Abstract

All-optical switching (AOS) or cross-phase modulation (XPM) based on the effect of electromagnetically induced transparency (EIT) makes one photon switched or phase-modulated by another possible. The existence of four-wave mixing (FWM) process greatly diminishes the switching or phase-modulation efficiency and hinders the single-photon operation. We proposed and experimentally demonstrated an idea that with an optimum detuning the EIT-based AOS can be completely intact even under the influence of FWM. The results of the work can be directly applied to the EIT-based XPM. Our work makes the AOS and XPM schemes more flexible and the single-photon operation possible in FWM-allowed systems.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. E. Harris and Y. Yamamoto, “Photon switching by quantum interference,” Phys. Rev. Lett. 81, 3611–3614 (1998).
    [CrossRef]
  2. A. M. C. Dawes, L. Illing, S. M. Clark, and D. J. Gauthier, “All-optical switching in rubidium vapor,” Science 308, 672–674 (2005).
    [CrossRef] [PubMed]
  3. J. Zhang, G. Hernandez, and Y. Zhu, “All-optical switching at ultralow light levels,” Opt. Lett. 32, 1317–1319 (2007).
    [CrossRef] [PubMed]
  4. M. Bajcsy, S. Hofferberth, V. Balic, T. Peyronel, M. Hafezi, A. S. Zibrov, V. Vuletic, and M. D. Lukin, “Efficient all-optical switching using slow light within a hollow fiber,” Phys. Rev. Lett. 102, 203902 (2009).
    [CrossRef] [PubMed]
  5. V. Venkataraman, K. Saha, P. Londero, and A. L. Gaeta, “Few-photon all-optical modulation in a photonic band-gap fiber,” Phys. Rev. Lett. 107, 193902 (2011).
    [CrossRef] [PubMed]
  6. M. Albert, A. Dantan, and M. Drewsen, “Cavity electromagnetically induced transparency and all-optical switching using ion Coulomb crystals,” Nat. Photonics 5, 633–636 (2011).
    [CrossRef]
  7. H. Schmidt and A. Imamoğlu, “Giant Kerr nonlinearities obtained by electromagnetically induced transparency,” Opt. Lett. 21, 1936–1938 (1996).
    [CrossRef] [PubMed]
  8. Z. B. Wang, K. P. Marzlin, and B. C. Sanders, “Large cross-phase modulation between slow copropagating weak pulses in 87Rb,” Phys. Rev. Lett. 97, 063901 (2006).
    [CrossRef] [PubMed]
  9. I. Fushman, D. Englund, A. Faraon, N. Stoltz, P. Petroff, and J. Vuc̆ković, “Controlled phase shifts with a single quantum dot,” Science 320, 769–772 (2008).
    [CrossRef] [PubMed]
  10. N. Matsuda, R. Shimizu, Y. Mitsumori, H. Kosaka, and K. Edamatsu, “Observation of optical-fibre Kerr nonlinearity at the single-photon level,” Nat. Photonics 3, 95–98 (2009).
    [CrossRef]
  11. S. E. Harris and L. V. Hau, “Nonlinear optics at low light levels,” Phys. Rev. Lett. 82, 4611–4614 (1999).
    [CrossRef]
  12. M. Fleischhauer and M. D. Lukin, “Dark-state polaritons in electromagnetically induced transparency,” Phys. Rev. Lett. 84, 5094–5097 (2000).
    [CrossRef] [PubMed]
  13. M. Yan, E. G. Rickey, and Y. Zhu, “Observation of absorptive photon switching by quantum interference,” Phys. Rev. A 64, 041801(R) (2001).
    [CrossRef]
  14. D. A. Braje, V. Balić, G. Y. Yin, and S. E. Harris, “Low-light-level nonlinear optics with slow light,” Phys. Rev. A 68, 041801(R) (2003).
    [CrossRef]
  15. H. Kang and Y. Zhu, “Observation of large Kerr nonlinearity at low light intensities,” Phys. Rev. Lett. 91, 093601 (2003).
    [CrossRef] [PubMed]
  16. Y. F. Chen, C. Y. Wang, S. H. Wang, and I. A. Yu, “Low-light-level cross-phase-modulation based on stored light pulses,” Phys. Rev. Lett. 96, 043603 (2006).
    [CrossRef] [PubMed]
  17. D. A. Braje, V. Balić, S. Goda, G. Y. Yin, and S. E. Harris, “Frequency mixing using electromagnetically induced transparency in cold atoms,” Phys. Rev. Lett. 93, 183601 (2004).
    [CrossRef] [PubMed]
  18. W. H. Lin, W. T. Liao, C. Y. Wang, Y. F. Lee, and I. A. Yu, “Low-light-level all-optical switching based on stored light pulses,” Phys. Rev. A 78, 033807 (2008).
    [CrossRef]
  19. T. Peters, Y. H. Chen, J. S. Wang, Y. W. Lin, and I. A. Yu, “Optimizing the retrieval efficiency of stored light pulses,” Opt. Express 17, 6665–6675 (2009).
    [CrossRef] [PubMed]
  20. Y. H. Chen, M. J. Lee, W. Hung, Y. C. Chen, Y. F. Chen, and I. A. Yu, “Demonstration of the interaction between two stopped light pulses,” Phys. Rev. Lett.108, 173603 (2012).
    [PubMed]
  21. Y. W. Lin, H. C. Chou, P. P. Dwivedi, Y. C. Chen, and I. A. Yu, “Using a pair of rectangular coils in the MOT for the production of cold atom clouds with large optical density,” Opt. Express 16, 3753–3761 (2008).
    [CrossRef] [PubMed]

