Abstract

We report a normal incidence Ge/Si avalanche photodiode with separate-absorption-charge-multiplication (SACM) structure by selective epitaxial growth. By proper design of charge and multiplication layers and by optimizing the electric field distribution in the depletion region to eliminate germanium impact-ionization at high gain, a high responsivity of 12 A/W and a large gain-bandwidth product of 310 GHz have been achieved at 1550 nm.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Nie, K. Anselm, C. Hu, S. Murtaza, B. Streetman, and J. Campbell, “High-speed resonant-cavity separate absorption and multiplication avalanche photodiodes with 130 GHz gain-bandwidth product,” Appl. Phys. Lett. 70(2), 161–163 (1997).
    [CrossRef]
  2. N. Yasuoka, H. Kuwatsuka, M. Makiuchi, T. Uchida, and A. Yasaki, “Large multiplication-bandwidth products in APDs with a thin InP multiplication layer,” in The 16th Annual Meeting of the IEEE Lasers and Electro-Optics Society, 2003. LEOS 2003 (IEEE/LEOS, 2003), Vol. 2, pp. 999–1000.
  3. J. Campbell, W. Tsang, G. Qua, and B. Johnson, “High-speed InP/InGaAsP/InGaAs avalanche photodiodes grown by chemical beam epitaxy,” IEEE J. Quantum Electron. 24(3), 496–500 (1988).
    [CrossRef]
  4. A. Rouvie, D. Carpentier, N. Lagay, J. Decobert, F. Pommereau, and M. Achouche, “High gain bandwidth product over 140 GHz planar junction AlInAs avalanche photodiodes,” IEEE Photon. Technol. Lett. 20(6), 455–457 (2008).
    [CrossRef]
  5. E. Yagyu, E. Ishimura, M. Nakaji, H. Itamoto, T. Aoyagi, K. Yoshiara, and Y. Tokuda, “Recent advances in AlInAs avalanche photodiodes,” Proc. OFC, 145–147 (2007).
  6. S. Demiguel, X. Zheng, N. Li, X. Li, J. Campbell, J. Decobert, N. Tscherptner, and A. Anselm, “High-responsivity and high-speed evanescently-coupled avalanche photodiodes,” Electron. Lett. 39(25), 1848–1849 (2003).
    [CrossRef]
  7. Y. Kang, M. Zadka, S. Litski, G. Sarid, M. Morse, M. J. Paniccia, Y. H. Kuo, J. Bowers, A. Beling, H. D. Liu, D. C. McIntosh, J. Campbell, and A. Pauchard, “Epitaxially-grown Ge/Si avalanche photodiodes for 1.3 microm light detection,” Opt. Express 16(13), 9365–9371 (2008).
    [CrossRef] [PubMed]
  8. X. Wang, L. Chen, W. Chen, H. Cui, Y. Hu, P. Cai, R. Yang, C. Hong, D. Pan, K. Ang, M. B. Yu, Q. Fang, and G. Q. Lo, "80 GHz bandwidth-gain-product Ge/Si avalanche photodetector by selective Ge growth," in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paper OMR3.
  9. R. Emmons, “Avalanche-photodiode frequency response,” J. Appl. Phys. 38(9), 3705–3714 (1967).
    [CrossRef]
  10. R. McIntyre, “The distribution of gains in uniformly multiplying avalanche photodiodes: theory,” IEEE Trans. Electron. Devices 19(6), 703–713 (1972).
    [CrossRef]
  11. Y. Kang, H.-D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y.-H. Kuo, H.-W. Chen, W. S. Zaoui, J. E. Bowers, A. Beling, D. C. McIntosh, X. Zheng, and J. C. Campbell, “Monolithic germanium/silicon avalanche photodiodes with 340 GHz gain–bandwidth product,” Nat. Photonics 3(1), 59–63 (2009).
    [CrossRef]
  12. L. Tarof, J. Yu, R. Bruce, D. G. Knight, T. Baird, and B. Oosterbrink, “High-frequency performance of separate absorption grading, charge, and multiplication InP/InGaAs avalanche photodiodes,” IEEE Photon. Technol. Lett. 5(6), 672–674 (1993).
    [CrossRef]
  13. N. Duan, S. Wang, X. G. Zheng, X. Li, N. Li, J. C. Campbell, C. Wang, and L. A. Coldren, “Detrimental effect of impact ionization in the absorption region on the frequency response and excess noise performance of InGaAs/InAlAs SACM avalanche photodiodes,” IEEE J. Quantum Electron. 41(4), 568–572 (2005).
    [CrossRef]
  14. C. Masini, L. Calace, G. Assanto, H.-C. Luan, and L. C. Kimerling, “High-performance p-i-n Ge on Si photodetectors for the near infrared: from model to demonstration,” IEEE Trans. Electron. Dev. 48(6), 1092–1096 (2001).
    [CrossRef]
  15. Y. S. Shin, D. Lee, H. S. Lee, Y. J. Cho, C. J. Kim, and M. H. Jo, “Determination of the photocarrier diffusion length in intrinsic Ge nanowires,” Opt. Express 19(7), 6119–6124 (2011).
    [CrossRef] [PubMed]
  16. Y. Hirota, S. Ando, and T. Ishibashi, “High-speed avalanche photodiode with a neutral absorption layer for 1.55 µm wavelength,” Jpn. J. Appl. Phys. 43(No. 3A), L375–L377 (2004).
    [CrossRef]
  17. K. Shiba, T. Nakata, T. Takeuchi, K. Kasahara, and K. Makita, “Theoretical and experimental study on waveguide avalanche photodiodes with an undepleted absorption layer for 25-Gb/s operation,” IEEE J. Lightwave Technol. 29(2), 153–161 (2011).
    [CrossRef]
  18. S. Sze, Physics of Semiconductor Devices (Wiley, 1981), Chap. 1.

