Abstract

We investigated the nonlinear fiber phenomena of pulse trapping and amplification between incoherent light and an ultrashort soliton pulse in birefringent fibers both experimentally and numerically. Using the phenomena in a 1.4 km-long low-birefringence fiber, a coherent, nearly transform-limited, sech2-shaped, ultrashort pulse was generated from incoherent light from a super-luminescent diode. The average pulse energy and pulse width were 121 pJ and 640 fs, respectively. The estimated gain of this system was as large as 62 dB.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. I. N. Iii, “All-fiber ring soliton laser mode locked with a nonlinear mirror,” Opt. Lett.16(8), 539–541 (1991).
    [CrossRef] [PubMed]
  2. M. E. Fermann, M. J. Andrejco, Y. Silberberg, and M. L. Stock, “Passive mode locking by using nonlinear polarization evolution in a polarization-maintaining erbium-doped fiber,” Opt. Lett.18(11), 894–896 (1993).
    [CrossRef] [PubMed]
  3. G. P. Agrawal, Applications of Nonlinear Fiber Optics, 2nd ed. (Academic Press, 2008).
  4. N. Nishizawa and T. Goto, “Compact system of wavelength-tunable femtosecond soliton pulse generation using optical fibers,” IEEE Photon. Technol. Lett.11(3), 325–327 (1999).
    [CrossRef]
  5. N. Nishizawa, “Highly functional all-optical control using ultrafast nonlinear effects in optical fibers,” IEEE J. Quantum Electron.45(11), 1446–1455 (2009).
    [CrossRef]
  6. T. Inoue, N. Kumano, M. Takahashi, T. Yagi, and M. Sakano, “Generation of 80-nm wavelength-tunable 100-fs pulse based on comblike profiled fiber comprised of HNLF and zero dispersion-slope NZDSF,” J. Lightwave Technol.25(1), 165–169 (2007).
    [CrossRef]
  7. N. Nishizawa, K. Takahashi, Y. Ozeki, and K. Itoh, “Wideband spectral compression of wavelength-tunable ultrashort soliton pulse using comb-profile fiber,” Opt. Express18(11), 11700–11706 (2010).
    [CrossRef] [PubMed]
  8. J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys.78(4), 1135–1184 (2006).
    [CrossRef]
  9. U. Keller, D. A. B. Miller, G. D. Boyd, T. H. Chiu, J. F. Ferguson, and M. T. Asom, “Solid-state low-loss intracavity saturable absorber for Nd:YLF lasers: an antiresonant semiconductor Fabry-Perot saturable absorber,” Opt. Lett.17(7), 505–507 (1992).
    [CrossRef] [PubMed]
  10. S. Yamashita, Y. Inoue, S. Maruyama, Y. Murakami, H. Yaguchi, M. Jablonski, and S. Y. Set, “Saturable absorbers incorporating carbon nanotubes directly synthesized onto substrates and fibers and their application to mode-locked fiber lasers,” Opt. Lett.29(14), 1581–1583 (2004).
    [CrossRef] [PubMed]
  11. J. D. Kafka and T. Baer, “Fiber Raman soliton laser pumped by a Nd:YAG laser,” Opt. Lett.12(3), 181–183 (1987).
    [CrossRef] [PubMed]
  12. H. A. Haus and M. Nakazawa, “Theory of the fiber Raman soliton laser,” J. Opt. Soc. Am. B4(5), 652–660 (1987).
    [CrossRef]
  13. M. N. Islam, C. D. Poole, and J. P. Gordon, “Soliton trapping in birefringent optical fibers,” Opt. Lett.14(18), 1011–1013 (1989).
