Abstract

A major theme of computational photography is the acquisition of lightfield, which opens up new imaging capabilities, such as focusing after image capture. However, to capture the lightfield, one normally has to sacrifice significant spatial resolution as compared to normal imaging for a fixed sensor size. In this work, we present a new design for lightfield acquisition, which allows for the capture of a higher resolution lightfield by using two attenuation masks. They are positioned at the aperture stop and the optical path respectively, so that the four-dimensional (4D) lightfield spectrum is encoded and sampled by a two-dimensional (2D) camera sensor in a single snapshot. Then, during post-processing, by exploiting the coherence embedded in a lightfield, we can retrieve the desired 4D lightfield with a higher resolution using inverse imaging. The performance of our proposed method is demonstrated with simulations based on actual lightfield datasets.

© 2012 OSA

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Y. Lam, “Computational photography: Advances and challenges,” in Tribute to Joseph W. Goodman, H. J. Caulfield and H. H. Arsenault, eds., Proc. SPIE 8122, 81220O (2011).
  2. W. T. Cathey and E. R. Dowski, “New paradigm for imaging systems,” Appl. Opt. 41, 6080–6092 (2002).
    [CrossRef] [PubMed]
  3. J. Mait, R. Athale, and J. van der Gracht, “Evolutionary paths in imaging and recent trends,” Opt. Express 11, 2093–2101 (2003).
    [CrossRef] [PubMed]
  4. W.-S. Chan, E. Y. Lam, M. K. Ng, and G. Y. Mak, “Super-resolution reconstruction in a computational compound-eye imaging system,” Multidim. Syst. Sign. Process 18, 83–101 (2007).
    [CrossRef]
  5. T. Mirani, D. Rajan, M. P. Christensen, S. C. Douglas, and S. L. Wood, “Computational imaging systems: Joint design and end-to-end optimality,” Appl. Opt. 47, B86–B103 (2008).
    [CrossRef] [PubMed]
  6. M. Levoy and P. Hanrahan, “Light field rendering,” in Proceedings of ACM SIGGRAPH (1996), pp. 31–42.
  7. J. W. Goodman, Introduction to Fourier Optics, 3rd ed. (Roberts and Company Publishers, 2004).
  8. E. H. Adelson and J. R. Bergen, “The plenoptic function and the elements of early vision,” in Computational Models of Visual Processing, M. S. Landy and J. A. Movshon, eds. (MIT Press, 1991), pp. 3–20.
  9. S. J. Gortler, R. Grzeszczuk, R. Szeliski, and M. F. Cohen, “The lumigraph,” in Proceedings of ACM SIGGRAPH (1996), pp. 43–54.
  10. G. Lippmann, “Épreuves réversibles donnant la sensation du relief,” J. Phys. Théor. Appl. 7, 821–825 (1908).
    [CrossRef] [PubMed]
  11. B. Wilburn, N. Joshi, V. Vaish, E.-V. Talvala, E. Antunez, A. Barth, A. Adams, M. Horowitz, and M. Levoy, “High performance imaging using large camera arrays,” in Proceedings of ACM SIGGRAPH (2005), pp. 765–776.
  12. E. H. Adelson and J. Y. Wang, “Single lens stereo with a plenoptic camera,” IEEE Trans. Pattern Anal. Mach. Intell. 14, 99–106 (1992).
    [CrossRef]
  13. R. Ng, M. Levoy, M. Brédif, G. Duval, M. Horowitz, and P. Hanrahan, “Light field photography with a hand-held plenoptic camera,” Stanford Tech. Report CTSR (2005), pp. 1–11.
  14. A. Veeraraghavan, R. Raskar, A. Agrawal, A. Mohan, and J. Tumblin, “Dappled photography: mask enhanced cameras for heterodyned light fields and coded aperture refocusing,” in Proceedings of ACM SIGGRAPH 26, (2007).
  15. A. Agrawal, A. Veeraraghavan, and R. Raskar, “Reinterpretable imager: Towards variable post-capture space, angle and time resolution in photography,” Comput. Graph. Forum 29, 763–772 (2010).
    [CrossRef]
  16. T. Georgeiv, K. C. Zheng, B. Curless, D. Salesin, S. Nayar, and C. Intwala, “Spatio-angular resolution tradeoff in integral photography,” in Proceedings of Eurographics Symposium on Rendering (2006), pp. 263–272.
  17. Z. Xu and E. Y. Lam, “Light field superresolution reconstruction in computational photography,” in Signal Recovery and Synthesis, (Optical Society of America, 2011), p. SMB3.
  18. C.-K. Liang, T.-H. Lin, B.-Y. Wong, C. Liu, and H. H. Chen, “Programmable aperture photography: multiplexed light field acquisition,” in Proceedings of ACM SIGGRAPH 27 (2008), pp. 1–10.
    [CrossRef]
  19. A. Lumsdaine and T. Georgiev, “The focused plenoptic camera,” in Proceedings of IEEE International Conference on Computational Photography (IEEE, 2009), pp. 1–8.
  20. R. N. Bracewell, The Fourier Transform and Its Applications, 3rd ed. (McGraw-Hill, 1999).
  21. J.-X. Chai, X. Tong, S.-C. Chan, and H.-Y. Shum, “Plenoptic sampling,” in Proceedings of ACM SIGGRAPH 27 (2000), pp. 307–318.
  22. A. Levin, W. T. Freeman, and F. Durand, “Understanding camera trade-offs through a Bayesian analysis of light field projections,” in Proceedings of the 10th European Conference on Computer Vision (2008), pp. 88–101.
  23. Z. Xu and E. Y. Lam, “A spatial projection analysis of light field capture,” in Frontiers in Optics, (Optical Society of America, 2010), p. FWH2.
  24. W. U. Bajwa, J. D. Haupt, G. M. Raz, S. J. Wright, and R. D. Nowak, “Toeplitz-structured compressed sensing matrices,” in Proceedings of IEEE/SP 14th Workshop on Statistical Signal Processing, (IEEE, 2007), pp. 294–298.
  25. W. Yin, S. Morgan, J. Yang, and Y. Zhang, “Practical compressive sensing with Toeplitz and circulant matrices,” in Visual Communications and Image Processing, Proc. SPIE  7744, 77440K (2010).
  26. L. I. Rudin, S. Osher, and E. Fatemi, “Nonlinear total variation based noise removal algorithms,” Physica D 60, 259–268 (1992).
    [CrossRef]
  27. E. Y. Lam, X. Zhang, H. Vo, T.-C. Poon, and G. Indebetouw, “Three-dimensional microscopy and sectional image reconstruction using optical scanning holography,” Appl. Opt. 48, H113–H119 (2009).
    [CrossRef] [PubMed]
  28. X. Zhang and E. Y. Lam, “Edge-preserving sectional image reconstruction in optical scanning holography,” J. Opt. Soc. Am. A 27, 1630–1637 (2010).
    [CrossRef]
  29. Z. Xu and E. Y. Lam, “Image reconstruction using spectroscopic and hyperspectral information for compressive terahertz imaging,” J. Opt. Soc. Am. A 27, 1638–1646 (2010).
    [CrossRef]
  30. “The (new) Stanford light field archive,” http://lightfield.stanford.edu/lfs.html .