2011 (2)

K. Shiba, T. Nakata, T. Takeuchi, K. Kasahara, and K. Makita, “Theoretical and experimental study on waveguide avalanche photodiodes with an undepleted absorption layer for 25-Gb/s operation,” IEEE J. Lightwave Technol. 29(2), 153–161 (2011).
[CrossRef]

Y. S. Shin, D. Lee, H. S. Lee, Y. J. Cho, C. J. Kim, and M. H. Jo, “Determination of the photocarrier diffusion length in intrinsic Ge nanowires,” Opt. Express 19(7), 6119–6124 (2011).
[CrossRef] [PubMed]

2009 (1)

Y. Kang, H.-D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y.-H. Kuo, H.-W. Chen, W. S. Zaoui, J. E. Bowers, A. Beling, D. C. McIntosh, X. Zheng, and J. C. Campbell, “Monolithic germanium/silicon avalanche photodiodes with 340 GHz gain–bandwidth product,” Nat. Photonics 3(1), 59–63 (2009).
[CrossRef]

2008 (2)

A. Rouvie, D. Carpentier, N. Lagay, J. Decobert, F. Pommereau, and M. Achouche, “High gain bandwidth product over 140 GHz planar junction AlInAs avalanche photodiodes,” IEEE Photon. Technol. Lett. 20(6), 455–457 (2008).
[CrossRef]

Y. Kang, M. Zadka, S. Litski, G. Sarid, M. Morse, M. J. Paniccia, Y. H. Kuo, J. Bowers, A. Beling, H. D. Liu, D. C. McIntosh, J. Campbell, and A. Pauchard, “Epitaxially-grown Ge/Si avalanche photodiodes for 1.3 microm light detection,” Opt. Express 16(13), 9365–9371 (2008).
[CrossRef] [PubMed]

2005 (1)

N. Duan, S. Wang, X. G. Zheng, X. Li, N. Li, J. C. Campbell, C. Wang, and L. A. Coldren, “Detrimental effect of impact ionization in the absorption region on the frequency response and excess noise performance of InGaAs/InAlAs SACM avalanche photodiodes,” IEEE J. Quantum Electron. 41(4), 568–572 (2005).
[CrossRef]

2004 (1)

Y. Hirota, S. Ando, and T. Ishibashi, “High-speed avalanche photodiode with a neutral absorption layer for 1.55 µm wavelength,” Jpn. J. Appl. Phys. 43(No. 3A), L375–L377 (2004).
[CrossRef]

2003 (1)

S. Demiguel, X. Zheng, N. Li, X. Li, J. Campbell, J. Decobert, N. Tscherptner, and A. Anselm, “High-responsivity and high-speed evanescently-coupled avalanche photodiodes,” Electron. Lett. 39(25), 1848–1849 (2003).
[CrossRef]

2001 (1)

C. Masini, L. Calace, G. Assanto, H.-C. Luan, and L. C. Kimerling, “High-performance p-i-n Ge on Si photodetectors for the near infrared: from model to demonstration,” IEEE Trans. Electron. Dev. 48(6), 1092–1096 (2001).
[CrossRef]

1997 (1)

H. Nie, K. Anselm, C. Hu, S. Murtaza, B. Streetman, and J. Campbell, “High-speed resonant-cavity separate absorption and multiplication avalanche photodiodes with 130 GHz gain-bandwidth product,” Appl. Phys. Lett. 70(2), 161–163 (1997).
[CrossRef]

1993 (1)

L. Tarof, J. Yu, R. Bruce, D. G. Knight, T. Baird, and B. Oosterbrink, “High-frequency performance of separate absorption grading, charge, and multiplication InP/InGaAs avalanche photodiodes,” IEEE Photon. Technol. Lett. 5(6), 672–674 (1993).
[CrossRef]

1988 (1)

J. Campbell, W. Tsang, G. Qua, and B. Johnson, “High-speed InP/InGaAsP/InGaAs avalanche photodiodes grown by chemical beam epitaxy,” IEEE J. Quantum Electron. 24(3), 496–500 (1988).
[CrossRef]

1972 (1)

R. McIntyre, “The distribution of gains in uniformly multiplying avalanche photodiodes: theory,” IEEE Trans. Electron. Devices 19(6), 703–713 (1972).
[CrossRef]

1967 (1)

R. Emmons, “Avalanche-photodiode frequency response,” J. Appl. Phys. 38(9), 3705–3714 (1967).
[CrossRef]

Achouche, M.

A. Rouvie, D. Carpentier, N. Lagay, J. Decobert, F. Pommereau, and M. Achouche, “High gain bandwidth product over 140 GHz planar junction AlInAs avalanche photodiodes,” IEEE Photon. Technol. Lett. 20(6), 455–457 (2008).
[CrossRef]

Ando, S.

Y. Hirota, S. Ando, and T. Ishibashi, “High-speed avalanche photodiode with a neutral absorption layer for 1.55 µm wavelength,” Jpn. J. Appl. Phys. 43(No. 3A), L375–L377 (2004).
[CrossRef]

Anselm, A.

S. Demiguel, X. Zheng, N. Li, X. Li, J. Campbell, J. Decobert, N. Tscherptner, and A. Anselm, “High-responsivity and high-speed evanescently-coupled avalanche photodiodes,” Electron. Lett. 39(25), 1848–1849 (2003).
[CrossRef]

Anselm, K.

