Abstract

Infrared (IR) spectroscopy is a versatile analytical method and nano-scale spatial resolution could be achieved by scattering type near-field optical microscopy (s-SNOM). The spectral bandwidth was, however, limited to approximately 300 cm−1 with a laser light source. In the present study, the development of a broadband mid-IR near-field spectroscopy with a ceramic light source is demonstrated. A much wider bandwidth (at least 3000 to 1000 cm−1) is achieved with a ceramic light source. The experimental data on quartz Si-O phonon resonance bands are well reproduced by theoretical simulations indicating the validity of the present broadband near-field IR spectroscopy.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Ohtsu, Near-Field Nano/Atom Optics and Technology (Springer-Verlag, 1998), Chap. 2.
  2. Y. Inouye, “Apertureless metallic probes for near-field microscopy,” in Near-Field Optics and Surface Plasmon Polaritons, S. Kawata, ed. (Springer-Verlag, 2001), pp. 29–48.
  3. S. Amarie and F. Keilmann, “Broadband-infrared assessment of phonon resonance in scattering-type near-field microscopy,” Phys. Rev. B 83(4), 045404 (2011).
    [CrossRef]
  4. K. Nakamura, M. E. Zolensky, S. Tomita, S. Nakashima, and K. Tomeoka, “Hollow organic globules in the Tagish Lake meteorite as possible products of primitive organic reactions,” Int. J. Astrobiol. 1(3), 179–189 (2002).
    [CrossRef]
  5. Y. Kebukawa, S. Nakashima, M. Ishikawa, K. Aizawa, T. Inoue, K. Nakamura-Messenger, and M. E. Zolensky, “Spatial distribution of organic matter in the Bells CM2 chondrite using near-field infrared microspectroscopy,” Meteorit. Planet. Sci. 45(3), 394–405 (2010).
    [CrossRef]
  6. M. Ishikawa, M. Katsura, S. Nakashima, K. Aizawa, T. Inoue, Y. Ikemoto, and H. Okamura, “Application of a modulating technique to detect near-field signals using a conventional IR spectrometer with a ceramic light source,” e-J. Surf. Sci. Nanotechno 9, 40–45 (2011).
    [CrossRef]
  7. M. Ishikawa, M. Katsura, S. Nakashima, K. Aizawa, T. Inoue, H. Okamura, and Y. Ikemoto, “Modulated near-field spectral extraction of broadband mid-infrared signals with a ceramic light source,” Opt. Express 19(13), 12469–12479 (2011).
    [CrossRef] [PubMed]
  8. F. Huth, M. Schnell, J. Wittborn, N. Ocelic, and R. Hillenbrand, “Infrared-spectroscopic nanoimaging with a thermal source,” Nat. Mater. 10(5), 352–356 (2011).
    [CrossRef] [PubMed]
  9. Y. Ikemoto, T. Moriwaki, T. Kinoshita, M. Ishikawa, S. Nakashima, and H. Okamura, “Near-field spectroscopy with infrared synchrotron radiation source,” e-J. Surf. Sci. Nanotechno 9, 63–66 (2011).
    [CrossRef]
  10. Y. Ikemoto, M. Ishikawa, S. Nakashima, H. Okamura, Y. Haruyama, S. Matsui, T. Moriwaki, and T. Kinoshita, “Development of scattering near-field optical microspectroscopy apparatus using an infrared synchrotron radiation source,” Opt. Commun. 285(8), 2212–2217 (2012).
    [CrossRef]
  11. B. Knoll and F. Keilmann, “Enhanced dielectric contrast in scattering-type scanning near-field optical microscopy,” Opt. Commun. 182(4-6), 321–328 (2000).
    [CrossRef]
  12. A. Cvitkovic, N. Ocelic, and R. Hillenbrand, “Analytical model for quantitative prediction of material contrasts in scattering-type near-field optical microscopy,” Opt. Express 15(14), 8550–8565 (2007).
    [CrossRef] [PubMed]
  13. B. Knoll and F. Keilmann, “Near-field probing of vibrational absorption for chemical microscopy,” Nature 399(6732), 134–137 (1999).
    [CrossRef]
  14. F. Zenhausern, Y. Martin, and H. K. Wickramasinghe, “Scanning interferometric apertureless microscopy: optical imaging at 10 angstrom resolution,” Science 269(5227), 1083–1085 (1995).
    [CrossRef] [PubMed]
  15. J. Gersten and A. Nitzan, “Electromagnetic theory of enhanced Raman scattering by molecules adsorbed on rough surfaces,” J. Chem. Phys. 73(7), 3023–3037 (1980).
    [CrossRef]
  16. A. Wokaun, J. P. Gordon, and P. F. Liao, “Radiation damping in surface-enhanced Raman scattering,” Phys. Rev. Lett. 48(14), 957–960 (1982).
    [CrossRef]
  17. P. Aravind and H. Metiu, “The effects of the interaction between resonances in the electromagnetic response of a sphere-plane structure - applications to surface enhanced spectroscopy,” Surf. Sci. 124(2-3), 506–528 (1983).
    [CrossRef]
  18. I. S. Averbukh, B. M. Chernobrod, O. A. Sedletsky, and Y. Prior, “Coherent near field optical microscopy,” Opt. Commun. 174(1-4), 33–41 (2000).
    [CrossRef]
  19. L. V. Lindell, G. Dassios, and K. I. Nikoskinen, “Electrostatic image theory for the conducting prolate spheroid,” J. Phys. D Appl. Phys. 34(15), 2302–2307 (2001).
    [CrossRef]
  20. A. J. Huber, A. Ziegler, T. Köck, and R. Hillenbrand, “Infrared nanoscopy of strained semiconductors,” Nat. Nanotechnol. 4(3), 153–157 (2009).
    [CrossRef] [PubMed]
  21. T. Taubner, F. Keilmann, and R. Hillenbrand, “Nanomechanical resonance tuning and phase effects in optical near-field interaction,” Nano Lett. 4(9), 1669–1672 (2004).
    [CrossRef]
  22. S. C. Schneider, J. Seidel, S. Grafstrom, L. M. Eng, S. Winnerl, D. Stehr, and M. Helm, “Impact of optical in-plane anisotropy on near-field phonon polariton spectroscopy,” Appl. Phys. Lett. 90(14), 143101 (2007).
    [CrossRef]
  23. S. C. Kehr, M. Cebula, O. Mieth, T. Härtling, J. Seidel, S. Grafström, L. M. Eng, S. Winnerl, D. Stehr, and M. Helm, “Anisotropy contrast in phonon-enhanced apertureless near-field microscopy using a free-electron laser,” Phys. Rev. Lett. 100(25), 256403 (2008).
    [CrossRef] [PubMed]
  24. I. V. Lindell, K. I. Nikoskinen, and M. J. Flykt, “Electrostatic image theory for an anisotropic half-space slightly deviating from transverse isotropy,” Radio Sci. 31(6), 1361–1368 (1996).
    [CrossRef]
  25. M. T. Wenzel, T. Härtling, P. Olk, S. C. Kehr, S. Grafström, S. Winnerl, M. Helm, and L. M. Eng, “Gold nanoparticle tips for optical field confinement in infrared scattering near-field optical microscopy,” Opt. Express 16(16), 12302–12312 (2008), http://www.opticsinfobase.org/abstract.cfm?id=170287 .
    [CrossRef] [PubMed]
  26. S. C. Schneider, S. Grafström, and L. Eng, “Scattering near-field optical microscopy of optically anisotropic systems,” Phys. Rev. B 71(11), 115418 (2005).
    [CrossRef]
  27. K. Wang, D. M. Mittleman, N. C. J. van der Valk, and P. C. M. Planken, “Antenna effects in terahertz apertureless near-field optical microscopy,” Appl. Phys. Lett. 85(14), 2715 (2004).
    [CrossRef]
  28. W. G. Spitzer and D. A. Kleinman, “Infrared lattice bands of quartz,” Phys. Rev. 121(5), 1324–1335 (1961).
    [CrossRef]