    [CrossRef] [PubMed]
  14. G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic Press, 2007).
  15. N. Nishizawa and T. Goto, “Trapped pulse generation by femtosecond soliton pulse in birefringent optical fibers,” Opt. Express10(5), 256–261 (2002).
    [PubMed]
  16. E. Shiraki, N. Nishizawa, and K. Itoh, “Ultrashort pulse generation from continuous wave by pulse trapping in birefringent fibers,” Opt. Express18(22), 23070–23078 (2010).
    [CrossRef] [PubMed]
  17. E. Shiraki, N. Nishizawa, and K. Itoh, “Ultrafast all-optical signal regenerator using pulse trapping in birefringent fibers,” J. Opt. Soc. Am. B28(11), 2643–2649 (2011).
    [CrossRef]
  18. N. Nishizawa, Y. Ukai, and T. Goto, “Ultrafast all optical switching using pulse trapping in birefringent fibers,” Opt. Express13(20), 8128–8135 (2005).
    [CrossRef] [PubMed]
  19. E. Shiraki and N. Nishizawa, “Wideband amplification using orthogonally polarized pulse trapping in birefringent fibers,” Opt. Express18(7), 7323–7330 (2010).
    [CrossRef] [PubMed]
  20. J. T. Manassah, “Self-phase modulation of incoherent light,” Opt. Lett.15(6), 329–331 (1990).
    [CrossRef] [PubMed]
  21. J. M. Hickmann, H. R. da Cruz, and A. S. Gouveia-Neto, “Cross-phase modulation of incoherent light in single-mode optical fibers,” Opt. Lett.17(7), 478–480 (1992).
    [CrossRef] [PubMed]
  22. T. Zhang, X. Zhang, and G. Zhang, “Distributed fiber Raman amplifiers with incoherent pumping,” IEEE Photon. Technol. Lett.17(6), 1175–1177 (2005).
    [CrossRef]
  23. A. M. Rocha, B. Neto, M. Facão, and P. S. André, “Study of Raman amplification with low cost incoherent pumps,” Microw. Opt. Technol. Lett.50(2), 301–303 (2008).
    [CrossRef]
  24. K. Hammani, C. Finot, J. M. Dudley, and G. Millot, “Optical rogue-wave-like extreme value fluctuations in fiber Raman amplifiers,” Opt. Express16(21), 16467–16474 (2008).
    [CrossRef] [PubMed]
  25. Y. S. Jang and Y. C. Chung, “Four-wave mixing of incoherent light in a dispersion-shifted fiber using a spectrum-sliced fiber amplifier light source,” IEEE Photon. Technol. Lett.10(2), 218–220 (1998).
    [CrossRef]
  26. Y. Yan and C. Yang, “Four-wave mixing between coherent signal and incoherent pump light in nonlinear fiber,” J. Lightwave Technol.27(22), 4954–4959 (2009).
    [CrossRef]
  27. K. Hammani, C. Finot, and G. Millot, “Emergence of extreme events in fiber-based parametric processes driven by a partially incoherent pump wave,” Opt. Lett.34(8), 1138–1140 (2009).
    [CrossRef] [PubMed]
  28. K. Sumimura, T. Ohta, and N. Nishizawa, “Quasi-super-continuum generation using ultrahigh-speed wavelength-tunable soliton pulses,” Opt. Lett.33(24), 2892–2894 (2008).
    [CrossRef] [PubMed]
  29. R. K. Shelton, L. S. Ma, H. C. Kapteyn, M. M. Murnane, J. L. Hall, and J. Ye, “Phase-coherent optical pulse synthesis from separate femtosecond lasers,” Science293(5533), 1286–1289 (2001).
    [CrossRef] [PubMed]