H. Nie, K. Anselm, C. Hu, S. Murtaza, B. Streetman, and J. Campbell, “High-speed resonant-cavity separate absorption and multiplication avalanche photodiodes with 130 GHz gain-bandwidth product,” Appl. Phys. Lett. 70(2), 161–163 (1997).
[CrossRef]

Assanto, G.

C. Masini, L. Calace, G. Assanto, H.-C. Luan, and L. C. Kimerling, “High-performance p-i-n Ge on Si photodetectors for the near infrared: from model to demonstration,” IEEE Trans. Electron. Dev. 48(6), 1092–1096 (2001).
[CrossRef]

Baird, T.

L. Tarof, J. Yu, R. Bruce, D. G. Knight, T. Baird, and B. Oosterbrink, “High-frequency performance of separate absorption grading, charge, and multiplication InP/InGaAs avalanche photodiodes,” IEEE Photon. Technol. Lett. 5(6), 672–674 (1993).
[CrossRef]

Beling, A.

Y. Kang, H.-D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y.-H. Kuo, H.-W. Chen, W. S. Zaoui, J. E. Bowers, A. Beling, D. C. McIntosh, X. Zheng, and J. C. Campbell, “Monolithic germanium/silicon avalanche photodiodes with 340 GHz gain–bandwidth product,” Nat. Photonics 3(1), 59–63 (2009).
[CrossRef]

Y. Kang, M. Zadka, S. Litski, G. Sarid, M. Morse, M. J. Paniccia, Y. H. Kuo, J. Bowers, A. Beling, H. D. Liu, D. C. McIntosh, J. Campbell, and A. Pauchard, “Epitaxially-grown Ge/Si avalanche photodiodes for 1.3 microm light detection,” Opt. Express 16(13), 9365–9371 (2008).
[CrossRef] [PubMed]

Bowers, J.

Bowers, J. E.

Y. Kang, H.-D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y.-H. Kuo, H.-W. Chen, W. S. Zaoui, J. E. Bowers, A. Beling, D. C. McIntosh, X. Zheng, and J. C. Campbell, “Monolithic germanium/silicon avalanche photodiodes with 340 GHz gain–bandwidth product,” Nat. Photonics 3(1), 59–63 (2009).
[CrossRef]

Bruce, R.

L. Tarof, J. Yu, R. Bruce, D. G. Knight, T. Baird, and B. Oosterbrink, “High-frequency performance of separate absorption grading, charge, and multiplication InP/InGaAs avalanche photodiodes,” IEEE Photon. Technol. Lett. 5(6), 672–674 (1993).
[CrossRef]

Calace, L.

C. Masini, L. Calace, G. Assanto, H.-C. Luan, and L. C. Kimerling, “High-performance p-i-n Ge on Si photodetectors for the near infrared: from model to demonstration,” IEEE Trans. Electron. Dev. 48(6), 1092–1096 (2001).
[CrossRef]

Campbell, J.

Y. Kang, M. Zadka, S. Litski, G. Sarid, M. Morse, M. J. Paniccia, Y. H. Kuo, J. Bowers, A. Beling, H. D. Liu, D. C. McIntosh, J. Campbell, and A. Pauchard, “Epitaxially-grown Ge/Si avalanche photodiodes for 1.3 microm light detection,” Opt. Express 16(13), 9365–9371 (2008).
[CrossRef] [PubMed]

S. Demiguel, X. Zheng, N. Li, X. Li, J. Campbell, J. Decobert, N. Tscherptner, and A. Anselm, “High-responsivity and high-speed evanescently-coupled avalanche photodiodes,” Electron. Lett. 39(25), 1848–1849 (2003).
[CrossRef]

H. Nie, K. Anselm, C. Hu, S. Murtaza, B. Streetman, and J. Campbell, “High-speed resonant-cavity separate absorption and multiplication avalanche photodiodes with 130 GHz gain-bandwidth product,” Appl. Phys. Lett. 70(2), 161–163 (1997).
[CrossRef]

J. Campbell, W. Tsang, G. Qua, and B. Johnson, “High-speed InP/InGaAsP/InGaAs avalanche photodiodes grown by chemical beam epitaxy,” IEEE J. Quantum Electron. 24(3), 496–500 (1988).
[CrossRef]

Campbell, J. C.

Y. Kang, H.-D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y.-H. Kuo, H.-W. Chen, W. S. Zaoui, J. E. Bowers, A. Beling, D. C. McIntosh, X. Zheng, and J. C. Campbell, “Monolithic germanium/silicon avalanche photodiodes with 340 GHz gain–bandwidth product,” Nat. Photonics 3(1), 59–63 (2009).
[CrossRef]

N. Duan, S. Wang, X. G. Zheng, X. Li, N. Li, J. C. Campbell, C. Wang, and L. A. Coldren, “Detrimental effect of impact ionization in the absorption region on the frequency response and excess noise performance of InGaAs/InAlAs SACM avalanche photodiodes,” IEEE J. Quantum Electron. 41(4), 568–572 (2005).
[CrossRef]

Carpentier, D.

A. Rouvie, D. Carpentier, N. Lagay, J. Decobert, F. Pommereau, and M. Achouche, “High gain bandwidth product over 140 GHz planar junction AlInAs avalanche photodiodes,” IEEE Photon. Technol. Lett. 20(6), 455–457 (2008).
[CrossRef]

Chen, H.-W.

