-dimensional finite element modal analysis of Brillouin gain spectra in optical fibers,” IEEE Photon. Technol. Lett. 18(23), 2487–2489 (2006).
[CrossRef]

Horiguchi, T.

T. Horiguchi, T. Kurashima, and M. Tateda, “Tensile strain dependence of Brillouin frequency shift in silica optical fibers,” IEEE Photon. Technol. Lett. 1(5), 107–108 (1989).
[CrossRef]

Hotate, K.

W. Zou, Z. He, and K. Hotate, “One-laser-based generation/detection of Brillouin dynamic grating and its application to distributed discrimination of strain and temperature,” Opt. Express 19(3), 2363–2370 (2011).
[CrossRef] [PubMed]

W. Zou, Z. He, and K. Hotate, “Demonstration of Brillouin distributed discrimination of strain and temperature using a polarization-maintaining optical fiber,” IEEE Photon. Technol. Lett. 22(8), 526–528 (2010).
[CrossRef]

W. Zou, Z. He, and K. Hotate, “Complete discrimination of strain and temperature using Brillouin frequency shift and birefringence in a polarization-maintaining fiber,” Opt. Express 17(3), 1248–1255 (2009).
[CrossRef] [PubMed]

W. Zou, Z. He, K.-Y. Song, and K. Hotate, “Correlation-based distributed measurement of a dynamic grating spectrum generated in stimulated Brillouin scattering in a polarization-maintaining optical fiber,” Opt. Lett. 34(7), 1126–1128 (2009).
[CrossRef] [PubMed]

W. Zou, Z. He, and K. Hotate, “Investigation of strain- and temperature-dependences of Brillouin frequency shifts in GeO2-doped optical fibers,” J. Lightwave Technol. 26(13), 1854–1861 (2008).
[CrossRef]

W. Zou, Z. He, and K. Hotate, “Experimental study of Brillouin scattering in fluorine-doped single-mode optical fibers,” Opt. Express 16(23), 18804–18812 (2008).
[CrossRef] [PubMed]

W. Zou, Z. He, and K. Hotate, “Acoustic modal analysis and control in w-shaped triple-layer optical fibers with highly-germanium-doped core and F-doped inner cladding,” Opt. Express 16(14), 10006–10017 (2008).
[CrossRef] [PubMed]

W. Zou, Z. He, M. Kishi, and K. Hotate, “Stimulated Brillouin scattering and its dependences on strain and temperature in a high-delta optical fiber with F-doped depressed inner cladding,” Opt. Lett. 32(6), 600–602 (2007).
[CrossRef] [PubMed]

K.-Y. Song, Z. He, and K. Hotate, “Distributed strain measurement with millimeter-order spatial resolution based on Brillouin optical correlation domain analysis,” Opt. Lett. 31(17), 2526–2528 (2006).
[CrossRef] [PubMed]

W. Zou, Z. He, and K. Hotate, “Two-dimensional finite element modal analysis of Brillouin gain spectra in optical fibers,” IEEE Photon. Technol. Lett. 18(23), 2487–2489 (2006).
[CrossRef]

K. Hotate and T. Hasegawa, “Measurement of Brillouin gain spectrum distribution along an optical fiber using a correlation-based technique — Proposal, experiment and simulation,” IEICE Trans. Electron, E 83-C, 405–412 (2000).

Huang, Y.

Joly, N.

P. Dainese, P. St. J. Russell, G. S. Wiederhecker, N. Joly, H. L. Fragnito, V. Laude, and A. Khelif, “Raman-like light scattering from acoustic phonons in photonic crystal fiber,” Opt. Express 14(9), 4141–4150 (2006).
[CrossRef] [PubMed]

P. Dainese, P. St. J. Russell, N. Joly, J. C. Knight, G. S. Wiederhecker, H. L. Fragnito, V. Laude, and A. Khelif, “Stimulated Brillouin scattering from multi-GHz-guided acoustic phonons in nanostructured photonic crystal fibers,” Nat. Phys. 2(6), 388–392 (2006).
[CrossRef]

Khelif, A.