2011

V. Venkataraman, K. Saha, P. Londero, and A. L. Gaeta, “Few-photon all-optical modulation in a photonic band-gap fiber,” Phys. Rev. Lett. 107, 193902 (2011).
[CrossRef] [PubMed]

M. Albert, A. Dantan, and M. Drewsen, “Cavity electromagnetically induced transparency and all-optical switching using ion Coulomb crystals,” Nat. Photonics 5, 633–636 (2011).
[CrossRef]

2009

M. Bajcsy, S. Hofferberth, V. Balic, T. Peyronel, M. Hafezi, A. S. Zibrov, V. Vuletic, and M. D. Lukin, “Efficient all-optical switching using slow light within a hollow fiber,” Phys. Rev. Lett. 102, 203902 (2009).
[CrossRef] [PubMed]

N. Matsuda, R. Shimizu, Y. Mitsumori, H. Kosaka, and K. Edamatsu, “Observation of optical-fibre Kerr nonlinearity at the single-photon level,” Nat. Photonics 3, 95–98 (2009).
[CrossRef]

T. Peters, Y. H. Chen, J. S. Wang, Y. W. Lin, and I. A. Yu, “Optimizing the retrieval efficiency of stored light pulses,” Opt. Express 17, 6665–6675 (2009).
[CrossRef] [PubMed]

2008

Y. W. Lin, H. C. Chou, P. P. Dwivedi, Y. C. Chen, and I. A. Yu, “Using a pair of rectangular coils in the MOT for the production of cold atom clouds with large optical density,” Opt. Express 16, 3753–3761 (2008).
[CrossRef] [PubMed]

I. Fushman, D. Englund, A. Faraon, N. Stoltz, P. Petroff, and J. Vuc̆ković, “Controlled phase shifts with a single quantum dot,” Science 320, 769–772 (2008).
[CrossRef] [PubMed]

W. H. Lin, W. T. Liao, C. Y. Wang, Y. F. Lee, and I. A. Yu, “Low-light-level all-optical switching based on stored light pulses,” Phys. Rev. A 78, 033807 (2008).
[CrossRef]

2007

2006

Y. F. Chen, C. Y. Wang, S. H. Wang, and I. A. Yu, “Low-light-level cross-phase-modulation based on stored light pulses,” Phys. Rev. Lett. 96, 043603 (2006).
[CrossRef] [PubMed]

Z. B. Wang, K. P. Marzlin, and B. C. Sanders, “Large cross-phase modulation between slow copropagating weak pulses in 87Rb,” Phys. Rev. Lett. 97, 063901 (2006).
[CrossRef] [PubMed]

2005

A. M. C. Dawes, L. Illing, S. M. Clark, and D. J. Gauthier, “All-optical switching in rubidium vapor,” Science 308, 672–674 (2005).
[CrossRef] [PubMed]

2004

D. A. Braje, V. Balić, S. Goda, G. Y. Yin, and S. E. Harris, “Frequency mixing using electromagnetically induced transparency in cold atoms,” Phys. Rev. Lett. 93, 183601 (2004).
[CrossRef] [PubMed]

2003

D. A. Braje, V. Balić, G. Y. Yin, and S. E. Harris, “Low-light-level nonlinear optics with slow light,” Phys. Rev. A 68, 041801(R) (2003).
[CrossRef]