2012 (1)

Y. Ikemoto, M. Ishikawa, S. Nakashima, H. Okamura, Y. Haruyama, S. Matsui, T. Moriwaki, and T. Kinoshita, “Development of scattering near-field optical microspectroscopy apparatus using an infrared synchrotron radiation source,” Opt. Commun. 285(8), 2212–2217 (2012).
[CrossRef]

2011 (5)

S. Amarie and F. Keilmann, “Broadband-infrared assessment of phonon resonance in scattering-type near-field microscopy,” Phys. Rev. B 83(4), 045404 (2011).
[CrossRef]

M. Ishikawa, M. Katsura, S. Nakashima, K. Aizawa, T. Inoue, Y. Ikemoto, and H. Okamura, “Application of a modulating technique to detect near-field signals using a conventional IR spectrometer with a ceramic light source,” e-J. Surf. Sci. Nanotechno 9, 40–45 (2011).
[CrossRef]

M. Ishikawa, M. Katsura, S. Nakashima, K. Aizawa, T. Inoue, H. Okamura, and Y. Ikemoto, “Modulated near-field spectral extraction of broadband mid-infrared signals with a ceramic light source,” Opt. Express 19(13), 12469–12479 (2011).
[CrossRef] [PubMed]

F. Huth, M. Schnell, J. Wittborn, N. Ocelic, and R. Hillenbrand, “Infrared-spectroscopic nanoimaging with a thermal source,” Nat. Mater. 10(5), 352–356 (2011).
[CrossRef] [PubMed]

Y. Ikemoto, T. Moriwaki, T. Kinoshita, M. Ishikawa, S. Nakashima, and H. Okamura, “Near-field spectroscopy with infrared synchrotron radiation source,” e-J. Surf. Sci. Nanotechno 9, 63–66 (2011).
[CrossRef]

2010 (1)

Y. Kebukawa, S. Nakashima, M. Ishikawa, K. Aizawa, T. Inoue, K. Nakamura-Messenger, and M. E. Zolensky, “Spatial distribution of organic matter in the Bells CM2 chondrite using near-field infrared microspectroscopy,” Meteorit. Planet. Sci. 45(3), 394–405 (2010).
[CrossRef]

2009 (1)

A. J. Huber, A. Ziegler, T. Köck, and R. Hillenbrand, “Infrared nanoscopy of strained semiconductors,” Nat. Nanotechnol. 4(3), 153–157 (2009).
[CrossRef] [PubMed]

2008 (2)

M. T. Wenzel, T. Härtling, P. Olk, S. C. Kehr, S. Grafström, S. Winnerl, M. Helm, and L. M. Eng, “Gold nanoparticle tips for optical field confinement in infrared scattering near-field optical microscopy,” Opt. Express 16(16), 12302–12312 (2008), http://www.opticsinfobase.org/abstract.cfm?id=170287 .
[CrossRef] [PubMed]

S. C. Kehr, M. Cebula, O. Mieth, T. Härtling, J. Seidel, S. Grafström, L. M. Eng, S. Winnerl, D. Stehr, and M. Helm, “Anisotropy contrast in phonon-enhanced apertureless near-field microscopy using a free-electron laser,” Phys. Rev. Lett. 100(25), 256403 (2008).
[CrossRef] [PubMed]

2007 (2)

S. C. Schneider, J. Seidel, S. Grafstrom, L. M. Eng, S. Winnerl, D. Stehr, and M. Helm, “Impact of optical in-plane anisotropy on near-field phonon polariton spectroscopy,” Appl. Phys. Lett. 90(14), 143101 (2007).
[CrossRef]

A. Cvitkovic, N. Ocelic, and R. Hillenbrand, “Analytical model for quantitative prediction of material contrasts in scattering-type near-field optical microscopy,” Opt. Express 15(14), 8550–8565 (2007).
[CrossRef] [PubMed]

2005 (1)

S. C. Schneider, S. Grafström, and L. Eng, “Scattering near-field optical microscopy of optically anisotropic systems,” Phys. Rev. B 71(11), 115418 (2005).
[CrossRef]

2004 (2)

K. Wang, D. M. Mittleman, N. C. J. van der Valk, and P. C. M. Planken, “Antenna effects in terahertz apertureless near-field optical microscopy,” Appl. Phys. Lett. 85(14), 2715 (2004).
[CrossRef]

T. Taubner, F. Keilmann, and R. Hillenbrand, “Nanomechanical resonance tuning and phase effects in optical near-field interaction,” Nano Lett. 4(9), 1669–1672 (2004).
[CrossRef]

2002 (1)

K. Nakamura, M. E. Zolensky, S. Tomita, S. Nakashima, and K. Tomeoka, “Hollow organic globules in the Tagish Lake meteorite as possible products of primitive organic reactions,” Int. J. Astrobiol. 1(3), 179–189 (2002).
[CrossRef]

2001 (1)

L. V. Lindell, G. Dassios, and K. I. Nikoskinen, “Electrostatic image theory for the conducting prolate spheroid,” J. Phys. D Appl. Phys. 34(15), 2302–2307 (2001).
[CrossRef]

2000 (2)

B. Knoll and F. Keilmann, “Enhanced dielectric contrast in scattering-type scanning near-field optical microscopy,” Opt. Commun. 182(4-6), 321–328 (2000).
[CrossRef]

I. S. Averbukh, B. M. Chernobrod, O. A. Sedletsky, and Y. Prior, “Coherent near field optical microscopy,” Opt. Commun. 174(1-4), 33–41 (2000).
[CrossRef]

1999 (1)

B. Knoll and F. Keilmann, “Near-field probing of vibrational absorption for chemical microscopy,” Nature 399(6732), 134–137 (1999).
[CrossRef]

1996 (1)

I. V. Lindell, K. I. Nikoskinen, and M. J. Flykt, “Electrostatic image theory for an anisotropic half-space slightly deviating from transverse isotropy,” Radio Sci. 31(6), 1361–1368 (1996).
[CrossRef]

1995 (1)

F. Zenhausern, Y. Martin, and H. K. Wickramasinghe, “Scanning interferometric apertureless microscopy: optical imaging at 10 angstrom resolution,” Science 269(5227), 1083–1085 (1995).
[CrossRef] [PubMed]

1983 (1)

P. Aravind and H. Metiu, “The effects of the interaction between resonances in the electromagnetic response of a sphere-plane structure - applications to surface enhanced spectroscopy,” Surf. Sci. 124(2-3), 506–528 (1983).
[CrossRef]

1982 (1)

A. Wokaun, J. P. Gordon, and P. F. Liao, “Radiation damping in surface-enhanced Raman scattering,” Phys. Rev. Lett. 48(14), 957–960 (1982).
[CrossRef]

1980 (1)

J. Gersten and A. Nitzan, “Electromagnetic theory of enhanced Raman scattering by molecules adsorbed on rough surfaces,” J. Chem. Phys. 73(7), 3023–3037 (1980).
[CrossRef]

1961 (1)

W. G. Spitzer and D. A. Kleinman, “Infrared lattice bands of quartz,” Phys. Rev. 121(5), 1324–1335 (1961).
[CrossRef]

Aizawa, K.