Y. Kang, H.-D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y.-H. Kuo, H.-W. Chen, W. S. Zaoui, J. E. Bowers, A. Beling, D. C. McIntosh, X. Zheng, and J. C. Campbell, “Monolithic germanium/silicon avalanche photodiodes with 340 GHz gain–bandwidth product,” Nat. Photonics 3(1), 59–63 (2009).
[CrossRef]

Cho, Y. J.

Coldren, L. A.

N. Duan, S. Wang, X. G. Zheng, X. Li, N. Li, J. C. Campbell, C. Wang, and L. A. Coldren, “Detrimental effect of impact ionization in the absorption region on the frequency response and excess noise performance of InGaAs/InAlAs SACM avalanche photodiodes,” IEEE J. Quantum Electron. 41(4), 568–572 (2005).
[CrossRef]

Decobert, J.

A. Rouvie, D. Carpentier, N. Lagay, J. Decobert, F. Pommereau, and M. Achouche, “High gain bandwidth product over 140 GHz planar junction AlInAs avalanche photodiodes,” IEEE Photon. Technol. Lett. 20(6), 455–457 (2008).
[CrossRef]

S. Demiguel, X. Zheng, N. Li, X. Li, J. Campbell, J. Decobert, N. Tscherptner, and A. Anselm, “High-responsivity and high-speed evanescently-coupled avalanche photodiodes,” Electron. Lett. 39(25), 1848–1849 (2003).
[CrossRef]

Demiguel, S.

S. Demiguel, X. Zheng, N. Li, X. Li, J. Campbell, J. Decobert, N. Tscherptner, and A. Anselm, “High-responsivity and high-speed evanescently-coupled avalanche photodiodes,” Electron. Lett. 39(25), 1848–1849 (2003).
[CrossRef]

Duan, N.

N. Duan, S. Wang, X. G. Zheng, X. Li, N. Li, J. C. Campbell, C. Wang, and L. A. Coldren, “Detrimental effect of impact ionization in the absorption region on the frequency response and excess noise performance of InGaAs/InAlAs SACM avalanche photodiodes,” IEEE J. Quantum Electron. 41(4), 568–572 (2005).
[CrossRef]

Emmons, R.

R. Emmons, “Avalanche-photodiode frequency response,” J. Appl. Phys. 38(9), 3705–3714 (1967).
[CrossRef]

Hirota, Y.

Y. Hirota, S. Ando, and T. Ishibashi, “High-speed avalanche photodiode with a neutral absorption layer for 1.55 µm wavelength,” Jpn. J. Appl. Phys. 43(No. 3A), L375–L377 (2004).
[CrossRef]

Hu, C.

H. Nie, K. Anselm, C. Hu, S. Murtaza, B. Streetman, and J. Campbell, “High-speed resonant-cavity separate absorption and multiplication avalanche photodiodes with 130 GHz gain-bandwidth product,” Appl. Phys. Lett. 70(2), 161–163 (1997).
[CrossRef]

Ishibashi, T.

Y. Hirota, S. Ando, and T. Ishibashi, “High-speed avalanche photodiode with a neutral absorption layer for 1.55 µm wavelength,” Jpn. J. Appl. Phys. 43(No. 3A), L375–L377 (2004).
[CrossRef]

Jo, M. H.

Johnson, B.

J. Campbell, W. Tsang, G. Qua, and B. Johnson, “High-speed InP/InGaAsP/InGaAs avalanche photodiodes grown by chemical beam epitaxy,” IEEE J. Quantum Electron. 24(3), 496–500 (1988).
[CrossRef]

Kang, Y.

Y. Kang, H.-D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y.-H. Kuo, H.-W. Chen, W. S. Zaoui, J. E. Bowers, A. Beling, D. C. McIntosh, X. Zheng, and J. C. Campbell, “Monolithic germanium/silicon avalanche photodiodes with 340 GHz gain–bandwidth product,” Nat. Photonics 3(1), 59–63 (2009).
[CrossRef]

Y. Kang, M. Zadka, S. Litski, G. Sarid, M. Morse, M. J. Paniccia, Y. H. Kuo, J. Bowers, A. Beling, H. D. Liu, D. C. McIntosh, J. Campbell, and A. Pauchard, “Epitaxially-grown Ge/Si avalanche photodiodes for 1.3 microm light detection,” Opt. Express 16(13), 9365–9371 (2008).
[CrossRef] [PubMed]

Kasahara, K.

K. Shiba, T. Nakata, T. Takeuchi, K. Kasahara, and K. Makita, “Theoretical and experimental study on waveguide avalanche photodiodes with an undepleted absorption layer for 25-Gb/s operation,” IEEE J. Lightwave Technol. 29(2), 153–161 (2011).
[CrossRef]

Kim, C. J.

Kimerling, L. C.

C. Masini, L. Calace, G. Assanto, H.-C. Luan, and L. C. Kimerling, “High-performance p-i-n Ge on Si photodetectors for the near infrared: from model to demonstration,” IEEE Trans. Electron. Dev. 48(6), 1092–1096 (2001).
[CrossRef]

Knight, D. G.

L. Tarof, J. Yu, R. Bruce, D. G. Knight, T. Baird, and B. Oosterbrink, “High-frequency performance of separate absorption grading, charge, and multiplication InP/InGaAs avalanche photodiodes,” IEEE Photon. Technol. Lett. 5(6), 672–674 (1993).
[CrossRef]

Kuo, Y. H.

Kuo, Y.-H.

Y. Kang, H.-D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y.-H. Kuo, H.-W. Chen, W. S. Zaoui, J. E. Bowers, A. Beling, D. C. McIntosh, X. Zheng, and J. C. Campbell, “Monolithic germanium/silicon avalanche photodiodes with 340 GHz gain–bandwidth product,” Nat. Photonics 3(1), 59–63 (2009).
[CrossRef]

Lagay, N.