H. Kang and Y. Zhu, “Observation of large Kerr nonlinearity at low light intensities,” Phys. Rev. Lett. 91, 093601 (2003).
[CrossRef] [PubMed]

2001

M. Yan, E. G. Rickey, and Y. Zhu, “Observation of absorptive photon switching by quantum interference,” Phys. Rev. A 64, 041801(R) (2001).
[CrossRef]

2000

M. Fleischhauer and M. D. Lukin, “Dark-state polaritons in electromagnetically induced transparency,” Phys. Rev. Lett. 84, 5094–5097 (2000).
[CrossRef] [PubMed]

1999

S. E. Harris and L. V. Hau, “Nonlinear optics at low light levels,” Phys. Rev. Lett. 82, 4611–4614 (1999).
[CrossRef]

1998

S. E. Harris and Y. Yamamoto, “Photon switching by quantum interference,” Phys. Rev. Lett. 81, 3611–3614 (1998).
[CrossRef]

1996

Albert, M.

M. Albert, A. Dantan, and M. Drewsen, “Cavity electromagnetically induced transparency and all-optical switching using ion Coulomb crystals,” Nat. Photonics 5, 633–636 (2011).
[CrossRef]

Bajcsy, M.

M. Bajcsy, S. Hofferberth, V. Balic, T. Peyronel, M. Hafezi, A. S. Zibrov, V. Vuletic, and M. D. Lukin, “Efficient all-optical switching using slow light within a hollow fiber,” Phys. Rev. Lett. 102, 203902 (2009).
[CrossRef] [PubMed]

Balic, V.

M. Bajcsy, S. Hofferberth, V. Balic, T. Peyronel, M. Hafezi, A. S. Zibrov, V. Vuletic, and M. D. Lukin, “Efficient all-optical switching using slow light within a hollow fiber,” Phys. Rev. Lett. 102, 203902 (2009).
[CrossRef] [PubMed]

D. A. Braje, V. Balić, S. Goda, G. Y. Yin, and S. E. Harris, “Frequency mixing using electromagnetically induced transparency in cold atoms,” Phys. Rev. Lett. 93, 183601 (2004).
[CrossRef] [PubMed]

D. A. Braje, V. Balić, G. Y. Yin, and S. E. Harris, “Low-light-level nonlinear optics with slow light,” Phys. Rev. A 68, 041801(R) (2003).
[CrossRef]

Braje, D. A.

D. A. Braje, V. Balić, S. Goda, G. Y. Yin, and S. E. Harris, “Frequency mixing using electromagnetically induced transparency in cold atoms,” Phys. Rev. Lett. 93, 183601 (2004).
[CrossRef] [PubMed]

D. A. Braje, V. Balić, G. Y. Yin, and S. E. Harris, “Low-light-level nonlinear optics with slow light,” Phys. Rev. A 68, 041801(R) (2003).
[CrossRef]

Chen, Y. C.

Y. W. Lin, H. C. Chou, P. P. Dwivedi, Y. C. Chen, and I. A. Yu, “Using a pair of rectangular coils in the MOT for the production of cold atom clouds with large optical density,” Opt. Express 16, 3753–3761 (2008).
[CrossRef] [PubMed]

Y. H. Chen, M. J. Lee, W. Hung, Y. C. Chen, Y. F. Chen, and I. A. Yu, “Demonstration of the interaction between two stopped light pulses,” Phys. Rev. Lett.108, 173603 (2012).
[PubMed]

Chen, Y. F.

Y. F. Chen, C. Y. Wang, S. H. Wang, and I. A. Yu, “Low-light-level cross-phase-modulation based on stored light pulses,” Phys. Rev. Lett. 96, 043603 (2006).
[CrossRef] [PubMed]

Y. H. Chen, M. J. Lee, W. Hung, Y. C. Chen, Y. F. Chen, and I. A. Yu, “Demonstration of the interaction between two stopped light pulses,” Phys. Rev. Lett.108, 173603 (2012).
[PubMed]

Chen, Y. H.

T. Peters, Y. H. Chen, J. S. Wang, Y. W. Lin, and I. A. Yu, “Optimizing the retrieval efficiency of stored light pulses,” Opt. Express 17, 6665–6675 (2009).
[CrossRef] [PubMed]

Y. H. Chen, M. J. Lee, W. Hung, Y. C. Chen, Y. F. Chen, and I. A. Yu, “Demonstration of the interaction between two stopped light pulses,” Phys. Rev. Lett.108, 173603 (2012).
[PubMed]

Chou, H. C.