2011

2010

2009

2008

2007

2006

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys.78(4), 1135–1184 (2006).
[CrossRef]

2005

T. Zhang, X. Zhang, and G. Zhang, “Distributed fiber Raman amplifiers with incoherent pumping,” IEEE Photon. Technol. Lett.17(6), 1175–1177 (2005).
[CrossRef]

N. Nishizawa, Y. Ukai, and T. Goto, “Ultrafast all optical switching using pulse trapping in birefringent fibers,” Opt. Express13(20), 8128–8135 (2005).
[CrossRef] [PubMed]

2004

2002

2001

R. K. Shelton, L. S. Ma, H. C. Kapteyn, M. M. Murnane, J. L. Hall, and J. Ye, “Phase-coherent optical pulse synthesis from separate femtosecond lasers,” Science293(5533), 1286–1289 (2001).
[CrossRef] [PubMed]

1999

N. Nishizawa and T. Goto, “Compact system of wavelength-tunable femtosecond soliton pulse generation using optical fibers,” IEEE Photon. Technol. Lett.11(3), 325–327 (1999).
[CrossRef]

1998

Y. S. Jang and Y. C. Chung, “Four-wave mixing of incoherent light in a dispersion-shifted fiber using a spectrum-sliced fiber amplifier light source,” IEEE Photon. Technol. Lett.10(2), 218–220 (1998).
[CrossRef]

1993

1992

1991

1990

1989

1987

André, P. S.

A. M. Rocha, B. Neto, M. Facão, and P. S. André, “Study of Raman amplification with low cost incoherent pumps,” Microw. Opt. Technol. Lett.50(2), 301–303 (2008).
[CrossRef]

Andrejco, M. J.

Asom, M. T.

Baer, T.

Boyd, G. D.

Chiu, T. H.

Chung, Y. C.

Y. S. Jang and Y. C. Chung, “Four-wave mixing of incoherent light in a dispersion-shifted fiber using a spectrum-sliced fiber amplifier light source,” IEEE Photon. Technol. Lett.10(2), 218–220 (1998).
[CrossRef]

Coen, S.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys.78(4), 1135–1184 (2006).
[CrossRef]

da Cruz, H. R.

Dudley, J. M.

K. Hammani, C. Finot, J. M. Dudley, and G. Millot, “Optical rogue-wave-like extreme value fluctuations in fiber Raman amplifiers,” Opt. Express16(21), 16467–16474 (2008).
[CrossRef] [PubMed]

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys.78(4), 1135–1184 (2006).
[CrossRef]

Facão, M.

A. M. Rocha, B. Neto, M. Facão, and P. S. André, “Study of Raman amplification with low cost incoherent pumps,” Microw. Opt. Technol. Lett.50(2), 301–303 (2008).
[CrossRef]

Ferguson, J. F.

Fermann, M. E.

Finot, C.

Genty, G.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys.78(4), 1135–1184 (2006).
[CrossRef]

Gordon, J. P.

Goto, T.

Gouveia-Neto, A. S.

Hall, J. L.

R. K. Shelton, L. S. Ma, H. C. Kapteyn, M. M. Murnane, J. L. Hall, and J. Ye, “Phase-coherent optical pulse synthesis from separate femtosecond lasers,” Science293(5533), 1286–1289 (2001).
[CrossRef] [PubMed]

Hammani, K.

Haus, H. A.

Hickmann, J. M.

Iii, I. N.

Inoue, T.

Inoue, Y.

Islam, M. N.

Itoh, K.

Jablonski, M.

Jang, Y. S.

Y. S. Jang and Y. C. Chung, “Four-wave mixing of incoherent light in a dispersion-shifted fiber using a spectrum-sliced fiber amplifier light source,” IEEE Photon. Technol. Lett.10(2), 218–220 (1998).
[CrossRef]

Kafka, J. D.

Kapteyn, H. C.

R. K. Shelton, L. S. Ma, H. C. Kapteyn, M. M. Murnane, J. L. Hall, and J. Ye, “Phase-coherent optical pulse synthesis from separate femtosecond lasers,” Science293(5533), 1286–1289 (2001).
[CrossRef] [PubMed]

Keller, U.

Kumano, N.

Ma, L. S.

R. K. Shelton, L. S. Ma, H. C. Kapteyn, M. M. Murnane, J. L. Hall, and J. Ye, “Phase-coherent optical pulse synthesis from separate femtosecond lasers,” Science293(5533), 1286–1289 (2001).
[CrossRef] [PubMed]

Manassah, J. T.

Maruyama, S.

Miller, D. A. B.

Millot, G.