P. Dainese, P. St. J. Russell, N. Joly, J. C. Knight, G. S. Wiederhecker, H. L. Fragnito, V. Laude, and A. Khelif, “Stimulated Brillouin scattering from multi-GHz-guided acoustic phonons in nanostructured photonic crystal fibers,” Nat. Phys. 2(6), 388–392 (2006).
[CrossRef]

P. Dainese, P. St. J. Russell, G. S. Wiederhecker, N. Joly, H. L. Fragnito, V. Laude, and A. Khelif, “Raman-like light scattering from acoustic phonons in photonic crystal fiber,” Opt. Express 14(9), 4141–4150 (2006).
[CrossRef] [PubMed]

Kishi, M.

Knight, J. C.

P. Dainese, P. St. J. Russell, N. Joly, J. C. Knight, G. S. Wiederhecker, H. L. Fragnito, V. Laude, and A. Khelif, “Stimulated Brillouin scattering from multi-GHz-guided acoustic phonons in nanostructured photonic crystal fibers,” Nat. Phys. 2(6), 388–392 (2006).
[CrossRef]

J. C. Knight, “Photonic crystal fibres,” Nature 424(6950), 847–851 (2003).
[CrossRef] [PubMed]

Kobyakov, A.

Koshiba, M.

Koyamada, Y.

Kumar, S.

Kurashima, T.

T. Horiguchi, T. Kurashima, and M. Tateda, “Tensile strain dependence of Brillouin frequency shift in silica optical fibers,” IEEE Photon. Technol. Lett. 1(5), 107–108 (1989).
[CrossRef]

Laude, V.

P. Dainese, P. St. J. Russell, N. Joly, J. C. Knight, G. S. Wiederhecker, H. L. Fragnito, V. Laude, and A. Khelif, “Stimulated Brillouin scattering from multi-GHz-guided acoustic phonons in nanostructured photonic crystal fibers,” Nat. Phys. 2(6), 388–392 (2006).
[CrossRef]

P. Dainese, P. St. J. Russell, G. S. Wiederhecker, N. Joly, H. L. Fragnito, V. Laude, and A. Khelif, “Raman-like light scattering from acoustic phonons in photonic crystal fiber,” Opt. Express 14(9), 4141–4150 (2006).
[CrossRef] [PubMed]

Lin, C.

K. Chow, C. Shu, C. Lin, and A. Bjarklev, “Polarization-insensitive widely tunable wavelength converter based on four-wave mixing in a dispersion-flattened nonlinear photonic crystal fiber,” IEEE Photon. Technol. Lett. 17(3), 624–626 (2005).
[CrossRef]

McElhenny, J. E.

Mishra, R.

Nakamura, S.

Pattnaik, R. K.

Peng, J.

Pi, Y.

Ruffin, A. B.

Russell, P. St. J.

P. Dainese, P. St. J. Russell, N. Joly, J. C. Knight, G. S. Wiederhecker, H. L. Fragnito, V. Laude, and A. Khelif, “Stimulated Brillouin scattering from multi-GHz-guided acoustic phonons in nanostructured photonic crystal fibers,” Nat. Phys. 2(6), 388–392 (2006).
[CrossRef]

P. Dainese, P. St. J. Russell, G. S. Wiederhecker, N. Joly, H. L. Fragnito, V. Laude, and A. Khelif, “Raman-like light scattering from acoustic phonons in photonic crystal fiber,” Opt. Express 14(9), 4141–4150 (2006).
[CrossRef] [PubMed]

Saitoh, K.

Sato, S.

Sauer, M.

Shu, C.

K. Chow, C. Shu, C. Lin, and A. Bjarklev, “Polarization-insensitive widely tunable wavelength converter based on four-wave mixing in a dispersion-flattened nonlinear photonic crystal fiber,” IEEE Photon. Technol. Lett. 17(3), 624–626 (2005).
[CrossRef]

Song, K.-Y.

Sotobayashi, H.

Tateda, M.

T. Horiguchi, T. Kurashima, and M. Tateda, “Tensile strain dependence of Brillouin frequency shift in silica optical fibers,” IEEE Photon. Technol. Lett. 1(5), 107–108 (1989).
[CrossRef]

Toulouse, J.

Wang, Y.

Wiederhecker, G. S.