M. Ishikawa, M. Katsura, S. Nakashima, K. Aizawa, T. Inoue, Y. Ikemoto, and H. Okamura, “Application of a modulating technique to detect near-field signals using a conventional IR spectrometer with a ceramic light source,” e-J. Surf. Sci. Nanotechno 9, 40–45 (2011).
[CrossRef]

M. Ishikawa, M. Katsura, S. Nakashima, K. Aizawa, T. Inoue, H. Okamura, and Y. Ikemoto, “Modulated near-field spectral extraction of broadband mid-infrared signals with a ceramic light source,” Opt. Express 19(13), 12469–12479 (2011).
[CrossRef] [PubMed]

Y. Kebukawa, S. Nakashima, M. Ishikawa, K. Aizawa, T. Inoue, K. Nakamura-Messenger, and M. E. Zolensky, “Spatial distribution of organic matter in the Bells CM2 chondrite using near-field infrared microspectroscopy,” Meteorit. Planet. Sci. 45(3), 394–405 (2010).
[CrossRef]

Amarie, S.

S. Amarie and F. Keilmann, “Broadband-infrared assessment of phonon resonance in scattering-type near-field microscopy,” Phys. Rev. B 83(4), 045404 (2011).
[CrossRef]

Aravind, P.

P. Aravind and H. Metiu, “The effects of the interaction between resonances in the electromagnetic response of a sphere-plane structure - applications to surface enhanced spectroscopy,” Surf. Sci. 124(2-3), 506–528 (1983).
[CrossRef]

Averbukh, I. S.

I. S. Averbukh, B. M. Chernobrod, O. A. Sedletsky, and Y. Prior, “Coherent near field optical microscopy,” Opt. Commun. 174(1-4), 33–41 (2000).
[CrossRef]

Cebula, M.

S. C. Kehr, M. Cebula, O. Mieth, T. Härtling, J. Seidel, S. Grafström, L. M. Eng, S. Winnerl, D. Stehr, and M. Helm, “Anisotropy contrast in phonon-enhanced apertureless near-field microscopy using a free-electron laser,” Phys. Rev. Lett. 100(25), 256403 (2008).
[CrossRef] [PubMed]

Chernobrod, B. M.

I. S. Averbukh, B. M. Chernobrod, O. A. Sedletsky, and Y. Prior, “Coherent near field optical microscopy,” Opt. Commun. 174(1-4), 33–41 (2000).
[CrossRef]

Cvitkovic, A.

Dassios, G.

L. V. Lindell, G. Dassios, and K. I. Nikoskinen, “Electrostatic image theory for the conducting prolate spheroid,” J. Phys. D Appl. Phys. 34(15), 2302–2307 (2001).
[CrossRef]

Eng, L.

S. C. Schneider, S. Grafström, and L. Eng, “Scattering near-field optical microscopy of optically anisotropic systems,” Phys. Rev. B 71(11), 115418 (2005).
[CrossRef]

Eng, L. M.

S. C. Kehr, M. Cebula, O. Mieth, T. Härtling, J. Seidel, S. Grafström, L. M. Eng, S. Winnerl, D. Stehr, and M. Helm, “Anisotropy contrast in phonon-enhanced apertureless near-field microscopy using a free-electron laser,” Phys. Rev. Lett. 100(25), 256403 (2008).
[CrossRef] [PubMed]

M. T. Wenzel, T. Härtling, P. Olk, S. C. Kehr, S. Grafström, S. Winnerl, M. Helm, and L. M. Eng, “Gold nanoparticle tips for optical field confinement in infrared scattering near-field optical microscopy,” Opt. Express 16(16), 12302–12312 (2008), http://www.opticsinfobase.org/abstract.cfm?id=170287 .
[CrossRef] [PubMed]

S. C. Schneider, J. Seidel, S. Grafstrom, L. M. Eng, S. Winnerl, D. Stehr, and M. Helm, “Impact of optical in-plane anisotropy on near-field phonon polariton spectroscopy,” Appl. Phys. Lett. 90(14), 143101 (2007).
[CrossRef]

Flykt, M. J.

I. V. Lindell, K. I. Nikoskinen, and M. J. Flykt, “Electrostatic image theory for an anisotropic half-space slightly deviating from transverse isotropy,” Radio Sci. 31(6), 1361–1368 (1996).
[CrossRef]

Gersten, J.

J. Gersten and A. Nitzan, “Electromagnetic theory of enhanced Raman scattering by molecules adsorbed on rough surfaces,” J. Chem. Phys. 73(7), 3023–3037 (1980).
[CrossRef]

Gordon, J. P.

A. Wokaun, J. P. Gordon, and P. F. Liao, “Radiation damping in surface-enhanced Raman scattering,” Phys. Rev. Lett. 48(14), 957–960 (1982).
[CrossRef]

Grafstrom, S.

S. C. Schneider, J. Seidel, S. Grafstrom, L. M. Eng, S. Winnerl, D. Stehr, and M. Helm, “Impact of optical in-plane anisotropy on near-field phonon polariton spectroscopy,” Appl. Phys. Lett. 90(14), 143101 (2007).
[CrossRef]

Grafström, S.

S. C. Kehr, M. Cebula, O. Mieth, T. Härtling, J. Seidel, S. Grafström, L. M. Eng, S. Winnerl, D. Stehr, and M. Helm, “Anisotropy contrast in phonon-enhanced apertureless near-field microscopy using a free-electron laser,” Phys. Rev. Lett. 100(25), 256403 (2008).
[CrossRef] [PubMed]

M. T. Wenzel, T. Härtling, P. Olk, S. C. Kehr, S. Grafström, S. Winnerl, M. Helm, and L. M. Eng, “Gold nanoparticle tips for optical field confinement in infrared scattering near-field optical microscopy,” Opt. Express 16(16), 12302–12312 (2008), http://www.opticsinfobase.org/abstract.cfm?id=170287 .
[CrossRef] [PubMed]

S. C. Schneider, S. Grafström, and L. Eng, “Scattering near-field optical microscopy of optically anisotropic systems,” Phys. Rev. B 71(11), 115418 (2005).
[CrossRef]

Härtling, T.

M. T. Wenzel, T. Härtling, P. Olk, S. C. Kehr, S. Grafström, S. Winnerl, M. Helm, and L. M. Eng, “Gold nanoparticle tips for optical field confinement in infrared scattering near-field optical microscopy,” Opt. Express 16(16), 12302–12312 (2008), http://www.opticsinfobase.org/abstract.cfm?id=170287 .
[CrossRef] [PubMed]

S. C. Kehr, M. Cebula, O. Mieth, T. Härtling, J. Seidel, S. Grafström, L. M. Eng, S. Winnerl, D. Stehr, and M. Helm, “Anisotropy contrast in phonon-enhanced apertureless near-field microscopy using a free-electron laser,” Phys. Rev. Lett. 100(25), 256403 (2008).
[CrossRef] [PubMed]

Haruyama, Y.

Y. Ikemoto, M. Ishikawa, S. Nakashima, H. Okamura, Y. Haruyama, S. Matsui, T. Moriwaki, and T. Kinoshita, “Development of scattering near-field optical microspectroscopy apparatus using an infrared synchrotron radiation source,” Opt. Commun. 285(8), 2212–2217 (2012).
[CrossRef]

Helm, M.