Clark, S. M.

A. M. C. Dawes, L. Illing, S. M. Clark, and D. J. Gauthier, “All-optical switching in rubidium vapor,” Science 308, 672–674 (2005).
[CrossRef] [PubMed]

Dantan, A.

M. Albert, A. Dantan, and M. Drewsen, “Cavity electromagnetically induced transparency and all-optical switching using ion Coulomb crystals,” Nat. Photonics 5, 633–636 (2011).
[CrossRef]

Dawes, A. M. C.

A. M. C. Dawes, L. Illing, S. M. Clark, and D. J. Gauthier, “All-optical switching in rubidium vapor,” Science 308, 672–674 (2005).
[CrossRef] [PubMed]

Drewsen, M.

M. Albert, A. Dantan, and M. Drewsen, “Cavity electromagnetically induced transparency and all-optical switching using ion Coulomb crystals,” Nat. Photonics 5, 633–636 (2011).
[CrossRef]

Dwivedi, P. P.

Edamatsu, K.

N. Matsuda, R. Shimizu, Y. Mitsumori, H. Kosaka, and K. Edamatsu, “Observation of optical-fibre Kerr nonlinearity at the single-photon level,” Nat. Photonics 3, 95–98 (2009).
[CrossRef]

Englund, D.

I. Fushman, D. Englund, A. Faraon, N. Stoltz, P. Petroff, and J. Vuc̆ković, “Controlled phase shifts with a single quantum dot,” Science 320, 769–772 (2008).
[CrossRef] [PubMed]

Faraon, A.

I. Fushman, D. Englund, A. Faraon, N. Stoltz, P. Petroff, and J. Vuc̆ković, “Controlled phase shifts with a single quantum dot,” Science 320, 769–772 (2008).
[CrossRef] [PubMed]

Fleischhauer, M.

M. Fleischhauer and M. D. Lukin, “Dark-state polaritons in electromagnetically induced transparency,” Phys. Rev. Lett. 84, 5094–5097 (2000).
[CrossRef] [PubMed]

Fushman, I.

I. Fushman, D. Englund, A. Faraon, N. Stoltz, P. Petroff, and J. Vuc̆ković, “Controlled phase shifts with a single quantum dot,” Science 320, 769–772 (2008).
[CrossRef] [PubMed]

Gaeta, A. L.

V. Venkataraman, K. Saha, P. Londero, and A. L. Gaeta, “Few-photon all-optical modulation in a photonic band-gap fiber,” Phys. Rev. Lett. 107, 193902 (2011).
[CrossRef] [PubMed]

Gauthier, D. J.

A. M. C. Dawes, L. Illing, S. M. Clark, and D. J. Gauthier, “All-optical switching in rubidium vapor,” Science 308, 672–674 (2005).
[CrossRef] [PubMed]

Goda, S.

D. A. Braje, V. Balić, S. Goda, G. Y. Yin, and S. E. Harris, “Frequency mixing using electromagnetically induced transparency in cold atoms,” Phys. Rev. Lett. 93, 183601 (2004).
[CrossRef] [PubMed]

Hafezi, M.

M. Bajcsy, S. Hofferberth, V. Balic, T. Peyronel, M. Hafezi, A. S. Zibrov, V. Vuletic, and M. D. Lukin, “Efficient all-optical switching using slow light within a hollow fiber,” Phys. Rev. Lett. 102, 203902 (2009).
[CrossRef] [PubMed]

Harris, S. E.

D. A. Braje, V. Balić, S. Goda, G. Y. Yin, and S. E. Harris, “Frequency mixing using electromagnetically induced transparency in cold atoms,” Phys. Rev. Lett. 93, 183601 (2004).
[CrossRef] [PubMed]

D. A. Braje, V. Balić, G. Y. Yin, and S. E. Harris, “Low-light-level nonlinear optics with slow light,” Phys. Rev. A 68, 041801(R) (2003).
[CrossRef]

S. E. Harris and L. V. Hau, “Nonlinear optics at low light levels,” Phys. Rev. Lett. 82, 4611–4614 (1999).
[CrossRef]

S. E. Harris and Y. Yamamoto, “Photon switching by quantum interference,” Phys. Rev. Lett. 81, 3611–3614 (1998).
[CrossRef]

Hau, L. V.

S. E. Harris and L. V. Hau, “Nonlinear optics at low light levels,” Phys. Rev. Lett. 82, 4611–4614 (1999).
[CrossRef]

Hernandez, G.