P. Dainese, P. St. J. Russell, G. S. Wiederhecker, N. Joly, H. L. Fragnito, V. Laude, and A. Khelif, “Raman-like light scattering from acoustic phonons in photonic crystal fiber,” Opt. Express 14(9), 4141–4150 (2006).
[CrossRef] [PubMed]

P. Dainese, P. St. J. Russell, N. Joly, J. C. Knight, G. S. Wiederhecker, H. L. Fragnito, V. Laude, and A. Khelif, “Stimulated Brillouin scattering from multi-GHz-guided acoustic phonons in nanostructured photonic crystal fibers,” Nat. Phys. 2(6), 388–392 (2006).
[CrossRef]

Yeniay, A.

Zhang, W.

Zou, L.

Zou, W.

W. Zou, Z. He, and K. Hotate, “One-laser-based generation/detection of Brillouin dynamic grating and its application to distributed discrimination of strain and temperature,” Opt. Express 19(3), 2363–2370 (2011).
[CrossRef] [PubMed]

W. Zou, Z. He, and K. Hotate, “Demonstration of Brillouin distributed discrimination of strain and temperature using a polarization-maintaining optical fiber,” IEEE Photon. Technol. Lett. 22(8), 526–528 (2010).
[CrossRef]

W. Zou, Z. He, and K. Hotate, “Complete discrimination of strain and temperature using Brillouin frequency shift and birefringence in a polarization-maintaining fiber,” Opt. Express 17(3), 1248–1255 (2009).
[CrossRef] [PubMed]

W. Zou, Z. He, K.-Y. Song, and K. Hotate, “Correlation-based distributed measurement of a dynamic grating spectrum generated in stimulated Brillouin scattering in a polarization-maintaining optical fiber,” Opt. Lett. 34(7), 1126–1128 (2009).
[CrossRef] [PubMed]

W. Zou, Z. He, and K. Hotate, “Investigation of strain- and temperature-dependences of Brillouin frequency shifts in GeO2-doped optical fibers,” J. Lightwave Technol. 26(13), 1854–1861 (2008).
[CrossRef]

W. Zou, Z. He, and K. Hotate, “Experimental study of Brillouin scattering in fluorine-doped single-mode optical fibers,” Opt. Express 16(23), 18804–18812 (2008).
[CrossRef] [PubMed]

W. Zou, Z. He, and K. Hotate, “Acoustic modal analysis and control in w-shaped triple-layer optical fibers with highly-germanium-doped core and F-doped inner cladding,” Opt. Express 16(14), 10006–10017 (2008).
[CrossRef] [PubMed]

W. Zou, Z. He, M. Kishi, and K. Hotate, “Stimulated Brillouin scattering and its dependences on strain and temperature in a high-delta optical fiber with F-doped depressed inner cladding,” Opt. Lett. 32(6), 600–602 (2007).
[CrossRef] [PubMed]

W. Zou, Z. He, and K. Hotate, “Two-dimensional finite element modal analysis of Brillouin gain spectra in optical fibers,” IEEE Photon. Technol. Lett. 18(23), 2487–2489 (2006).
[CrossRef]

IEEE Photon. Technol. Lett.

K. Chow, C. Shu, C. Lin, and A. Bjarklev, “Polarization-insensitive widely tunable wavelength converter based on four-wave mixing in a dispersion-flattened nonlinear photonic crystal fiber,” IEEE Photon. Technol. Lett. 17(3), 624–626 (2005).
[CrossRef]

W. Zou, Z. He, and K. Hotate, “Two-dimensional finite element modal analysis of Brillouin gain spectra in optical fibers,” IEEE Photon. Technol. Lett. 18(23), 2487–2489 (2006).
[CrossRef]

T. Horiguchi, T. Kurashima, and M. Tateda, “Tensile strain dependence of Brillouin frequency shift in silica optical fibers,” IEEE Photon. Technol. Lett. 1(5), 107–108 (1989).
[CrossRef]

W. Zou, Z. He, and K. Hotate, “Demonstration of Brillouin distributed discrimination of strain and temperature using a polarization-maintaining optical fiber,” IEEE Photon. Technol. Lett. 22(8), 526–528 (2010).
[CrossRef]

IEICE Trans. Electron, E

K. Hotate and T. Hasegawa, “Measurement of Brillouin gain spectrum distribution along an optical fiber using a correlation-based technique — Proposal, experiment and simulation,” IEICE Trans. Electron, E 83-C, 405–412 (2000).