Murakami, Y.

Murnane, M. M.

R. K. Shelton, L. S. Ma, H. C. Kapteyn, M. M. Murnane, J. L. Hall, and J. Ye, “Phase-coherent optical pulse synthesis from separate femtosecond lasers,” Science293(5533), 1286–1289 (2001).
[CrossRef] [PubMed]

Nakazawa, M.

Neto, B.

A. M. Rocha, B. Neto, M. Facão, and P. S. André, “Study of Raman amplification with low cost incoherent pumps,” Microw. Opt. Technol. Lett.50(2), 301–303 (2008).
[CrossRef]

Nishizawa, N.

E. Shiraki, N. Nishizawa, and K. Itoh, “Ultrafast all-optical signal regenerator using pulse trapping in birefringent fibers,” J. Opt. Soc. Am. B28(11), 2643–2649 (2011).
[CrossRef]

N. Nishizawa, K. Takahashi, Y. Ozeki, and K. Itoh, “Wideband spectral compression of wavelength-tunable ultrashort soliton pulse using comb-profile fiber,” Opt. Express18(11), 11700–11706 (2010).
[CrossRef] [PubMed]

E. Shiraki and N. Nishizawa, “Wideband amplification using orthogonally polarized pulse trapping in birefringent fibers,” Opt. Express18(7), 7323–7330 (2010).
[CrossRef] [PubMed]

E. Shiraki, N. Nishizawa, and K. Itoh, “Ultrashort pulse generation from continuous wave by pulse trapping in birefringent fibers,” Opt. Express18(22), 23070–23078 (2010).
[CrossRef] [PubMed]

N. Nishizawa, “Highly functional all-optical control using ultrafast nonlinear effects in optical fibers,” IEEE J. Quantum Electron.45(11), 1446–1455 (2009).
[CrossRef]

K. Sumimura, T. Ohta, and N. Nishizawa, “Quasi-super-continuum generation using ultrahigh-speed wavelength-tunable soliton pulses,” Opt. Lett.33(24), 2892–2894 (2008).
[CrossRef] [PubMed]

N. Nishizawa, Y. Ukai, and T. Goto, “Ultrafast all optical switching using pulse trapping in birefringent fibers,” Opt. Express13(20), 8128–8135 (2005).
[CrossRef] [PubMed]

N. Nishizawa and T. Goto, “Trapped pulse generation by femtosecond soliton pulse in birefringent optical fibers,” Opt. Express10(5), 256–261 (2002).
[PubMed]

N. Nishizawa and T. Goto, “Compact system of wavelength-tunable femtosecond soliton pulse generation using optical fibers,” IEEE Photon. Technol. Lett.11(3), 325–327 (1999).
[CrossRef]

Ohta, T.

Ozeki, Y.

Poole, C. D.

Rocha, A. M.

A. M. Rocha, B. Neto, M. Facão, and P. S. André, “Study of Raman amplification with low cost incoherent pumps,” Microw. Opt. Technol. Lett.50(2), 301–303 (2008).
[CrossRef]

Sakano, M.

Set, S. Y.

Shelton, R. K.

R. K. Shelton, L. S. Ma, H. C. Kapteyn, M. M. Murnane, J. L. Hall, and J. Ye, “Phase-coherent optical pulse synthesis from separate femtosecond lasers,” Science293(5533), 1286–1289 (2001).
[CrossRef] [PubMed]

Shiraki, E.

Silberberg, Y.

Stock, M. L.

Sumimura, K.

Takahashi, K.

Takahashi, M.

Ukai, Y.

Yagi, T.

Yaguchi, H.

Yamashita, S.

Yan, Y.

Yang, C.

Ye, J.

R. K. Shelton, L. S. Ma, H. C. Kapteyn, M. M. Murnane, J. L. Hall, and J. Ye, “Phase-coherent optical pulse synthesis from separate femtosecond lasers,” Science293(5533), 1286–1289 (2001).
[CrossRef] [PubMed]

Zhang, G.

