Abstract

We present a simple freeform lens design method for an application to LED collimating illumination. The method is derived from a basic geometric-optics analysis and construction approach. By using this method, a highly collimating lens with LED chip size of 1.0mm×1.0mm and optical simulation efficiency of 86.5% under a view angle of ± 5 deg is constructed. To verify the practical performance of the lens, a prototype of the collimator lens is also made, and an optical efficiency of 90.3% with a beam angle of 4.75 deg is measured.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Ries and J. Muschaweck, “Tailored freeform optical surfaces,” J. Opt. Soc. Am. A 19(3), 590–595 (2002).
    [CrossRef] [PubMed]
  2. P. Benítez, J. C. Miñano, J. Blen, R. Mohedano, J. Chaves, O. Dross, M. Hernández, and W. Falicoff, “Simultaneous multiple surface optical design method in three dimensions,” Opt. Eng. 43(7), 1489–1502 (2004).
    [CrossRef]
  3. Y. Ding, X. Liu, Z. R. Zheng, and P. F. Gu, “Freeform LED lens for uniform illumination,” Opt. Express 16(17), 12958–12966 (2008).
    [CrossRef] [PubMed]
  4. L. Sun, S. Jin, and S. Cen, “Free-form microlens for illumination applications,” Appl. Opt. 48(29), 5520–5527 (2009).
    [CrossRef] [PubMed]
  5. F. R. Fournier, W. J. Cassarly, and J. P. Rolland, “Fast freeform reflector generation usingsource-target maps,” Opt. Express 18(5), 5295–5304 (2010).
    [CrossRef] [PubMed]
  6. W. Zhang, Q. Liu, H. Gao, and F. Yu, “Free-form reflector optimization for general lighting,” Opt. Eng. 49(6), 063003 (2010).
    [CrossRef]
  7. G. Wang, L. Wang, L. Li, D. Wang, and Y. Zhang, “Secondary optical lens designed in the method of source-target mapping,” Appl. Opt. 50(21), 4031–4036 (2011).
    [CrossRef] [PubMed]
  8. V. Medvedev and W. A. Parkyn, Jr., “Screen illumination apparatus and method,” US Patent 6166860 (2000).
  9. D. Weigert and D. Chin, “Spotlight with an adjustable angle of radiation and with an aspherical front lens,” US Patent 6499862 B1 (2002).
  10. A. Domhardt, S. Weingaertner, U. Rohlfing, and U. Lemmer, “TIR Optics for non-rotationally symmetric illumination Design,” Proc. SPIE 7103, 710304, 710304-11 (2008).
    [CrossRef]
  11. J.-J. Chen and C.-T. Lin, “Freeform surface design for a light-emitting diode–based collimating lens,” Opt. Eng. 49(9), 093001 (2010).
    [CrossRef]
  12. D. Vázquez-Moliní, M. González-Montes, A. Álvarez, and E. Bernabéu, “High-efficiency light-emitting diode collimator,” Opt. Eng. 49(12), 123001 (2010).
    [CrossRef]
  13. J. Chaves, Introduction to Nonimaging Optics (CRC Press, Boca Raton, 2008), Chap. 8.
  14. L. Piegl and W. Tiller, The NURBS Book (Springer-Verlag, Berlin, 1997).

2011 (1)

2010 (4)

W. Zhang, Q. Liu, H. Gao, and F. Yu, “Free-form reflector optimization for general lighting,” Opt. Eng. 49(6), 063003 (2010).
[CrossRef]

J.-J. Chen and C.-T. Lin, “Freeform surface design for a light-emitting diode–based collimating lens,” Opt. Eng. 49(9), 093001 (2010).
[CrossRef]

D. Vázquez-Moliní, M. González-Montes, A. Álvarez, and E. Bernabéu, “High-efficiency light-emitting diode collimator,” Opt. Eng. 49(12), 123001 (2010).
[CrossRef]