Hofferberth, S.

M. Bajcsy, S. Hofferberth, V. Balic, T. Peyronel, M. Hafezi, A. S. Zibrov, V. Vuletic, and M. D. Lukin, “Efficient all-optical switching using slow light within a hollow fiber,” Phys. Rev. Lett. 102, 203902 (2009).
[CrossRef] [PubMed]

Hung, W.

Y. H. Chen, M. J. Lee, W. Hung, Y. C. Chen, Y. F. Chen, and I. A. Yu, “Demonstration of the interaction between two stopped light pulses,” Phys. Rev. Lett.108, 173603 (2012).
[PubMed]

Illing, L.

A. M. C. Dawes, L. Illing, S. M. Clark, and D. J. Gauthier, “All-optical switching in rubidium vapor,” Science 308, 672–674 (2005).
[CrossRef] [PubMed]

Imamoglu, A.

Kang, H.

H. Kang and Y. Zhu, “Observation of large Kerr nonlinearity at low light intensities,” Phys. Rev. Lett. 91, 093601 (2003).
[CrossRef] [PubMed]

Kosaka, H.

N. Matsuda, R. Shimizu, Y. Mitsumori, H. Kosaka, and K. Edamatsu, “Observation of optical-fibre Kerr nonlinearity at the single-photon level,” Nat. Photonics 3, 95–98 (2009).
[CrossRef]

Lee, M. J.

Y. H. Chen, M. J. Lee, W. Hung, Y. C. Chen, Y. F. Chen, and I. A. Yu, “Demonstration of the interaction between two stopped light pulses,” Phys. Rev. Lett.108, 173603 (2012).
[PubMed]

Lee, Y. F.

W. H. Lin, W. T. Liao, C. Y. Wang, Y. F. Lee, and I. A. Yu, “Low-light-level all-optical switching based on stored light pulses,” Phys. Rev. A 78, 033807 (2008).
[CrossRef]

Liao, W. T.

W. H. Lin, W. T. Liao, C. Y. Wang, Y. F. Lee, and I. A. Yu, “Low-light-level all-optical switching based on stored light pulses,” Phys. Rev. A 78, 033807 (2008).
[CrossRef]

Lin, W. H.

W. H. Lin, W. T. Liao, C. Y. Wang, Y. F. Lee, and I. A. Yu, “Low-light-level all-optical switching based on stored light pulses,” Phys. Rev. A 78, 033807 (2008).
[CrossRef]

Lin, Y. W.

Londero, P.

V. Venkataraman, K. Saha, P. Londero, and A. L. Gaeta, “Few-photon all-optical modulation in a photonic band-gap fiber,” Phys. Rev. Lett. 107, 193902 (2011).
[CrossRef] [PubMed]

Lukin, M. D.

M. Bajcsy, S. Hofferberth, V. Balic, T. Peyronel, M. Hafezi, A. S. Zibrov, V. Vuletic, and M. D. Lukin, “Efficient all-optical switching using slow light within a hollow fiber,” Phys. Rev. Lett. 102, 203902 (2009).
[CrossRef] [PubMed]

M. Fleischhauer and M. D. Lukin, “Dark-state polaritons in electromagnetically induced transparency,” Phys. Rev. Lett. 84, 5094–5097 (2000).
[CrossRef] [PubMed]

Marzlin, K. P.

Z. B. Wang, K. P. Marzlin, and B. C. Sanders, “Large cross-phase modulation between slow copropagating weak pulses in 87Rb,” Phys. Rev. Lett. 97, 063901 (2006).
[CrossRef] [PubMed]

Matsuda, N.

N. Matsuda, R. Shimizu, Y. Mitsumori, H. Kosaka, and K. Edamatsu, “Observation of optical-fibre Kerr nonlinearity at the single-photon level,” Nat. Photonics 3, 95–98 (2009).
[CrossRef]

Mitsumori, Y.

N. Matsuda, R. Shimizu, Y. Mitsumori, H. Kosaka, and K. Edamatsu, “Observation of optical-fibre Kerr nonlinearity at the single-photon level,” Nat. Photonics 3, 95–98 (2009).
[CrossRef]

Peters, T.

Petroff, P.

I. Fushman, D. Englund, A. Faraon, N. Stoltz, P. Petroff, and J. Vuc̆ković, “Controlled phase shifts with a single quantum dot,” Science 320, 769–772 (2008).
[CrossRef] [PubMed]

Peyronel, T.