2010 (4)

A. Agrawal, A. Veeraraghavan, and R. Raskar, “Reinterpretable imager: Towards variable post-capture space, angle and time resolution in photography,” Comput. Graph. Forum 29, 763–772 (2010).
[CrossRef]

W. Yin, S. Morgan, J. Yang, and Y. Zhang, “Practical compressive sensing with Toeplitz and circulant matrices,” in Visual Communications and Image Processing, Proc. SPIE  7744, 77440K (2010).

X. Zhang and E. Y. Lam, “Edge-preserving sectional image reconstruction in optical scanning holography,” J. Opt. Soc. Am. A 27, 1630–1637 (2010).
[CrossRef]

Z. Xu and E. Y. Lam, “Image reconstruction using spectroscopic and hyperspectral information for compressive terahertz imaging,” J. Opt. Soc. Am. A 27, 1638–1646 (2010).
[CrossRef]

2009 (1)

2008 (2)

C.-K. Liang, T.-H. Lin, B.-Y. Wong, C. Liu, and H. H. Chen, “Programmable aperture photography: multiplexed light field acquisition,” in Proceedings of ACM SIGGRAPH 27 (2008), pp. 1–10.
[CrossRef]

T. Mirani, D. Rajan, M. P. Christensen, S. C. Douglas, and S. L. Wood, “Computational imaging systems: Joint design and end-to-end optimality,” Appl. Opt. 47, B86–B103 (2008).
[CrossRef] [PubMed]

2007 (2)

W.-S. Chan, E. Y. Lam, M. K. Ng, and G. Y. Mak, “Super-resolution reconstruction in a computational compound-eye imaging system,” Multidim. Syst. Sign. Process 18, 83–101 (2007).
[CrossRef]

A. Veeraraghavan, R. Raskar, A. Agrawal, A. Mohan, and J. Tumblin, “Dappled photography: mask enhanced cameras for heterodyned light fields and coded aperture refocusing,” in Proceedings of ACM SIGGRAPH 26, (2007).