A. Rouvie, D. Carpentier, N. Lagay, J. Decobert, F. Pommereau, and M. Achouche, “High gain bandwidth product over 140 GHz planar junction AlInAs avalanche photodiodes,” IEEE Photon. Technol. Lett. 20(6), 455–457 (2008).
[CrossRef]

Lee, D.

Lee, H. S.

Li, N.

N. Duan, S. Wang, X. G. Zheng, X. Li, N. Li, J. C. Campbell, C. Wang, and L. A. Coldren, “Detrimental effect of impact ionization in the absorption region on the frequency response and excess noise performance of InGaAs/InAlAs SACM avalanche photodiodes,” IEEE J. Quantum Electron. 41(4), 568–572 (2005).
[CrossRef]

S. Demiguel, X. Zheng, N. Li, X. Li, J. Campbell, J. Decobert, N. Tscherptner, and A. Anselm, “High-responsivity and high-speed evanescently-coupled avalanche photodiodes,” Electron. Lett. 39(25), 1848–1849 (2003).
[CrossRef]

Li, X.

N. Duan, S. Wang, X. G. Zheng, X. Li, N. Li, J. C. Campbell, C. Wang, and L. A. Coldren, “Detrimental effect of impact ionization in the absorption region on the frequency response and excess noise performance of InGaAs/InAlAs SACM avalanche photodiodes,” IEEE J. Quantum Electron. 41(4), 568–572 (2005).
[CrossRef]

S. Demiguel, X. Zheng, N. Li, X. Li, J. Campbell, J. Decobert, N. Tscherptner, and A. Anselm, “High-responsivity and high-speed evanescently-coupled avalanche photodiodes,” Electron. Lett. 39(25), 1848–1849 (2003).
[CrossRef]

Litski, S.

Y. Kang, H.-D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y.-H. Kuo, H.-W. Chen, W. S. Zaoui, J. E. Bowers, A. Beling, D. C. McIntosh, X. Zheng, and J. C. Campbell, “Monolithic germanium/silicon avalanche photodiodes with 340 GHz gain–bandwidth product,” Nat. Photonics 3(1), 59–63 (2009).
[CrossRef]

Y. Kang, M. Zadka, S. Litski, G. Sarid, M. Morse, M. J. Paniccia, Y. H. Kuo, J. Bowers, A. Beling, H. D. Liu, D. C. McIntosh, J. Campbell, and A. Pauchard, “Epitaxially-grown Ge/Si avalanche photodiodes for 1.3 microm light detection,” Opt. Express 16(13), 9365–9371 (2008).
[CrossRef] [PubMed]

Liu, H. D.

Liu, H.-D.

Y. Kang, H.-D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y.-H. Kuo, H.-W. Chen, W. S. Zaoui, J. E. Bowers, A. Beling, D. C. McIntosh, X. Zheng, and J. C. Campbell, “Monolithic germanium/silicon avalanche photodiodes with 340 GHz gain–bandwidth product,” Nat. Photonics 3(1), 59–63 (2009).
[CrossRef]

Luan, H.-C.

C. Masini, L. Calace, G. Assanto, H.-C. Luan, and L. C. Kimerling, “High-performance p-i-n Ge on Si photodetectors for the near infrared: from model to demonstration,” IEEE Trans. Electron. Dev. 48(6), 1092–1096 (2001).
[CrossRef]

Makita, K.

K. Shiba, T. Nakata, T. Takeuchi, K. Kasahara, and K. Makita, “Theoretical and experimental study on waveguide avalanche photodiodes with an undepleted absorption layer for 25-Gb/s operation,” IEEE J. Lightwave Technol. 29(2), 153–161 (2011).
[CrossRef]

Masini, C.

C. Masini, L. Calace, G. Assanto, H.-C. Luan, and L. C. Kimerling, “High-performance p-i-n Ge on Si photodetectors for the near infrared: from model to demonstration,” IEEE Trans. Electron. Dev. 48(6), 1092–1096 (2001).
[CrossRef]

McIntosh, D. C.

Y. Kang, H.-D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y.-H. Kuo, H.-W. Chen, W. S. Zaoui, J. E. Bowers, A. Beling, D. C. McIntosh, X. Zheng, and J. C. Campbell, “Monolithic germanium/silicon avalanche photodiodes with 340 GHz gain–bandwidth product,” Nat. Photonics 3(1), 59–63 (2009).
[CrossRef]

Y. Kang, M. Zadka, S. Litski, G. Sarid, M. Morse, M. J. Paniccia, Y. H. Kuo, J. Bowers, A. Beling, H. D. Liu, D. C. McIntosh, J. Campbell, and A. Pauchard, “Epitaxially-grown Ge/Si avalanche photodiodes for 1.3 microm light detection,” Opt. Express 16(13), 9365–9371 (2008).
[CrossRef] [PubMed]

McIntyre, R.

R. McIntyre, “The distribution of gains in uniformly multiplying avalanche photodiodes: theory,” IEEE Trans. Electron. Devices 19(6), 703–713 (1972).
[CrossRef]

Morse, M.