M. T. Wenzel, T. Härtling, P. Olk, S. C. Kehr, S. Grafström, S. Winnerl, M. Helm, and L. M. Eng, “Gold nanoparticle tips for optical field confinement in infrared scattering near-field optical microscopy,” Opt. Express 16(16), 12302–12312 (2008), http://www.opticsinfobase.org/abstract.cfm?id=170287 .
[CrossRef] [PubMed]

S. C. Kehr, M. Cebula, O. Mieth, T. Härtling, J. Seidel, S. Grafström, L. M. Eng, S. Winnerl, D. Stehr, and M. Helm, “Anisotropy contrast in phonon-enhanced apertureless near-field microscopy using a free-electron laser,” Phys. Rev. Lett. 100(25), 256403 (2008).
[CrossRef] [PubMed]

S. C. Schneider, J. Seidel, S. Grafstrom, L. M. Eng, S. Winnerl, D. Stehr, and M. Helm, “Impact of optical in-plane anisotropy on near-field phonon polariton spectroscopy,” Appl. Phys. Lett. 90(14), 143101 (2007).
[CrossRef]

Hillenbrand, R.

F. Huth, M. Schnell, J. Wittborn, N. Ocelic, and R. Hillenbrand, “Infrared-spectroscopic nanoimaging with a thermal source,” Nat. Mater. 10(5), 352–356 (2011).
[CrossRef] [PubMed]

A. J. Huber, A. Ziegler, T. Köck, and R. Hillenbrand, “Infrared nanoscopy of strained semiconductors,” Nat. Nanotechnol. 4(3), 153–157 (2009).
[CrossRef] [PubMed]

A. Cvitkovic, N. Ocelic, and R. Hillenbrand, “Analytical model for quantitative prediction of material contrasts in scattering-type near-field optical microscopy,” Opt. Express 15(14), 8550–8565 (2007).
[CrossRef] [PubMed]

T. Taubner, F. Keilmann, and R. Hillenbrand, “Nanomechanical resonance tuning and phase effects in optical near-field interaction,” Nano Lett. 4(9), 1669–1672 (2004).
[CrossRef]

Huber, A. J.

A. J. Huber, A. Ziegler, T. Köck, and R. Hillenbrand, “Infrared nanoscopy of strained semiconductors,” Nat. Nanotechnol. 4(3), 153–157 (2009).
[CrossRef] [PubMed]

Huth, F.

F. Huth, M. Schnell, J. Wittborn, N. Ocelic, and R. Hillenbrand, “Infrared-spectroscopic nanoimaging with a thermal source,” Nat. Mater. 10(5), 352–356 (2011).
[CrossRef] [PubMed]

Ikemoto, Y.

Y. Ikemoto, M. Ishikawa, S. Nakashima, H. Okamura, Y. Haruyama, S. Matsui, T. Moriwaki, and T. Kinoshita, “Development of scattering near-field optical microspectroscopy apparatus using an infrared synchrotron radiation source,” Opt. Commun. 285(8), 2212–2217 (2012).
[CrossRef]

M. Ishikawa, M. Katsura, S. Nakashima, K. Aizawa, T. Inoue, H. Okamura, and Y. Ikemoto, “Modulated near-field spectral extraction of broadband mid-infrared signals with a ceramic light source,” Opt. Express 19(13), 12469–12479 (2011).
[CrossRef] [PubMed]

Y. Ikemoto, T. Moriwaki, T. Kinoshita, M. Ishikawa, S. Nakashima, and H. Okamura, “Near-field spectroscopy with infrared synchrotron radiation source,” e-J. Surf. Sci. Nanotechno 9, 63–66 (2011).
[CrossRef]

M. Ishikawa, M. Katsura, S. Nakashima, K. Aizawa, T. Inoue, Y. Ikemoto, and H. Okamura, “Application of a modulating technique to detect near-field signals using a conventional IR spectrometer with a ceramic light source,” e-J. Surf. Sci. Nanotechno 9, 40–45 (2011).
[CrossRef]

Inoue, T.

M. Ishikawa, M. Katsura, S. Nakashima, K. Aizawa, T. Inoue, Y. Ikemoto, and H. Okamura, “Application of a modulating technique to detect near-field signals using a conventional IR spectrometer with a ceramic light source,” e-J. Surf. Sci. Nanotechno 9, 40–45 (2011).
[CrossRef]

M. Ishikawa, M. Katsura, S. Nakashima, K. Aizawa, T. Inoue, H. Okamura, and Y. Ikemoto, “Modulated near-field spectral extraction of broadband mid-infrared signals with a ceramic light source,” Opt. Express 19(13), 12469–12479 (2011).
[CrossRef] [PubMed]

Y. Kebukawa, S. Nakashima, M. Ishikawa, K. Aizawa, T. Inoue, K. Nakamura-Messenger, and M. E. Zolensky, “Spatial distribution of organic matter in the Bells CM2 chondrite using near-field infrared microspectroscopy,” Meteorit. Planet. Sci. 45(3), 394–405 (2010).
[CrossRef]

Ishikawa, M.

Y. Ikemoto, M. Ishikawa, S. Nakashima, H. Okamura, Y. Haruyama, S. Matsui, T. Moriwaki, and T. Kinoshita, “Development of scattering near-field optical microspectroscopy apparatus using an infrared synchrotron radiation source,” Opt. Commun. 285(8), 2212–2217 (2012).
[CrossRef]

M. Ishikawa, M. Katsura, S. Nakashima, K. Aizawa, T. Inoue, Y. Ikemoto, and H. Okamura, “Application of a modulating technique to detect near-field signals using a conventional IR spectrometer with a ceramic light source,” e-J. Surf. Sci. Nanotechno 9, 40–45 (2011).
[CrossRef]

M. Ishikawa, M. Katsura, S. Nakashima, K. Aizawa, T. Inoue, H. Okamura, and Y. Ikemoto, “Modulated near-field spectral extraction of broadband mid-infrared signals with a ceramic light source,” Opt. Express 19(13), 12469–12479 (2011).
[CrossRef] [PubMed]

Y. Ikemoto, T. Moriwaki, T. Kinoshita, M. Ishikawa, S. Nakashima, and H. Okamura, “Near-field spectroscopy with infrared synchrotron radiation source,” e-J. Surf. Sci. Nanotechno 9, 63–66 (2011).
[CrossRef]

Y. Kebukawa, S. Nakashima, M. Ishikawa, K. Aizawa, T. Inoue, K. Nakamura-Messenger, and M. E. Zolensky, “Spatial distribution of organic matter in the Bells CM2 chondrite using near-field infrared microspectroscopy,” Meteorit. Planet. Sci. 45(3), 394–405 (2010).
[CrossRef]

Katsura, M.

M. Ishikawa, M. Katsura, S. Nakashima, K. Aizawa, T. Inoue, Y. Ikemoto, and H. Okamura, “Application of a modulating technique to detect near-field signals using a conventional IR spectrometer with a ceramic light source,” e-J. Surf. Sci. Nanotechno 9, 40–45 (2011).
[CrossRef]

M. Ishikawa, M. Katsura, S. Nakashima, K. Aizawa, T. Inoue, H. Okamura, and Y. Ikemoto, “Modulated near-field spectral extraction of broadband mid-infrared signals with a ceramic light source,” Opt. Express 19(13), 12469–12479 (2011).
[CrossRef] [PubMed]

Kebukawa, Y.

Y. Kebukawa, S. Nakashima, M. Ishikawa, K. Aizawa, T. Inoue, K. Nakamura-Messenger, and M. E. Zolensky, “Spatial distribution of organic matter in the Bells CM2 chondrite using near-field infrared microspectroscopy,” Meteorit. Planet. Sci. 45(3), 394–405 (2010).
[CrossRef]

Kehr, S. C.