J. Lightwave Technol.

J. Opt. Soc. Am. B

Nat. Phys.

P. Dainese, P. St. J. Russell, N. Joly, J. C. Knight, G. S. Wiederhecker, H. L. Fragnito, V. Laude, and A. Khelif, “Stimulated Brillouin scattering from multi-GHz-guided acoustic phonons in nanostructured photonic crystal fibers,” Nat. Phys. 2(6), 388–392 (2006).
[CrossRef]

Nature

J. C. Knight, “Photonic crystal fibres,” Nature 424(6950), 847–851 (2003).
[CrossRef] [PubMed]

Opt. Express

K. Hansen, “Dispersion flattened hybrid-core nonlinear photonic crystal fiber,” Opt. Express 11(13), 1503–1509 (2003).
[CrossRef] [PubMed]

W. Zou, Z. He, and K. Hotate, “Acoustic modal analysis and control in w-shaped triple-layer optical fibers with highly-germanium-doped core and F-doped inner cladding,” Opt. Express 16(14), 10006–10017 (2008).
[CrossRef] [PubMed]

A. Kobyakov, S. Kumar, D. Q. Chowdhury, A. B. Ruffin, M. Sauer, S. R. Bickham, and R. Mishra, “Design concept for optical fibers with enhanced SBS threshold,” Opt. Express 13(14), 5338–5346 (2005).
[CrossRef] [PubMed]

P. Dainese, P. St. J. Russell, G. S. Wiederhecker, N. Joly, H. L. Fragnito, V. Laude, and A. Khelif, “Raman-like light scattering from acoustic phonons in photonic crystal fiber,” Opt. Express 14(9), 4141–4150 (2006).
[CrossRef] [PubMed]

W. Zou, Z. He, and K. Hotate, “Experimental study of Brillouin scattering in fluorine-doped single-mode optical fibers,” Opt. Express 16(23), 18804–18812 (2008).
[CrossRef] [PubMed]

W. Zou, Z. He, and K. Hotate, “Complete discrimination of strain and temperature using Brillouin frequency shift and birefringence in a polarization-maintaining fiber,” Opt. Express 17(3), 1248–1255 (2009).
[CrossRef] [PubMed]

W. Zou, Z. He, and K. Hotate, “One-laser-based generation/detection of Brillouin dynamic grating and its application to distributed discrimination of strain and temperature,” Opt. Express 19(3), 2363–2370 (2011).
[CrossRef] [PubMed]

Opt. Lett.

Rev. Mod. Phys.

J. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Experimental setup for characterizing Brillouin scattering property in the HNL-PCF. A tunable laser (TL) of 1532-1565 nm is used for entire measurement. A distributed feedback laser diode (DFB-LD) at 1550 nm under sinusoidal frequency modulation is used for distributed measurement. SSBM: single sideband modulator; EDFA: erbium-doped fiber amplifier; IM: intensity modulator; PC: polarization controller; VOA: variable optical attenuator; PD: photo detector; LIA: lock-in amplifier; DAQ: data acquisition card.

Fig. 2
Fig. 2

BGS of the HNL-PCF measured at 1550 nm. The inset shows the fiber’s cross section. The dashed line distinguishes the two groups of Brillouin resonance peaks.

Fig. 3
Fig. 3

Acoustic dispersion characteristics of the Brillouin resonance peaks of the HNL-PCF.

Fig. 4
Fig. 4

(a) Example of measured optical spectra with pump wave on (solid) and off (dashed) when the probe power is −30 dBm. (b) Brillouin gain of the first peak as a function of pump power. Dots denote the experimental data and the solid curve corresponds to the least-squares linear fitting.

Fig. 5
Fig. 5

(a) The distribution of the first-peak resonance frequency ν1 along the ~9-m HNL-PCF. (b) The ν1 distribution around the heated and strained fiber segments.

Fig. 6
Fig. 6

(a) Temperature and (b) strain dependence of the first-peak resonance frequency of the HNL-PCF.

Tables (1)

Tables Icon

Table 1 Summary of Measured and Deduced Parameters of all SBS Resonance Peaks of the HNL-PCF at 1550nm

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

ν i = 2n eff V a i /λ,
k i = ν i λ 1 = 2n eff V a i ,
η= G P p = κ K · g 0 · L eff / A eff ao ,

Metrics