F. R. Fournier, W. J. Cassarly, and J. P. Rolland, “Fast freeform reflector generation usingsource-target maps,” Opt. Express 18(5), 5295–5304 (2010).
[CrossRef] [PubMed]

2009 (1)

2008 (2)

Y. Ding, X. Liu, Z. R. Zheng, and P. F. Gu, “Freeform LED lens for uniform illumination,” Opt. Express 16(17), 12958–12966 (2008).
[CrossRef] [PubMed]

A. Domhardt, S. Weingaertner, U. Rohlfing, and U. Lemmer, “TIR Optics for non-rotationally symmetric illumination Design,” Proc. SPIE 7103, 710304, 710304-11 (2008).
[CrossRef]

2004 (1)

P. Benítez, J. C. Miñano, J. Blen, R. Mohedano, J. Chaves, O. Dross, M. Hernández, and W. Falicoff, “Simultaneous multiple surface optical design method in three dimensions,” Opt. Eng. 43(7), 1489–1502 (2004).
[CrossRef]

2002 (1)

Álvarez, A.

D. Vázquez-Moliní, M. González-Montes, A. Álvarez, and E. Bernabéu, “High-efficiency light-emitting diode collimator,” Opt. Eng. 49(12), 123001 (2010).
[CrossRef]

Benítez, P.

P. Benítez, J. C. Miñano, J. Blen, R. Mohedano, J. Chaves, O. Dross, M. Hernández, and W. Falicoff, “Simultaneous multiple surface optical design method in three dimensions,” Opt. Eng. 43(7), 1489–1502 (2004).
[CrossRef]

Bernabéu, E.

D. Vázquez-Moliní, M. González-Montes, A. Álvarez, and E. Bernabéu, “High-efficiency light-emitting diode collimator,” Opt. Eng. 49(12), 123001 (2010).
[CrossRef]

Blen, J.

P. Benítez, J. C. Miñano, J. Blen, R. Mohedano, J. Chaves, O. Dross, M. Hernández, and W. Falicoff, “Simultaneous multiple surface optical design method in three dimensions,” Opt. Eng. 43(7), 1489–1502 (2004).
[CrossRef]

Cassarly, W. J.

Cen, S.

Chaves, J.

P. Benítez, J. C. Miñano, J. Blen, R. Mohedano, J. Chaves, O. Dross, M. Hernández, and W. Falicoff, “Simultaneous multiple surface optical design method in three dimensions,” Opt. Eng. 43(7), 1489–1502 (2004).
[CrossRef]

Chen, J.-J.

J.-J. Chen and C.-T. Lin, “Freeform surface design for a light-emitting diode–based collimating lens,” Opt. Eng. 49(9), 093001 (2010).
[CrossRef]

Ding, Y.

Domhardt, A.

A. Domhardt, S. Weingaertner, U. Rohlfing, and U. Lemmer, “TIR Optics for non-rotationally symmetric illumination Design,” Proc. SPIE 7103, 710304, 710304-11 (2008).
[CrossRef]

Dross, O.

P. Benítez, J. C. Miñano, J. Blen, R. Mohedano, J. Chaves, O. Dross, M. Hernández, and W. Falicoff, “Simultaneous multiple surface optical design method in three dimensions,” Opt. Eng. 43(7), 1489–1502 (2004).
[CrossRef]

Falicoff, W.

P. Benítez, J. C. Miñano, J. Blen, R. Mohedano, J. Chaves, O. Dross, M. Hernández, and W. Falicoff, “Simultaneous multiple surface optical design method in three dimensions,” Opt. Eng. 43(7), 1489–1502 (2004).
[CrossRef]

Fournier, F. R.

Gao, H.

W. Zhang, Q. Liu, H. Gao, and F. Yu, “Free-form reflector optimization for general lighting,” Opt. Eng. 49(6), 063003 (2010).
[CrossRef]

González-Montes, M.

D. Vázquez-Moliní, M. González-Montes, A. Álvarez, and E. Bernabéu, “High-efficiency light-emitting diode collimator,” Opt. Eng. 49(12), 123001 (2010).
[CrossRef]

Gu, P. F.