S. C. Kehr, M. Cebula, O. Mieth, T. Härtling, J. Seidel, S. Grafström, L. M. Eng, S. Winnerl, D. Stehr, and M. Helm, “Anisotropy contrast in phonon-enhanced apertureless near-field microscopy using a free-electron laser,” Phys. Rev. Lett. 100(25), 256403 (2008).
[CrossRef] [PubMed]

M. T. Wenzel, T. Härtling, P. Olk, S. C. Kehr, S. Grafström, S. Winnerl, M. Helm, and L. M. Eng, “Gold nanoparticle tips for optical field confinement in infrared scattering near-field optical microscopy,” Opt. Express 16(16), 12302–12312 (2008), http://www.opticsinfobase.org/abstract.cfm?id=170287 .
[CrossRef] [PubMed]

Keilmann, F.

S. Amarie and F. Keilmann, “Broadband-infrared assessment of phonon resonance in scattering-type near-field microscopy,” Phys. Rev. B 83(4), 045404 (2011).
[CrossRef]

T. Taubner, F. Keilmann, and R. Hillenbrand, “Nanomechanical resonance tuning and phase effects in optical near-field interaction,” Nano Lett. 4(9), 1669–1672 (2004).
[CrossRef]

B. Knoll and F. Keilmann, “Enhanced dielectric contrast in scattering-type scanning near-field optical microscopy,” Opt. Commun. 182(4-6), 321–328 (2000).
[CrossRef]

B. Knoll and F. Keilmann, “Near-field probing of vibrational absorption for chemical microscopy,” Nature 399(6732), 134–137 (1999).
[CrossRef]

Kinoshita, T.

Y. Ikemoto, M. Ishikawa, S. Nakashima, H. Okamura, Y. Haruyama, S. Matsui, T. Moriwaki, and T. Kinoshita, “Development of scattering near-field optical microspectroscopy apparatus using an infrared synchrotron radiation source,” Opt. Commun. 285(8), 2212–2217 (2012).
[CrossRef]

Y. Ikemoto, T. Moriwaki, T. Kinoshita, M. Ishikawa, S. Nakashima, and H. Okamura, “Near-field spectroscopy with infrared synchrotron radiation source,” e-J. Surf. Sci. Nanotechno 9, 63–66 (2011).
[CrossRef]

Kleinman, D. A.

W. G. Spitzer and D. A. Kleinman, “Infrared lattice bands of quartz,” Phys. Rev. 121(5), 1324–1335 (1961).
[CrossRef]

Knoll, B.

B. Knoll and F. Keilmann, “Enhanced dielectric contrast in scattering-type scanning near-field optical microscopy,” Opt. Commun. 182(4-6), 321–328 (2000).
[CrossRef]

B. Knoll and F. Keilmann, “Near-field probing of vibrational absorption for chemical microscopy,” Nature 399(6732), 134–137 (1999).
[CrossRef]

Köck, T.

A. J. Huber, A. Ziegler, T. Köck, and R. Hillenbrand, “Infrared nanoscopy of strained semiconductors,” Nat. Nanotechnol. 4(3), 153–157 (2009).
[CrossRef] [PubMed]

Liao, P. F.

A. Wokaun, J. P. Gordon, and P. F. Liao, “Radiation damping in surface-enhanced Raman scattering,” Phys. Rev. Lett. 48(14), 957–960 (1982).
[CrossRef]

Lindell, I. V.

I. V. Lindell, K. I. Nikoskinen, and M. J. Flykt, “Electrostatic image theory for an anisotropic half-space slightly deviating from transverse isotropy,” Radio Sci. 31(6), 1361–1368 (1996).
[CrossRef]

Lindell, L. V.

L. V. Lindell, G. Dassios, and K. I. Nikoskinen, “Electrostatic image theory for the conducting prolate spheroid,” J. Phys. D Appl. Phys. 34(15), 2302–2307 (2001).
[CrossRef]

Martin, Y.

F. Zenhausern, Y. Martin, and H. K. Wickramasinghe, “Scanning interferometric apertureless microscopy: optical imaging at 10 angstrom resolution,” Science 269(5227), 1083–1085 (1995).
[CrossRef] [PubMed]

Matsui, S.

Y. Ikemoto, M. Ishikawa, S. Nakashima, H. Okamura, Y. Haruyama, S. Matsui, T. Moriwaki, and T. Kinoshita, “Development of scattering near-field optical microspectroscopy apparatus using an infrared synchrotron radiation source,” Opt. Commun. 285(8), 2212–2217 (2012).
[CrossRef]

Metiu, H.

P. Aravind and H. Metiu, “The effects of the interaction between resonances in the electromagnetic response of a sphere-plane structure - applications to surface enhanced spectroscopy,” Surf. Sci. 124(2-3), 506–528 (1983).
[CrossRef]

Mieth, O.

S. C. Kehr, M. Cebula, O. Mieth, T. Härtling, J. Seidel, S. Grafström, L. M. Eng, S. Winnerl, D. Stehr, and M. Helm, “Anisotropy contrast in phonon-enhanced apertureless near-field microscopy using a free-electron laser,” Phys. Rev. Lett. 100(25), 256403 (2008).
[CrossRef] [PubMed]

Mittleman, D. M.

K. Wang, D. M. Mittleman, N. C. J. van der Valk, and P. C. M. Planken, “Antenna effects in terahertz apertureless near-field optical microscopy,” Appl. Phys. Lett. 85(14), 2715 (2004).
[CrossRef]

Moriwaki, T.

Y. Ikemoto, M. Ishikawa, S. Nakashima, H. Okamura, Y. Haruyama, S. Matsui, T. Moriwaki, and T. Kinoshita, “Development of scattering near-field optical microspectroscopy apparatus using an infrared synchrotron radiation source,” Opt. Commun. 285(8), 2212–2217 (2012).
[CrossRef]

Y. Ikemoto, T. Moriwaki, T. Kinoshita, M. Ishikawa, S. Nakashima, and H. Okamura, “Near-field spectroscopy with infrared synchrotron radiation source,” e-J. Surf. Sci. Nanotechno 9, 63–66 (2011).
[CrossRef]

Nakamura, K.

K. Nakamura, M. E. Zolensky, S. Tomita, S. Nakashima, and K. Tomeoka, “Hollow organic globules in the Tagish Lake meteorite as possible products of primitive organic reactions,” Int. J. Astrobiol. 1(3), 179–189 (2002).
[CrossRef]

Nakamura-Messenger, K.

Y. Kebukawa, S. Nakashima, M. Ishikawa, K. Aizawa, T. Inoue, K. Nakamura-Messenger, and M. E. Zolensky, “Spatial distribution of organic matter in the Bells CM2 chondrite using near-field infrared microspectroscopy,” Meteorit. Planet. Sci. 45(3), 394–405 (2010).
[CrossRef]

Nakashima, S.