M. Bajcsy, S. Hofferberth, V. Balic, T. Peyronel, M. Hafezi, A. S. Zibrov, V. Vuletic, and M. D. Lukin, “Efficient all-optical switching using slow light within a hollow fiber,” Phys. Rev. Lett. 102, 203902 (2009).
[CrossRef] [PubMed]

Rickey, E. G.

M. Yan, E. G. Rickey, and Y. Zhu, “Observation of absorptive photon switching by quantum interference,” Phys. Rev. A 64, 041801(R) (2001).
[CrossRef]

Saha, K.

V. Venkataraman, K. Saha, P. Londero, and A. L. Gaeta, “Few-photon all-optical modulation in a photonic band-gap fiber,” Phys. Rev. Lett. 107, 193902 (2011).
[CrossRef] [PubMed]

Sanders, B. C.

Z. B. Wang, K. P. Marzlin, and B. C. Sanders, “Large cross-phase modulation between slow copropagating weak pulses in 87Rb,” Phys. Rev. Lett. 97, 063901 (2006).
[CrossRef] [PubMed]

Schmidt, H.

Shimizu, R.

N. Matsuda, R. Shimizu, Y. Mitsumori, H. Kosaka, and K. Edamatsu, “Observation of optical-fibre Kerr nonlinearity at the single-photon level,” Nat. Photonics 3, 95–98 (2009).
[CrossRef]

Stoltz, N.

I. Fushman, D. Englund, A. Faraon, N. Stoltz, P. Petroff, and J. Vuc̆ković, “Controlled phase shifts with a single quantum dot,” Science 320, 769–772 (2008).
[CrossRef] [PubMed]

Venkataraman, V.

V. Venkataraman, K. Saha, P. Londero, and A. L. Gaeta, “Few-photon all-optical modulation in a photonic band-gap fiber,” Phys. Rev. Lett. 107, 193902 (2011).
[CrossRef] [PubMed]

Vuc?kovic, J.

I. Fushman, D. Englund, A. Faraon, N. Stoltz, P. Petroff, and J. Vuc̆ković, “Controlled phase shifts with a single quantum dot,” Science 320, 769–772 (2008).
[CrossRef] [PubMed]

Vuletic, V.

M. Bajcsy, S. Hofferberth, V. Balic, T. Peyronel, M. Hafezi, A. S. Zibrov, V. Vuletic, and M. D. Lukin, “Efficient all-optical switching using slow light within a hollow fiber,” Phys. Rev. Lett. 102, 203902 (2009).
[CrossRef] [PubMed]

Wang, C. Y.

W. H. Lin, W. T. Liao, C. Y. Wang, Y. F. Lee, and I. A. Yu, “Low-light-level all-optical switching based on stored light pulses,” Phys. Rev. A 78, 033807 (2008).
[CrossRef]

Y. F. Chen, C. Y. Wang, S. H. Wang, and I. A. Yu, “Low-light-level cross-phase-modulation based on stored light pulses,” Phys. Rev. Lett. 96, 043603 (2006).
[CrossRef] [PubMed]

Wang, J. S.

Wang, S. H.

Y. F. Chen, C. Y. Wang, S. H. Wang, and I. A. Yu, “Low-light-level cross-phase-modulation based on stored light pulses,” Phys. Rev. Lett. 96, 043603 (2006).
[CrossRef] [PubMed]

Wang, Z. B.

Z. B. Wang, K. P. Marzlin, and B. C. Sanders, “Large cross-phase modulation between slow copropagating weak pulses in 87Rb,” Phys. Rev. Lett. 97, 063901 (2006).
[CrossRef] [PubMed]

Yamamoto, Y.

S. E. Harris and Y. Yamamoto, “Photon switching by quantum interference,” Phys. Rev. Lett. 81, 3611–3614 (1998).
[CrossRef]

Yan, M.

M. Yan, E. G. Rickey, and Y. Zhu, “Observation of absorptive photon switching by quantum interference,” Phys. Rev. A 64, 041801(R) (2001).
[CrossRef]

Yin, G. Y.

D. A. Braje, V. Balić, S. Goda, G. Y. Yin, and S. E. Harris, “Frequency mixing using electromagnetically induced transparency in cold atoms,” Phys. Rev. Lett. 93, 183601 (2004).
[CrossRef] [PubMed]

D. A. Braje, V. Balić, G. Y. Yin, and S. E. Harris, “Low-light-level nonlinear optics with slow light,” Phys. Rev. A 68, 041801(R) (2003).
[CrossRef]

Yu, I. A.