Y. Kang, H.-D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y.-H. Kuo, H.-W. Chen, W. S. Zaoui, J. E. Bowers, A. Beling, D. C. McIntosh, X. Zheng, and J. C. Campbell, “Monolithic germanium/silicon avalanche photodiodes with 340 GHz gain–bandwidth product,” Nat. Photonics 3(1), 59–63 (2009).
[CrossRef]

Y. Kang, M. Zadka, S. Litski, G. Sarid, M. Morse, M. J. Paniccia, Y. H. Kuo, J. Bowers, A. Beling, H. D. Liu, D. C. McIntosh, J. Campbell, and A. Pauchard, “Epitaxially-grown Ge/Si avalanche photodiodes for 1.3 microm light detection,” Opt. Express 16(13), 9365–9371 (2008).
[CrossRef] [PubMed]

Murtaza, S.

H. Nie, K. Anselm, C. Hu, S. Murtaza, B. Streetman, and J. Campbell, “High-speed resonant-cavity separate absorption and multiplication avalanche photodiodes with 130 GHz gain-bandwidth product,” Appl. Phys. Lett. 70(2), 161–163 (1997).
[CrossRef]

Nakata, T.

K. Shiba, T. Nakata, T. Takeuchi, K. Kasahara, and K. Makita, “Theoretical and experimental study on waveguide avalanche photodiodes with an undepleted absorption layer for 25-Gb/s operation,” IEEE J. Lightwave Technol. 29(2), 153–161 (2011).
[CrossRef]

Nie, H.

H. Nie, K. Anselm, C. Hu, S. Murtaza, B. Streetman, and J. Campbell, “High-speed resonant-cavity separate absorption and multiplication avalanche photodiodes with 130 GHz gain-bandwidth product,” Appl. Phys. Lett. 70(2), 161–163 (1997).
[CrossRef]

Oosterbrink, B.

L. Tarof, J. Yu, R. Bruce, D. G. Knight, T. Baird, and B. Oosterbrink, “High-frequency performance of separate absorption grading, charge, and multiplication InP/InGaAs avalanche photodiodes,” IEEE Photon. Technol. Lett. 5(6), 672–674 (1993).
[CrossRef]

Paniccia, M. J.

Y. Kang, H.-D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y.-H. Kuo, H.-W. Chen, W. S. Zaoui, J. E. Bowers, A. Beling, D. C. McIntosh, X. Zheng, and J. C. Campbell, “Monolithic germanium/silicon avalanche photodiodes with 340 GHz gain–bandwidth product,” Nat. Photonics 3(1), 59–63 (2009).
[CrossRef]

Y. Kang, M. Zadka, S. Litski, G. Sarid, M. Morse, M. J. Paniccia, Y. H. Kuo, J. Bowers, A. Beling, H. D. Liu, D. C. McIntosh, J. Campbell, and A. Pauchard, “Epitaxially-grown Ge/Si avalanche photodiodes for 1.3 microm light detection,” Opt. Express 16(13), 9365–9371 (2008).
[CrossRef] [PubMed]

Pauchard, A.

Y. Kang, H.-D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y.-H. Kuo, H.-W. Chen, W. S. Zaoui, J. E. Bowers, A. Beling, D. C. McIntosh, X. Zheng, and J. C. Campbell, “Monolithic germanium/silicon avalanche photodiodes with 340 GHz gain–bandwidth product,” Nat. Photonics 3(1), 59–63 (2009).
[CrossRef]

Y. Kang, M. Zadka, S. Litski, G. Sarid, M. Morse, M. J. Paniccia, Y. H. Kuo, J. Bowers, A. Beling, H. D. Liu, D. C. McIntosh, J. Campbell, and A. Pauchard, “Epitaxially-grown Ge/Si avalanche photodiodes for 1.3 microm light detection,” Opt. Express 16(13), 9365–9371 (2008).
[CrossRef] [PubMed]

Pommereau, F.

A. Rouvie, D. Carpentier, N. Lagay, J. Decobert, F. Pommereau, and M. Achouche, “High gain bandwidth product over 140 GHz planar junction AlInAs avalanche photodiodes,” IEEE Photon. Technol. Lett. 20(6), 455–457 (2008).
[CrossRef]

Qua, G.

J. Campbell, W. Tsang, G. Qua, and B. Johnson, “High-speed InP/InGaAsP/InGaAs avalanche photodiodes grown by chemical beam epitaxy,” IEEE J. Quantum Electron. 24(3), 496–500 (1988).
[CrossRef]

Rouvie, A.

A. Rouvie, D. Carpentier, N. Lagay, J. Decobert, F. Pommereau, and M. Achouche, “High gain bandwidth product over 140 GHz planar junction AlInAs avalanche photodiodes,” IEEE Photon. Technol. Lett. 20(6), 455–457 (2008).
[CrossRef]

Sarid, G.

Y. Kang, H.-D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y.-H. Kuo, H.-W. Chen, W. S. Zaoui, J. E. Bowers, A. Beling, D. C. McIntosh, X. Zheng, and J. C. Campbell, “Monolithic germanium/silicon avalanche photodiodes with 340 GHz gain–bandwidth product,” Nat. Photonics 3(1), 59–63 (2009).
[CrossRef]

Y. Kang, M. Zadka, S. Litski, G. Sarid, M. Morse, M. J. Paniccia, Y. H. Kuo, J. Bowers, A. Beling, H. D. Liu, D. C. McIntosh, J. Campbell, and A. Pauchard, “Epitaxially-grown Ge/Si avalanche photodiodes for 1.3 microm light detection,” Opt. Express 16(13), 9365–9371 (2008).
[CrossRef] [PubMed]

Shiba, K.

K. Shiba, T. Nakata, T. Takeuchi, K. Kasahara, and K. Makita, “Theoretical and experimental study on waveguide avalanche photodiodes with an undepleted absorption layer for 25-Gb/s operation,” IEEE J. Lightwave Technol. 29(2), 153–161 (2011).
[CrossRef]

Shin, Y. S.