Y. Ikemoto, M. Ishikawa, S. Nakashima, H. Okamura, Y. Haruyama, S. Matsui, T. Moriwaki, and T. Kinoshita, “Development of scattering near-field optical microspectroscopy apparatus using an infrared synchrotron radiation source,” Opt. Commun. 285(8), 2212–2217 (2012).
[CrossRef]

M. Ishikawa, M. Katsura, S. Nakashima, K. Aizawa, T. Inoue, Y. Ikemoto, and H. Okamura, “Application of a modulating technique to detect near-field signals using a conventional IR spectrometer with a ceramic light source,” e-J. Surf. Sci. Nanotechno 9, 40–45 (2011).
[CrossRef]

Y. Ikemoto, T. Moriwaki, T. Kinoshita, M. Ishikawa, S. Nakashima, and H. Okamura, “Near-field spectroscopy with infrared synchrotron radiation source,” e-J. Surf. Sci. Nanotechno 9, 63–66 (2011).
[CrossRef]

M. Ishikawa, M. Katsura, S. Nakashima, K. Aizawa, T. Inoue, H. Okamura, and Y. Ikemoto, “Modulated near-field spectral extraction of broadband mid-infrared signals with a ceramic light source,” Opt. Express 19(13), 12469–12479 (2011).
[CrossRef] [PubMed]

Y. Kebukawa, S. Nakashima, M. Ishikawa, K. Aizawa, T. Inoue, K. Nakamura-Messenger, and M. E. Zolensky, “Spatial distribution of organic matter in the Bells CM2 chondrite using near-field infrared microspectroscopy,” Meteorit. Planet. Sci. 45(3), 394–405 (2010).
[CrossRef]

K. Nakamura, M. E. Zolensky, S. Tomita, S. Nakashima, and K. Tomeoka, “Hollow organic globules in the Tagish Lake meteorite as possible products of primitive organic reactions,” Int. J. Astrobiol. 1(3), 179–189 (2002).
[CrossRef]

Nikoskinen, K. I.

L. V. Lindell, G. Dassios, and K. I. Nikoskinen, “Electrostatic image theory for the conducting prolate spheroid,” J. Phys. D Appl. Phys. 34(15), 2302–2307 (2001).
[CrossRef]

I. V. Lindell, K. I. Nikoskinen, and M. J. Flykt, “Electrostatic image theory for an anisotropic half-space slightly deviating from transverse isotropy,” Radio Sci. 31(6), 1361–1368 (1996).
[CrossRef]

Nitzan, A.

J. Gersten and A. Nitzan, “Electromagnetic theory of enhanced Raman scattering by molecules adsorbed on rough surfaces,” J. Chem. Phys. 73(7), 3023–3037 (1980).
[CrossRef]

Ocelic, N.

F. Huth, M. Schnell, J. Wittborn, N. Ocelic, and R. Hillenbrand, “Infrared-spectroscopic nanoimaging with a thermal source,” Nat. Mater. 10(5), 352–356 (2011).
[CrossRef] [PubMed]

A. Cvitkovic, N. Ocelic, and R. Hillenbrand, “Analytical model for quantitative prediction of material contrasts in scattering-type near-field optical microscopy,” Opt. Express 15(14), 8550–8565 (2007).
[CrossRef] [PubMed]

Okamura, H.

Y. Ikemoto, M. Ishikawa, S. Nakashima, H. Okamura, Y. Haruyama, S. Matsui, T. Moriwaki, and T. Kinoshita, “Development of scattering near-field optical microspectroscopy apparatus using an infrared synchrotron radiation source,” Opt. Commun. 285(8), 2212–2217 (2012).
[CrossRef]

Y. Ikemoto, T. Moriwaki, T. Kinoshita, M. Ishikawa, S. Nakashima, and H. Okamura, “Near-field spectroscopy with infrared synchrotron radiation source,” e-J. Surf. Sci. Nanotechno 9, 63–66 (2011).
[CrossRef]

M. Ishikawa, M. Katsura, S. Nakashima, K. Aizawa, T. Inoue, H. Okamura, and Y. Ikemoto, “Modulated near-field spectral extraction of broadband mid-infrared signals with a ceramic light source,” Opt. Express 19(13), 12469–12479 (2011).
[CrossRef] [PubMed]

M. Ishikawa, M. Katsura, S. Nakashima, K. Aizawa, T. Inoue, Y. Ikemoto, and H. Okamura, “Application of a modulating technique to detect near-field signals using a conventional IR spectrometer with a ceramic light source,” e-J. Surf. Sci. Nanotechno 9, 40–45 (2011).
[CrossRef]

Olk, P.

Planken, P. C. M.

K. Wang, D. M. Mittleman, N. C. J. van der Valk, and P. C. M. Planken, “Antenna effects in terahertz apertureless near-field optical microscopy,” Appl. Phys. Lett. 85(14), 2715 (2004).
[CrossRef]

Prior, Y.

I. S. Averbukh, B. M. Chernobrod, O. A. Sedletsky, and Y. Prior, “Coherent near field optical microscopy,” Opt. Commun. 174(1-4), 33–41 (2000).
[CrossRef]

Schneider, S. C.

S. C. Schneider, J. Seidel, S. Grafstrom, L. M. Eng, S. Winnerl, D. Stehr, and M. Helm, “Impact of optical in-plane anisotropy on near-field phonon polariton spectroscopy,” Appl. Phys. Lett. 90(14), 143101 (2007).
[CrossRef]

S. C. Schneider, S. Grafström, and L. Eng, “Scattering near-field optical microscopy of optically anisotropic systems,” Phys. Rev. B 71(11), 115418 (2005).
[CrossRef]

Schnell, M.

F. Huth, M. Schnell, J. Wittborn, N. Ocelic, and R. Hillenbrand, “Infrared-spectroscopic nanoimaging with a thermal source,” Nat. Mater. 10(5), 352–356 (2011).
[CrossRef] [PubMed]

Sedletsky, O. A.

I. S. Averbukh, B. M. Chernobrod, O. A. Sedletsky, and Y. Prior, “Coherent near field optical microscopy,” Opt. Commun. 174(1-4), 33–41 (2000).
[CrossRef]

Seidel, J.

S. C. Kehr, M. Cebula, O. Mieth, T. Härtling, J. Seidel, S. Grafström, L. M. Eng, S. Winnerl, D. Stehr, and M. Helm, “Anisotropy contrast in phonon-enhanced apertureless near-field microscopy using a free-electron laser,” Phys. Rev. Lett. 100(25), 256403 (2008).
[CrossRef] [PubMed]

S. C. Schneider, J. Seidel, S. Grafstrom, L. M. Eng, S. Winnerl, D. Stehr, and M. Helm, “Impact of optical in-plane anisotropy on near-field phonon polariton spectroscopy,” Appl. Phys. Lett. 90(14), 143101 (2007).
[CrossRef]

Spitzer, W. G.

W. G. Spitzer and D. A. Kleinman, “Infrared lattice bands of quartz,” Phys. Rev. 121(5), 1324–1335 (1961).
[CrossRef]

Stehr, D.

S. C. Kehr, M. Cebula, O. Mieth, T. Härtling, J. Seidel, S. Grafström, L. M. Eng, S. Winnerl, D. Stehr, and M. Helm, “Anisotropy contrast in phonon-enhanced apertureless near-field microscopy using a free-electron laser,” Phys. Rev. Lett. 100(25), 256403 (2008).
[CrossRef] [PubMed]

S. C. Schneider, J. Seidel, S. Grafstrom, L. M. Eng, S. Winnerl, D. Stehr, and M. Helm, “Impact of optical in-plane anisotropy on near-field phonon polariton spectroscopy,” Appl. Phys. Lett. 90(14), 143101 (2007).
[CrossRef]

Taubner, T.

T. Taubner, F. Keilmann, and R. Hillenbrand, “Nanomechanical resonance tuning and phase effects in optical near-field interaction,” Nano Lett. 4(9), 1669–1672 (2004).
[CrossRef]

Tomeoka, K.