T. Peters, Y. H. Chen, J. S. Wang, Y. W. Lin, and I. A. Yu, “Optimizing the retrieval efficiency of stored light pulses,” Opt. Express 17, 6665–6675 (2009).
[CrossRef] [PubMed]

Y. W. Lin, H. C. Chou, P. P. Dwivedi, Y. C. Chen, and I. A. Yu, “Using a pair of rectangular coils in the MOT for the production of cold atom clouds with large optical density,” Opt. Express 16, 3753–3761 (2008).
[CrossRef] [PubMed]

W. H. Lin, W. T. Liao, C. Y. Wang, Y. F. Lee, and I. A. Yu, “Low-light-level all-optical switching based on stored light pulses,” Phys. Rev. A 78, 033807 (2008).
[CrossRef]

Y. F. Chen, C. Y. Wang, S. H. Wang, and I. A. Yu, “Low-light-level cross-phase-modulation based on stored light pulses,” Phys. Rev. Lett. 96, 043603 (2006).
[CrossRef] [PubMed]

Y. H. Chen, M. J. Lee, W. Hung, Y. C. Chen, Y. F. Chen, and I. A. Yu, “Demonstration of the interaction between two stopped light pulses,” Phys. Rev. Lett.108, 173603 (2012).
[PubMed]

Zhang, J.

Zhu, Y.

J. Zhang, G. Hernandez, and Y. Zhu, “All-optical switching at ultralow light levels,” Opt. Lett. 32, 1317–1319 (2007).
[CrossRef] [PubMed]

H. Kang and Y. Zhu, “Observation of large Kerr nonlinearity at low light intensities,” Phys. Rev. Lett. 91, 093601 (2003).
[CrossRef] [PubMed]

M. Yan, E. G. Rickey, and Y. Zhu, “Observation of absorptive photon switching by quantum interference,” Phys. Rev. A 64, 041801(R) (2001).
[CrossRef]

Zibrov, A. S.

M. Bajcsy, S. Hofferberth, V. Balic, T. Peyronel, M. Hafezi, A. S. Zibrov, V. Vuletic, and M. D. Lukin, “Efficient all-optical switching using slow light within a hollow fiber,” Phys. Rev. Lett. 102, 203902 (2009).
[CrossRef] [PubMed]

Nat. Photonics

N. Matsuda, R. Shimizu, Y. Mitsumori, H. Kosaka, and K. Edamatsu, “Observation of optical-fibre Kerr nonlinearity at the single-photon level,” Nat. Photonics 3, 95–98 (2009).
[CrossRef]

M. Albert, A. Dantan, and M. Drewsen, “Cavity electromagnetically induced transparency and all-optical switching using ion Coulomb crystals,” Nat. Photonics 5, 633–636 (2011).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. A

W. H. Lin, W. T. Liao, C. Y. Wang, Y. F. Lee, and I. A. Yu, “Low-light-level all-optical switching based on stored light pulses,” Phys. Rev. A 78, 033807 (2008).
[CrossRef]

M. Yan, E. G. Rickey, and Y. Zhu, “Observation of absorptive photon switching by quantum interference,” Phys. Rev. A 64, 041801(R) (2001).
[CrossRef]

D. A. Braje, V. Balić, G. Y. Yin, and S. E. Harris, “Low-light-level nonlinear optics with slow light,” Phys. Rev. A 68, 041801(R) (2003).
[CrossRef]

Phys. Rev. Lett.

H. Kang and Y. Zhu, “Observation of large Kerr nonlinearity at low light intensities,” Phys. Rev. Lett. 91, 093601 (2003).
[CrossRef] [PubMed]

Y. F. Chen, C. Y. Wang, S. H. Wang, and I. A. Yu, “Low-light-level cross-phase-modulation based on stored light pulses,” Phys. Rev. Lett. 96, 043603 (2006).
[CrossRef] [PubMed]

D. A. Braje, V. Balić, S. Goda, G. Y. Yin, and S. E. Harris, “Frequency mixing using electromagnetically induced transparency in cold atoms,” Phys. Rev. Lett. 93, 183601 (2004).
[CrossRef] [PubMed]

S. E. Harris and L. V. Hau, “Nonlinear optics at low light levels,” Phys. Rev. Lett. 82, 4611–4614 (1999).
[CrossRef]

M. Fleischhauer and M. D. Lukin, “Dark-state polaritons in electromagnetically induced transparency,” Phys. Rev. Lett. 84, 5094–5097 (2000).
[CrossRef] [PubMed]