T. Zhang, X. Zhang, and G. Zhang, “Distributed fiber Raman amplifiers with incoherent pumping,” IEEE Photon. Technol. Lett.17(6), 1175–1177 (2005).
[CrossRef]

Zhang, T.

T. Zhang, X. Zhang, and G. Zhang, “Distributed fiber Raman amplifiers with incoherent pumping,” IEEE Photon. Technol. Lett.17(6), 1175–1177 (2005).
[CrossRef]

Zhang, X.

T. Zhang, X. Zhang, and G. Zhang, “Distributed fiber Raman amplifiers with incoherent pumping,” IEEE Photon. Technol. Lett.17(6), 1175–1177 (2005).
[CrossRef]

IEEE J. Quantum Electron.

N. Nishizawa, “Highly functional all-optical control using ultrafast nonlinear effects in optical fibers,” IEEE J. Quantum Electron.45(11), 1446–1455 (2009).
[CrossRef]

IEEE Photon. Technol. Lett.

N. Nishizawa and T. Goto, “Compact system of wavelength-tunable femtosecond soliton pulse generation using optical fibers,” IEEE Photon. Technol. Lett.11(3), 325–327 (1999).
[CrossRef]

T. Zhang, X. Zhang, and G. Zhang, “Distributed fiber Raman amplifiers with incoherent pumping,” IEEE Photon. Technol. Lett.17(6), 1175–1177 (2005).
[CrossRef]

Y. S. Jang and Y. C. Chung, “Four-wave mixing of incoherent light in a dispersion-shifted fiber using a spectrum-sliced fiber amplifier light source,” IEEE Photon. Technol. Lett.10(2), 218–220 (1998).
[CrossRef]

J. Lightwave Technol.

J. Opt. Soc. Am. B

Microw. Opt. Technol. Lett.

A. M. Rocha, B. Neto, M. Facão, and P. S. André, “Study of Raman amplification with low cost incoherent pumps,” Microw. Opt. Technol. Lett.50(2), 301–303 (2008).
[CrossRef]

Opt. Express

Opt. Lett.

K. Sumimura, T. Ohta, and N. Nishizawa, “Quasi-super-continuum generation using ultrahigh-speed wavelength-tunable soliton pulses,” Opt. Lett.33(24), 2892–2894 (2008).
[CrossRef] [PubMed]

K. Hammani, C. Finot, and G. Millot, “Emergence of extreme events in fiber-based parametric processes driven by a partially incoherent pump wave,” Opt. Lett.34(8), 1138–1140 (2009).
[CrossRef] [PubMed]

S. Yamashita, Y. Inoue, S. Maruyama, Y. Murakami, H. Yaguchi, M. Jablonski, and S. Y. Set, “Saturable absorbers incorporating carbon nanotubes directly synthesized onto substrates and fibers and their application to mode-locked fiber lasers,” Opt. Lett.29(14), 1581–1583 (2004).
[CrossRef] [PubMed]

J. D. Kafka and T. Baer, “Fiber Raman soliton laser pumped by a Nd:YAG laser,” Opt. Lett.12(3), 181–183 (1987).
[CrossRef] [PubMed]

M. N. Islam, C. D. Poole, and J. P. Gordon, “Soliton trapping in birefringent optical fibers,” Opt. Lett.14(18), 1011–1013 (1989).
[CrossRef] [PubMed]

J. T. Manassah, “Self-phase modulation of incoherent light,” Opt. Lett.15(6), 329–331 (1990).
[CrossRef] [PubMed]

I. N. Iii, “All-fiber ring soliton laser mode locked with a nonlinear mirror,” Opt. Lett.16(8), 539–541 (1991).
[CrossRef] [PubMed]

J. M. Hickmann, H. R. da Cruz, and A. S. Gouveia-Neto, “Cross-phase modulation of incoherent light in single-mode optical fibers,” Opt. Lett.17(7), 478–480 (1992).
[CrossRef] [PubMed]