K. Nakamura, M. E. Zolensky, S. Tomita, S. Nakashima, and K. Tomeoka, “Hollow organic globules in the Tagish Lake meteorite as possible products of primitive organic reactions,” Int. J. Astrobiol. 1(3), 179–189 (2002).
[CrossRef]

Tomita, S.

K. Nakamura, M. E. Zolensky, S. Tomita, S. Nakashima, and K. Tomeoka, “Hollow organic globules in the Tagish Lake meteorite as possible products of primitive organic reactions,” Int. J. Astrobiol. 1(3), 179–189 (2002).
[CrossRef]

van der Valk, N. C. J.

K. Wang, D. M. Mittleman, N. C. J. van der Valk, and P. C. M. Planken, “Antenna effects in terahertz apertureless near-field optical microscopy,” Appl. Phys. Lett. 85(14), 2715 (2004).
[CrossRef]

Wang, K.

K. Wang, D. M. Mittleman, N. C. J. van der Valk, and P. C. M. Planken, “Antenna effects in terahertz apertureless near-field optical microscopy,” Appl. Phys. Lett. 85(14), 2715 (2004).
[CrossRef]

Wenzel, M. T.

Wickramasinghe, H. K.

F. Zenhausern, Y. Martin, and H. K. Wickramasinghe, “Scanning interferometric apertureless microscopy: optical imaging at 10 angstrom resolution,” Science 269(5227), 1083–1085 (1995).
[CrossRef] [PubMed]

Winnerl, S.

S. C. Kehr, M. Cebula, O. Mieth, T. Härtling, J. Seidel, S. Grafström, L. M. Eng, S. Winnerl, D. Stehr, and M. Helm, “Anisotropy contrast in phonon-enhanced apertureless near-field microscopy using a free-electron laser,” Phys. Rev. Lett. 100(25), 256403 (2008).
[CrossRef] [PubMed]

M. T. Wenzel, T. Härtling, P. Olk, S. C. Kehr, S. Grafström, S. Winnerl, M. Helm, and L. M. Eng, “Gold nanoparticle tips for optical field confinement in infrared scattering near-field optical microscopy,” Opt. Express 16(16), 12302–12312 (2008), http://www.opticsinfobase.org/abstract.cfm?id=170287 .
[CrossRef] [PubMed]

S. C. Schneider, J. Seidel, S. Grafstrom, L. M. Eng, S. Winnerl, D. Stehr, and M. Helm, “Impact of optical in-plane anisotropy on near-field phonon polariton spectroscopy,” Appl. Phys. Lett. 90(14), 143101 (2007).
[CrossRef]

Wittborn, J.

F. Huth, M. Schnell, J. Wittborn, N. Ocelic, and R. Hillenbrand, “Infrared-spectroscopic nanoimaging with a thermal source,” Nat. Mater. 10(5), 352–356 (2011).
[CrossRef] [PubMed]

Wokaun, A.

A. Wokaun, J. P. Gordon, and P. F. Liao, “Radiation damping in surface-enhanced Raman scattering,” Phys. Rev. Lett. 48(14), 957–960 (1982).
[CrossRef]

Zenhausern, F.

F. Zenhausern, Y. Martin, and H. K. Wickramasinghe, “Scanning interferometric apertureless microscopy: optical imaging at 10 angstrom resolution,” Science 269(5227), 1083–1085 (1995).
[CrossRef] [PubMed]

Ziegler, A.

A. J. Huber, A. Ziegler, T. Köck, and R. Hillenbrand, “Infrared nanoscopy of strained semiconductors,” Nat. Nanotechnol. 4(3), 153–157 (2009).
[CrossRef] [PubMed]

Zolensky, M. E.

Y. Kebukawa, S. Nakashima, M. Ishikawa, K. Aizawa, T. Inoue, K. Nakamura-Messenger, and M. E. Zolensky, “Spatial distribution of organic matter in the Bells CM2 chondrite using near-field infrared microspectroscopy,” Meteorit. Planet. Sci. 45(3), 394–405 (2010).
[CrossRef]

K. Nakamura, M. E. Zolensky, S. Tomita, S. Nakashima, and K. Tomeoka, “Hollow organic globules in the Tagish Lake meteorite as possible products of primitive organic reactions,” Int. J. Astrobiol. 1(3), 179–189 (2002).
[CrossRef]

Appl. Phys. Lett. (2)

S. C. Schneider, J. Seidel, S. Grafstrom, L. M. Eng, S. Winnerl, D. Stehr, and M. Helm, “Impact of optical in-plane anisotropy on near-field phonon polariton spectroscopy,” Appl. Phys. Lett. 90(14), 143101 (2007).
[CrossRef]

K. Wang, D. M. Mittleman, N. C. J. van der Valk, and P. C. M. Planken, “Antenna effects in terahertz apertureless near-field optical microscopy,” Appl. Phys. Lett. 85(14), 2715 (2004).
[CrossRef]

e-J. Surf. Sci. Nanotechno (2)

M. Ishikawa, M. Katsura, S. Nakashima, K. Aizawa, T. Inoue, Y. Ikemoto, and H. Okamura, “Application of a modulating technique to detect near-field signals using a conventional IR spectrometer with a ceramic light source,” e-J. Surf. Sci. Nanotechno 9, 40–45 (2011).
[CrossRef]

Y. Ikemoto, T. Moriwaki, T. Kinoshita, M. Ishikawa, S. Nakashima, and H. Okamura, “Near-field spectroscopy with infrared synchrotron radiation source,” e-J. Surf. Sci. Nanotechno 9, 63–66 (2011).
[CrossRef]

Int. J. Astrobiol. (1)

K. Nakamura, M. E. Zolensky, S. Tomita, S. Nakashima, and K. Tomeoka, “Hollow organic globules in the Tagish Lake meteorite as possible products of primitive organic reactions,” Int. J. Astrobiol. 1(3), 179–189 (2002).
[CrossRef]

J. Chem. Phys. (1)

J. Gersten and A. Nitzan, “Electromagnetic theory of enhanced Raman scattering by molecules adsorbed on rough surfaces,” J. Chem. Phys. 73(7), 3023–3037 (1980).
[CrossRef]

J. Phys. D Appl. Phys. (1)

L. V. Lindell, G. Dassios, and K. I. Nikoskinen, “Electrostatic image theory for the conducting prolate spheroid,” J. Phys. D Appl. Phys. 34(15), 2302–2307 (2001).
[CrossRef]

Meteorit. Planet. Sci. (1)

Y. Kebukawa, S. Nakashima, M. Ishikawa, K. Aizawa, T. Inoue, K. Nakamura-Messenger, and M. E. Zolensky, “Spatial distribution of organic matter in the Bells CM2 chondrite using near-field infrared microspectroscopy,” Meteorit. Planet. Sci. 45(3), 394–405 (2010).
[CrossRef]

Nano Lett. (1)

T. Taubner, F. Keilmann, and R. Hillenbrand, “Nanomechanical resonance tuning and phase effects in optical near-field interaction,” Nano Lett. 4(9), 1669–1672 (2004).
[CrossRef]

Nat. Mater. (1)

F. Huth, M. Schnell, J. Wittborn, N. Ocelic, and R. Hillenbrand, “Infrared-spectroscopic nanoimaging with a thermal source,” Nat. Mater. 10(5), 352–356 (2011).
[CrossRef] [PubMed]

Nat. Nanotechnol. (1)

A. J. Huber, A. Ziegler, T. Köck, and R. Hillenbrand, “Infrared nanoscopy of strained semiconductors,” Nat. Nanotechnol. 4(3), 153–157 (2009).
[CrossRef] [PubMed]