Z. B. Wang, K. P. Marzlin, and B. C. Sanders, “Large cross-phase modulation between slow copropagating weak pulses in 87Rb,” Phys. Rev. Lett. 97, 063901 (2006).
[CrossRef] [PubMed]

M. Bajcsy, S. Hofferberth, V. Balic, T. Peyronel, M. Hafezi, A. S. Zibrov, V. Vuletic, and M. D. Lukin, “Efficient all-optical switching using slow light within a hollow fiber,” Phys. Rev. Lett. 102, 203902 (2009).
[CrossRef] [PubMed]

V. Venkataraman, K. Saha, P. Londero, and A. L. Gaeta, “Few-photon all-optical modulation in a photonic band-gap fiber,” Phys. Rev. Lett. 107, 193902 (2011).
[CrossRef] [PubMed]

S. E. Harris and Y. Yamamoto, “Photon switching by quantum interference,” Phys. Rev. Lett. 81, 3611–3614 (1998).
[CrossRef]

Science

A. M. C. Dawes, L. Illing, S. M. Clark, and D. J. Gauthier, “All-optical switching in rubidium vapor,” Science 308, 672–674 (2005).
[CrossRef] [PubMed]

I. Fushman, D. Englund, A. Faraon, N. Stoltz, P. Petroff, and J. Vuc̆ković, “Controlled phase shifts with a single quantum dot,” Science 320, 769–772 (2008).
[CrossRef] [PubMed]

Other

Y. H. Chen, M. J. Lee, W. Hung, Y. C. Chen, Y. F. Chen, and I. A. Yu, “Demonstration of the interaction between two stopped light pulses,” Phys. Rev. Lett.108, 173603 (2012).
[PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) Four-level EIT-based AOS system. (b) Relevant energy levels of 87Rb atoms and laser excitations in the experiment. (c) Diagrammatic representation of the wave vectors of the probe, coupling, switching, and four-wave mixing fields.

Fig. 2
Fig. 2

Probe transmission versus switching detuning in the (a) FWM-forbidden and (b) FWM-allowed AOS schemes. (a) Blue dashed line is the best fit of Eq. (11) with δs,opt = 0, giving Ωs = 0.10Γ, Γ′ = 1.3Γ. Red solid line is the prediction calculated by numerically solving Eqs. (2)(6). (b) Gray, green, black, and cyan solid lines are the numerically calculated predictions with ΔkL = 0, 40, 52, and 72, respectively. In the calculation, the OD is 118; Ωs and Γ′ are the same as above because the same switching pulse as (a) except the different polarization was applied.

Fig. 3
Fig. 3

(a) Minimum probe transmission versus reciprocal of optimum switching detuning at ΔkL ≈ 0, 10, 22, and 52. The experimental condition is the same as that in Fig. 2(b). Solid line is the theoretical prediction and circles are the experimental data. Open circle is the minimum measured probe transmission at ΔkL ≈ 0 in Fig. 2(b) placed at the theoretical optimum detuning. (b) Theoretical predictions of Rmin (solid lines) and 1/|δs,opt| (dashed lines) as functions of |Δk|L at several ODs.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

R = exp ( α Ω s 2 Ω c 2 1 1 + 4 δ s 2 / Γ 2 ) ,
t ρ 21 = i 2 Ω c * ρ 31 + i 2 Ω s * ρ 41 ,
t ρ 31 = i 2 Ω p + i 2 Ω c ρ 21 Γ 2 ρ 31 ,
t ρ 41 = i 2 Ω 4 + i 2 Ω s ρ 21 + ( i δ s Γ 2 ) ρ 41 ,
1 c t Ω p + z Ω p = i α 2 L Γ ρ 31 ,
1 c t Ω 4 + z Ω 4 + i Δ k Ω 4 = i α 2 L Γ ρ 41 ,
Ω 4 = ρ 41 α Γ / ( 2 Δ k L ) .
ϕ = α Ω s 2 Ω c 2 ( δ s δ s , opt ) / Γ 1 + 4 ( δ s δ s , opt ) 2 / Γ 2 ,
R = exp [ α Ω s 2 Ω c 2 1 1 + 4 ( δ s δ s , opt ) 2 / Γ 2 ] ,
δ s , opt = α Γ / ( 4 Δ k L ) .
R = exp [ τ Ω s 2 Γ 1 1 + 4 ( δ s δ s , opt ) 2 / Γ 2 ] ,

Metrics