Hernández, M.

P. Benítez, J. C. Miñano, J. Blen, R. Mohedano, J. Chaves, O. Dross, M. Hernández, and W. Falicoff, “Simultaneous multiple surface optical design method in three dimensions,” Opt. Eng. 43(7), 1489–1502 (2004).
[CrossRef]

Jin, S.

Lemmer, U.

A. Domhardt, S. Weingaertner, U. Rohlfing, and U. Lemmer, “TIR Optics for non-rotationally symmetric illumination Design,” Proc. SPIE 7103, 710304, 710304-11 (2008).
[CrossRef]

Li, L.

Lin, C.-T.

J.-J. Chen and C.-T. Lin, “Freeform surface design for a light-emitting diode–based collimating lens,” Opt. Eng. 49(9), 093001 (2010).
[CrossRef]

Liu, Q.

W. Zhang, Q. Liu, H. Gao, and F. Yu, “Free-form reflector optimization for general lighting,” Opt. Eng. 49(6), 063003 (2010).
[CrossRef]

Liu, X.

Miñano, J. C.

P. Benítez, J. C. Miñano, J. Blen, R. Mohedano, J. Chaves, O. Dross, M. Hernández, and W. Falicoff, “Simultaneous multiple surface optical design method in three dimensions,” Opt. Eng. 43(7), 1489–1502 (2004).
[CrossRef]

Mohedano, R.

P. Benítez, J. C. Miñano, J. Blen, R. Mohedano, J. Chaves, O. Dross, M. Hernández, and W. Falicoff, “Simultaneous multiple surface optical design method in three dimensions,” Opt. Eng. 43(7), 1489–1502 (2004).
[CrossRef]

Muschaweck, J.

Ries, H.

Rohlfing, U.

A. Domhardt, S. Weingaertner, U. Rohlfing, and U. Lemmer, “TIR Optics for non-rotationally symmetric illumination Design,” Proc. SPIE 7103, 710304, 710304-11 (2008).
[CrossRef]

Rolland, J. P.

Sun, L.

Vázquez-Moliní, D.

D. Vázquez-Moliní, M. González-Montes, A. Álvarez, and E. Bernabéu, “High-efficiency light-emitting diode collimator,” Opt. Eng. 49(12), 123001 (2010).
[CrossRef]

Wang, D.

Wang, G.

Wang, L.

Weingaertner, S.

A. Domhardt, S. Weingaertner, U. Rohlfing, and U. Lemmer, “TIR Optics for non-rotationally symmetric illumination Design,” Proc. SPIE 7103, 710304, 710304-11 (2008).
[CrossRef]

Yu, F.

W. Zhang, Q. Liu, H. Gao, and F. Yu, “Free-form reflector optimization for general lighting,” Opt. Eng. 49(6), 063003 (2010).
[CrossRef]

Zhang, W.

W. Zhang, Q. Liu, H. Gao, and F. Yu, “Free-form reflector optimization for general lighting,” Opt. Eng. 49(6), 063003 (2010).
[CrossRef]

Zhang, Y.

Zheng, Z. R.

Appl. Opt. (2)

J. Opt. Soc. Am. A (1)

Opt. Eng. (4)

J.-J. Chen and C.-T. Lin, “Freeform surface design for a light-emitting diode–based collimating lens,” Opt. Eng. 49(9), 093001 (2010).
[CrossRef]

D. Vázquez-Moliní, M. González-Montes, A. Álvarez, and E. Bernabéu, “High-efficiency light-emitting diode collimator,” Opt. Eng. 49(12), 123001 (2010).
[CrossRef]

P. Benítez, J. C. Miñano, J. Blen, R. Mohedano, J. Chaves, O. Dross, M. Hernández, and W. Falicoff, “Simultaneous multiple surface optical design method in three dimensions,” Opt. Eng. 43(7), 1489–1502 (2004).
[CrossRef]