U. Keller, D. A. B. Miller, G. D. Boyd, T. H. Chiu, J. F. Ferguson, and M. T. Asom, “Solid-state low-loss intracavity saturable absorber for Nd:YLF lasers: an antiresonant semiconductor Fabry-Perot saturable absorber,” Opt. Lett.17(7), 505–507 (1992).
[CrossRef] [PubMed]

M. E. Fermann, M. J. Andrejco, Y. Silberberg, and M. L. Stock, “Passive mode locking by using nonlinear polarization evolution in a polarization-maintaining erbium-doped fiber,” Opt. Lett.18(11), 894–896 (1993).
[CrossRef] [PubMed]

Rev. Mod. Phys.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys.78(4), 1135–1184 (2006).
[CrossRef]

Science

R. K. Shelton, L. S. Ma, H. C. Kapteyn, M. M. Murnane, J. L. Hall, and J. Ye, “Phase-coherent optical pulse synthesis from separate femtosecond lasers,” Science293(5533), 1286–1289 (2001).
[CrossRef] [PubMed]

Other

G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic Press, 2007).

G. P. Agrawal, Applications of Nonlinear Fiber Optics, 2nd ed. (Academic Press, 2008).

Supplementary Material (1)

» Media 1: MOV (2154 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Experimental setup for ultrashort pulse generation from incoherent light using pulse trapping and amplification in a low-birefringence polarization maintaining fiber (LB-PMF). SLD, super-luminescent diode; HWP, half-wave plate; QWP, quarter-wave plate; ISO, optical isolator; CP-EDFA, chirped-pulse Er-doped fiber amplifier; LMA-PCF, large-mode-area photonic crystal fiber; WC-PMF, wavelength-conversion polarization maintaining fiber; LPF; low-pass filter; PBS, polarizing beam splitter; POL, polarizer; PIN, p-i-n photodiode.

Fig. 2
Fig. 2

Numerical evolutions of ultrashort pump pulse and incoherent light in the propagation along the LB-PMF. Spectrograms for polarization directions aligned along the (a) fast and (b) slow axes of the fiber, respectively (Media 1).

Fig. 3
Fig. 3

Numerical results of light evolution in the propagation along low-birefringence polarization maintaining fiber. (a) Temporal waveforms along the slow and fast axes of the fiber, respectively, and (b) the corresponding spectra. The right vertical axis of the graphs in (a) represents the phase of the light. Zero positions on the time scale are adjusted to the peak point of the pump pulse.

Fig. 4
Fig. 4

Evolutions of generated pulse energy along low-birefringence polarization maintaining fiber. The solid lines are two representative events, events i and ii, when different incoherent light beams are trapped. The dotted lines are the cases where 3 fJ and 3 aJ sech2-shaped ultrashort pulses are trapped at the initial stage (events i' and ii'), respectively, the evolutions of which are in good agreement with the incoherent light cases.

Fig. 5
Fig. 5

Pulse trains at the output of the 1.4 km-long LB-PMF. Experimental waveforms of (a) the generated pulse and (b) the pump pulse, (c) and (d) experimental histograms of their pulse peaks for about 25,000 pulses, and (e) and (f) numerical histograms of pulse peaks of twin pulses for 1,300 events.

Fig. 6
Fig. 6

Experimental results of spectra at (a) input and (b) output of LB-PMF. The red and blue lines represent the slow and fast axes of the fiber. The solid lines in (b) show the spectra when both incoherent light and a pump pulse were coupled, and the dotted ones show the spectra when only the pump pulse was present. (c) Group delay dispersion for the slow and fast axes (blue and red lines) of the LB-PMF. The group delays of each pulse composing the twin pulses were the same, which corresponds to the group velocity matching condition.

Fig. 7
Fig. 7

Auto-correlation traces of (a) pump pulse alone, (b) generated pulse alone, and (c) the twin pulses (overlapped pump pulse and generated pulse) at the LB-PMF output. The solid and broken lines show the experimental and theoretical traces, respectively.

Metrics