Streetman, B.

H. Nie, K. Anselm, C. Hu, S. Murtaza, B. Streetman, and J. Campbell, “High-speed resonant-cavity separate absorption and multiplication avalanche photodiodes with 130 GHz gain-bandwidth product,” Appl. Phys. Lett. 70(2), 161–163 (1997).
[CrossRef]

Takeuchi, T.

K. Shiba, T. Nakata, T. Takeuchi, K. Kasahara, and K. Makita, “Theoretical and experimental study on waveguide avalanche photodiodes with an undepleted absorption layer for 25-Gb/s operation,” IEEE J. Lightwave Technol. 29(2), 153–161 (2011).
[CrossRef]

Tarof, L.

L. Tarof, J. Yu, R. Bruce, D. G. Knight, T. Baird, and B. Oosterbrink, “High-frequency performance of separate absorption grading, charge, and multiplication InP/InGaAs avalanche photodiodes,” IEEE Photon. Technol. Lett. 5(6), 672–674 (1993).
[CrossRef]

Tsang, W.

J. Campbell, W. Tsang, G. Qua, and B. Johnson, “High-speed InP/InGaAsP/InGaAs avalanche photodiodes grown by chemical beam epitaxy,” IEEE J. Quantum Electron. 24(3), 496–500 (1988).
[CrossRef]

Tscherptner, N.

S. Demiguel, X. Zheng, N. Li, X. Li, J. Campbell, J. Decobert, N. Tscherptner, and A. Anselm, “High-responsivity and high-speed evanescently-coupled avalanche photodiodes,” Electron. Lett. 39(25), 1848–1849 (2003).
[CrossRef]

Wang, C.

N. Duan, S. Wang, X. G. Zheng, X. Li, N. Li, J. C. Campbell, C. Wang, and L. A. Coldren, “Detrimental effect of impact ionization in the absorption region on the frequency response and excess noise performance of InGaAs/InAlAs SACM avalanche photodiodes,” IEEE J. Quantum Electron. 41(4), 568–572 (2005).
[CrossRef]

Wang, S.

N. Duan, S. Wang, X. G. Zheng, X. Li, N. Li, J. C. Campbell, C. Wang, and L. A. Coldren, “Detrimental effect of impact ionization in the absorption region on the frequency response and excess noise performance of InGaAs/InAlAs SACM avalanche photodiodes,” IEEE J. Quantum Electron. 41(4), 568–572 (2005).
[CrossRef]

Yu, J.

L. Tarof, J. Yu, R. Bruce, D. G. Knight, T. Baird, and B. Oosterbrink, “High-frequency performance of separate absorption grading, charge, and multiplication InP/InGaAs avalanche photodiodes,” IEEE Photon. Technol. Lett. 5(6), 672–674 (1993).
[CrossRef]

Zadka, M.

Y. Kang, H.-D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y.-H. Kuo, H.-W. Chen, W. S. Zaoui, J. E. Bowers, A. Beling, D. C. McIntosh, X. Zheng, and J. C. Campbell, “Monolithic germanium/silicon avalanche photodiodes with 340 GHz gain–bandwidth product,” Nat. Photonics 3(1), 59–63 (2009).
[CrossRef]

Y. Kang, M. Zadka, S. Litski, G. Sarid, M. Morse, M. J. Paniccia, Y. H. Kuo, J. Bowers, A. Beling, H. D. Liu, D. C. McIntosh, J. Campbell, and A. Pauchard, “Epitaxially-grown Ge/Si avalanche photodiodes for 1.3 microm light detection,” Opt. Express 16(13), 9365–9371 (2008).
[CrossRef] [PubMed]

Zaoui, W. S.

Y. Kang, H.-D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y.-H. Kuo, H.-W. Chen, W. S. Zaoui, J. E. Bowers, A. Beling, D. C. McIntosh, X. Zheng, and J. C. Campbell, “Monolithic germanium/silicon avalanche photodiodes with 340 GHz gain–bandwidth product,” Nat. Photonics 3(1), 59–63 (2009).
[CrossRef]

Zheng, X.

Y. Kang, H.-D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y.-H. Kuo, H.-W. Chen, W. S. Zaoui, J. E. Bowers, A. Beling, D. C. McIntosh, X. Zheng, and J. C. Campbell, “Monolithic germanium/silicon avalanche photodiodes with 340 GHz gain–bandwidth product,” Nat. Photonics 3(1), 59–63 (2009).
[CrossRef]

S. Demiguel, X. Zheng, N. Li, X. Li, J. Campbell, J. Decobert, N. Tscherptner, and A. Anselm, “High-responsivity and high-speed evanescently-coupled avalanche photodiodes,” Electron. Lett. 39(25), 1848–1849 (2003).
[CrossRef]

Zheng, X. G.