Nature (1)

B. Knoll and F. Keilmann, “Near-field probing of vibrational absorption for chemical microscopy,” Nature 399(6732), 134–137 (1999).
[CrossRef]

Opt. Commun. (3)

Y. Ikemoto, M. Ishikawa, S. Nakashima, H. Okamura, Y. Haruyama, S. Matsui, T. Moriwaki, and T. Kinoshita, “Development of scattering near-field optical microspectroscopy apparatus using an infrared synchrotron radiation source,” Opt. Commun. 285(8), 2212–2217 (2012).
[CrossRef]

B. Knoll and F. Keilmann, “Enhanced dielectric contrast in scattering-type scanning near-field optical microscopy,” Opt. Commun. 182(4-6), 321–328 (2000).
[CrossRef]

I. S. Averbukh, B. M. Chernobrod, O. A. Sedletsky, and Y. Prior, “Coherent near field optical microscopy,” Opt. Commun. 174(1-4), 33–41 (2000).
[CrossRef]

Opt. Express (3)

Phys. Rev. (1)

W. G. Spitzer and D. A. Kleinman, “Infrared lattice bands of quartz,” Phys. Rev. 121(5), 1324–1335 (1961).
[CrossRef]

Phys. Rev. B (2)

S. C. Schneider, S. Grafström, and L. Eng, “Scattering near-field optical microscopy of optically anisotropic systems,” Phys. Rev. B 71(11), 115418 (2005).
[CrossRef]

S. Amarie and F. Keilmann, “Broadband-infrared assessment of phonon resonance in scattering-type near-field microscopy,” Phys. Rev. B 83(4), 045404 (2011).
[CrossRef]

Phys. Rev. Lett. (2)

A. Wokaun, J. P. Gordon, and P. F. Liao, “Radiation damping in surface-enhanced Raman scattering,” Phys. Rev. Lett. 48(14), 957–960 (1982).
[CrossRef]

S. C. Kehr, M. Cebula, O. Mieth, T. Härtling, J. Seidel, S. Grafström, L. M. Eng, S. Winnerl, D. Stehr, and M. Helm, “Anisotropy contrast in phonon-enhanced apertureless near-field microscopy using a free-electron laser,” Phys. Rev. Lett. 100(25), 256403 (2008).
[CrossRef] [PubMed]

Radio Sci. (1)

I. V. Lindell, K. I. Nikoskinen, and M. J. Flykt, “Electrostatic image theory for an anisotropic half-space slightly deviating from transverse isotropy,” Radio Sci. 31(6), 1361–1368 (1996).
[CrossRef]

Science (1)

F. Zenhausern, Y. Martin, and H. K. Wickramasinghe, “Scanning interferometric apertureless microscopy: optical imaging at 10 angstrom resolution,” Science 269(5227), 1083–1085 (1995).
[CrossRef] [PubMed]

Surf. Sci. (1)

P. Aravind and H. Metiu, “The effects of the interaction between resonances in the electromagnetic response of a sphere-plane structure - applications to surface enhanced spectroscopy,” Surf. Sci. 124(2-3), 506–528 (1983).
[CrossRef]

Other (2)

M. Ohtsu, Near-Field Nano/Atom Optics and Technology (Springer-Verlag, 1998), Chap. 2.

Y. Inouye, “Apertureless metallic probes for near-field microscopy,” in Near-Field Optics and Surface Plasmon Polaritons, S. Kawata, ed. (Springer-Verlag, 2001), pp. 29–48.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

A schematic experimental set-up used for the present broadband near-field IR measurements. A piezoelectric actuator placed beneath the probe tip (radius: 250 nm (See Appendix section)) is oscillated with a frequency of Ω (2.6 kHz) and an amplitude of 200 nm peak-to-peak. Near-field signals from the MCT detector were demodulated using a lock-in amplifier.

Fig. 2
Fig. 2

(a) The unmodulated DC component (purple curve) and (b) the 1Ω (green) spectrum taken on the Au mirror surface. The spectra (a) and (b) have been scaled so that their intensities at 1150 cm−1 are equal. The spectrum (b) shows higher signal-to-noise ratio than our previous report [7]. The signal-to-noise ratio is approximately 10 at 2000 cm−1 with 16 cm−1 resolutions and 4 cm−1 data pitch.

Fig. 3
Fig. 3

IR spectra were linearly scanned across the Au/Si boundary. An Au was coated on the left side from X = 5 µm on a Si wafer. (a) Spectra were taken at intervals of 500 nm across the Au/Si boundary. (b) Spectra were normalized by the spectrum at X = 0 µm. The cross section curves of 1000 cm−1 (i, black curve), 1500 cm−1 (ii, red), 2000 cm−1 (iii, blue), 2500 cm−1 (iv, purple) and 3000 cm−1 (v, green) were depicted respectively. The intensities rapidly decreased across the boundary.

Fig. 4
Fig. 4

A schematic picture of the quartz measurement is drawn. The surface perpendicular to the c-axis of quartz was polished. The sample was placed so that the c-axis is Z direction. Quartz is a uniaxial crystal and the optical axis of quartz is equal to the c-axis, therefore the blue arrows are the directions of the electric fields coupling to the ordinary ray (o-ray) and the extraordinary ray (e-ray).

Fig. 5
Fig. 5

(a) The DC component spectrum (red curve) and (b) the 1Ω spectrum (blue) of quartz, divided by corresponding Au mirror spectra. The band around 1200 cm−1 in the DC spectrum disappeared in the 1Ω spectra.

Fig. 6
Fig. 6

SEM image of the probe tip with radius of 250 nm used in this study. The sphere (blue curve) and the spheroid (black dashed) correspond to the PD and FD models with the parameters in Fig. 7.

Fig. 7
Fig. 7

The 1Ω experimental spectrum for quartz phonon resonance bands ((a) blue curve, the same as the blue curve in Fig. 5) is compared with calculated spectra ((b) green dashed: FD model with parameters of L = 1300 nm, g = 0.999e0.145i, (c) red dashed: (b) curve with a smoothing treatment, (d) cyan dashed: PD model with the same parameters). The calculated spectra are scaled to match the peak top of the experimental spectrum.

Fig. 8
Fig. 8

Quartz phonon resonance bands calculated by the FD model with varying |g| values ((a) |g| = 0.999 (green dashed curve, the same as the green dashed curve (b) in Fig. 7), (b) 0.9 (blue dashed), (c) 0.8 (red dashed), (d) 0.7 (cyan dashed), (e) 0.6 (yellow dashed), (f) 0.5 (purple dashed)) and the experimentally detected 1Ω spectrum ((g) blue solid curve, the same as the blue curve in Fig. 5). Other parameters for the FD model were the same as in Fig. 7. The experimental spectrum matches the numerically calculated one with |g| ~1.

Fig. 9
Fig. 9

(a) Z scan measurements with different probe radii (black curve: 150 nm, red: 250 nm, blue: 500 nm). Modulation amplitudes were 200 nm peak-to-peak. The intensities were scaled by the probe radius a[nm]/200. (b) The localization scale C were determined by fitting the data in Fig. 9(a) with an exponential function A+Bexp(Z/C) . The localization scale C increases with the probe radius (a).

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

S= E s E i ( 1+ r p ) 2 α eff ,
ε(ω)= ε ( 1+ ω LO 2 ω TO 2 ω TO 2 ω 2 iωΓ + ω p 2 ωiωγ ),

Metrics