W. Zhang, Q. Liu, H. Gao, and F. Yu, “Free-form reflector optimization for general lighting,” Opt. Eng. 49(6), 063003 (2010).
[CrossRef]

Opt. Express (2)

Proc. SPIE (1)

A. Domhardt, S. Weingaertner, U. Rohlfing, and U. Lemmer, “TIR Optics for non-rotationally symmetric illumination Design,” Proc. SPIE 7103, 710304, 710304-11 (2008).
[CrossRef]

Other (4)

V. Medvedev and W. A. Parkyn, Jr., “Screen illumination apparatus and method,” US Patent 6166860 (2000).

D. Weigert and D. Chin, “Spotlight with an adjustable angle of radiation and with an aspherical front lens,” US Patent 6499862 B1 (2002).

J. Chaves, Introduction to Nonimaging Optics (CRC Press, Boca Raton, 2008), Chap. 8.

L. Piegl and W. Tiller, The NURBS Book (Springer-Verlag, Berlin, 1997).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

Geometric-optics relation for an arbitrary reflective surface. (a) For a surface reflecting light rays to a specific direction. (b) For a surface focusing light rays to a specific point.

Fig. 2
Fig. 2

Geometric-optics relation for an arbitrary refractive surface. (a) For a surface refracting light rays to a specific direction. (b) For a surface focusing light rays to a specific point.

Fig. 3
Fig. 3

Two-dimensional contour construction for a freeform reflective surface.

Fig. 4
Fig. 4

The two-dimensional plot of the compact collimator lens.

Fig. 5
Fig. 5

Two-dimensional contour of the collimator lens.

Fig. 6
Fig. 6

Three-dimensional collimator lens.

Fig. 7
Fig. 7

Ray trace for (a) an LED light source and (b) a point source.

Fig. 8
Fig. 8

The associated illuminance map and distribution on a target plane at 6-m away.

Fig. 9
Fig. 9

The rectangular candela distribution plot.

Fig. 10
Fig. 10

The plot of optical efficiency versus the half view angle.

Fig. 11
Fig. 11

The prototype of the collimator lens.

Fig. 12
Fig. 12

The measured cardinal-angular intensity distribution.

Fig. 13
Fig. 13

The illuminance and beam width versus distance.

Tables (2)

Tables Icon

Table 1 Parameters of the Collimator Lens

Tables Icon

Table 2 Percentage Optical Efficiency versus Different LED Chip Sizes and Half View Angles

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

θ T = π 2 +( θ i θ P )
θ i + θ r = θ P + θ P
θ i = θ r = ( θ P + θ P ) 2
θ T = π 2 + ( θ P θ P ) 2 .
Slope=tan[ π 2 + ( θ P θ P ) 2 ]=cot( θ P θ P 2 )
T ¯ =[ 1,tan θ T ]=[ 1,cot( θ P θ P 2 ) ].
θ P = tan 1 [ FQ ¯ PQ ¯ ]
θ t = π 2 ( θ P θ T )
θ i =( θ P + θ T ) π 2
n 1 sin θ i = n 2 sin θ t
θ T = tan 1 ( n 1 cos θ P + n 2 cos θ P n 1 sin θ P n 2 sin θ P ),
Slope=tan θ T = n 1 cos θ P + n 2 cos θ P n 1 sin θ P n 2 sin θ P
T ¯ =[ 1,tan θ T ]=[ 1, n 1 cos θ P + n 2 cos θ P n 1 sin θ P n 2 sin θ P ].
p( x )=a x 3 +b x 2 +cx+d
P n2 =a P n1 3 +b P n1 2 +c P n1 +d P ( n+1 )2 =a P ( n+1 )1 3 +b P ( n+1 )1 2 +c P ( n+1 )1 +d
dp( P n1 ) dx =tan θ T n =3a P n1 2 +2b P n1 +c dp( P ( n+1 )1 ) dx =tan θ T n+1 =3a P ( n+1 )1 2 +2b P ( n+1 )1 +c

Metrics