N. Duan, S. Wang, X. G. Zheng, X. Li, N. Li, J. C. Campbell, C. Wang, and L. A. Coldren, “Detrimental effect of impact ionization in the absorption region on the frequency response and excess noise performance of InGaAs/InAlAs SACM avalanche photodiodes,” IEEE J. Quantum Electron. 41(4), 568–572 (2005).
[CrossRef]

Appl. Phys. Lett. (1)

H. Nie, K. Anselm, C. Hu, S. Murtaza, B. Streetman, and J. Campbell, “High-speed resonant-cavity separate absorption and multiplication avalanche photodiodes with 130 GHz gain-bandwidth product,” Appl. Phys. Lett. 70(2), 161–163 (1997).
[CrossRef]

Electron. Lett. (1)

S. Demiguel, X. Zheng, N. Li, X. Li, J. Campbell, J. Decobert, N. Tscherptner, and A. Anselm, “High-responsivity and high-speed evanescently-coupled avalanche photodiodes,” Electron. Lett. 39(25), 1848–1849 (2003).
[CrossRef]

IEEE J. Lightwave Technol. (1)

K. Shiba, T. Nakata, T. Takeuchi, K. Kasahara, and K. Makita, “Theoretical and experimental study on waveguide avalanche photodiodes with an undepleted absorption layer for 25-Gb/s operation,” IEEE J. Lightwave Technol. 29(2), 153–161 (2011).
[CrossRef]

IEEE J. Quantum Electron. (2)

N. Duan, S. Wang, X. G. Zheng, X. Li, N. Li, J. C. Campbell, C. Wang, and L. A. Coldren, “Detrimental effect of impact ionization in the absorption region on the frequency response and excess noise performance of InGaAs/InAlAs SACM avalanche photodiodes,” IEEE J. Quantum Electron. 41(4), 568–572 (2005).
[CrossRef]

J. Campbell, W. Tsang, G. Qua, and B. Johnson, “High-speed InP/InGaAsP/InGaAs avalanche photodiodes grown by chemical beam epitaxy,” IEEE J. Quantum Electron. 24(3), 496–500 (1988).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

A. Rouvie, D. Carpentier, N. Lagay, J. Decobert, F. Pommereau, and M. Achouche, “High gain bandwidth product over 140 GHz planar junction AlInAs avalanche photodiodes,” IEEE Photon. Technol. Lett. 20(6), 455–457 (2008).
[CrossRef]

L. Tarof, J. Yu, R. Bruce, D. G. Knight, T. Baird, and B. Oosterbrink, “High-frequency performance of separate absorption grading, charge, and multiplication InP/InGaAs avalanche photodiodes,” IEEE Photon. Technol. Lett. 5(6), 672–674 (1993).
[CrossRef]

IEEE Trans. Electron. Dev. (1)

C. Masini, L. Calace, G. Assanto, H.-C. Luan, and L. C. Kimerling, “High-performance p-i-n Ge on Si photodetectors for the near infrared: from model to demonstration,” IEEE Trans. Electron. Dev. 48(6), 1092–1096 (2001).
[CrossRef]

IEEE Trans. Electron. Devices (1)

R. McIntyre, “The distribution of gains in uniformly multiplying avalanche photodiodes: theory,” IEEE Trans. Electron. Devices 19(6), 703–713 (1972).
[CrossRef]

J. Appl. Phys. (1)

R. Emmons, “Avalanche-photodiode frequency response,” J. Appl. Phys. 38(9), 3705–3714 (1967).
[CrossRef]

Jpn. J. Appl. Phys. (1)

Y. Hirota, S. Ando, and T. Ishibashi, “High-speed avalanche photodiode with a neutral absorption layer for 1.55 µm wavelength,” Jpn. J. Appl. Phys. 43(No. 3A), L375–L377 (2004).
[CrossRef]

Nat. Photonics (1)

Y. Kang, H.-D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y.-H. Kuo, H.-W. Chen, W. S. Zaoui, J. E. Bowers, A. Beling, D. C. McIntosh, X. Zheng, and J. C. Campbell, “Monolithic germanium/silicon avalanche photodiodes with 340 GHz gain–bandwidth product,” Nat. Photonics 3(1), 59–63 (2009).
[CrossRef]

Opt. Express (2)

Other (4)

S. Sze, Physics of Semiconductor Devices (Wiley, 1981), Chap. 1.

X. Wang, L. Chen, W. Chen, H. Cui, Y. Hu, P. Cai, R. Yang, C. Hong, D. Pan, K. Ang, M. B. Yu, Q. Fang, and G. Q. Lo, "80 GHz bandwidth-gain-product Ge/Si avalanche photodetector by selective Ge growth," in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paper OMR3.

E. Yagyu, E. Ishimura, M. Nakaji, H. Itamoto, T. Aoyagi, K. Yoshiara, and Y. Tokuda, “Recent advances in AlInAs avalanche photodiodes,” Proc. OFC, 145–147 (2007).

N. Yasuoka, H. Kuwatsuka, M. Makiuchi, T. Uchida, and A. Yasaki, “Large multiplication-bandwidth products in APDs with a thin InP multiplication layer,” in The 16th Annual Meeting of the IEEE Lasers and Electro-Optics Society, 2003. LEOS 2003 (IEEE/LEOS, 2003), Vol. 2, pp. 999–1000.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) TEM cross section of a 30-µm-diameter device. (b) Zoomed in image with layer thickness.

Fig. 2
Fig. 2

(a) Measured total photocurrent (solid curve) under 1550 nm illumination, dark current (dash curve), and capacitance vs. bias voltage at room temperature of a 30-µm-diameter APD. (b) The measured multiplication gain and photoresponsivity versus bias voltage under 1550 nm illumination. The primary photoresponsivity is 0.3 A/W.

Fig. 3
Fig. 3

Simulated electric field profile in the APD at different bias voltages.

Fig. 4
Fig. 4

RF response of a 30-µm-diameter APD at different gains under 1550 nm illumination. The −3 dB bandwidth is 8 GHz from gain of 32 to 39. The inset shows −3 dB bandwidth of a 30-µm-diameter PIN to be around 12 GHz.

Fig. 5
Fig. 5

Measured −3 dB bandwidth versus multiplication gain. The gain-bandwidth product is 310 GHz.

Metrics