2003 (1)

2002 (1)

2000 (1)

J.-X. Chai, X. Tong, S.-C. Chan, and H.-Y. Shum, “Plenoptic sampling,” in Proceedings of ACM SIGGRAPH 27 (2000), pp. 307–318.

1992 (2)

E. H. Adelson and J. Y. Wang, “Single lens stereo with a plenoptic camera,” IEEE Trans. Pattern Anal. Mach. Intell. 14, 99–106 (1992).
[CrossRef]

L. I. Rudin, S. Osher, and E. Fatemi, “Nonlinear total variation based noise removal algorithms,” Physica D 60, 259–268 (1992).
[CrossRef]

1908 (1)

G. Lippmann, “Épreuves réversibles donnant la sensation du relief,” J. Phys. Théor. Appl. 7, 821–825 (1908).
[CrossRef] [PubMed]

Adams, A.

B. Wilburn, N. Joshi, V. Vaish, E.-V. Talvala, E. Antunez, A. Barth, A. Adams, M. Horowitz, and M. Levoy, “High performance imaging using large camera arrays,” in Proceedings of ACM SIGGRAPH (2005), pp. 765–776.

Adelson, E. H.

E. H. Adelson and J. Y. Wang, “Single lens stereo with a plenoptic camera,” IEEE Trans. Pattern Anal. Mach. Intell. 14, 99–106 (1992).
[CrossRef]

E. H. Adelson and J. R. Bergen, “The plenoptic function and the elements of early vision,” in Computational Models of Visual Processing, M. S. Landy and J. A. Movshon, eds. (MIT Press, 1991), pp. 3–20.

Agrawal, A.

A. Agrawal, A. Veeraraghavan, and R. Raskar, “Reinterpretable imager: Towards variable post-capture space, angle and time resolution in photography,” Comput. Graph. Forum 29, 763–772 (2010).
[CrossRef]

A. Veeraraghavan, R. Raskar, A. Agrawal, A. Mohan, and J. Tumblin, “Dappled photography: mask enhanced cameras for heterodyned light fields and coded aperture refocusing,” in Proceedings of ACM SIGGRAPH 26, (2007).

Antunez, E.

B. Wilburn, N. Joshi, V. Vaish, E.-V. Talvala, E. Antunez, A. Barth, A. Adams, M. Horowitz, and M. Levoy, “High performance imaging using large camera arrays,” in Proceedings of ACM SIGGRAPH (2005), pp. 765–776.

Athale, R.

Bajwa, W. U.

W. U. Bajwa, J. D. Haupt, G. M. Raz, S. J. Wright, and R. D. Nowak, “Toeplitz-structured compressed sensing matrices,” in Proceedings of IEEE/SP 14th Workshop on Statistical Signal Processing, (IEEE, 2007), pp. 294–298.

Barth, A.

B. Wilburn, N. Joshi, V. Vaish, E.-V. Talvala, E. Antunez, A. Barth, A. Adams, M. Horowitz, and M. Levoy, “High performance imaging using large camera arrays,” in Proceedings of ACM SIGGRAPH (2005), pp. 765–776.

Bergen, J. R.

E. H. Adelson and J. R. Bergen, “The plenoptic function and the elements of early vision,” in Computational Models of Visual Processing, M. S. Landy and J. A. Movshon, eds. (MIT Press, 1991), pp. 3–20.

Bracewell, R. N.

R. N. Bracewell, The Fourier Transform and Its Applications, 3rd ed. (McGraw-Hill, 1999).

Brédif, M.

R. Ng, M. Levoy, M. Brédif, G. Duval, M. Horowitz, and P. Hanrahan, “Light field photography with a hand-held plenoptic camera,” Stanford Tech. Report CTSR (2005), pp. 1–11.

Cathey, W. T.

Chai, J.-X.

J.-X. Chai, X. Tong, S.-C. Chan, and H.-Y. Shum, “Plenoptic sampling,” in Proceedings of ACM SIGGRAPH 27 (2000), pp. 307–318.

Chan, S.-C.

J.-X. Chai, X. Tong, S.-C. Chan, and H.-Y. Shum, “Plenoptic sampling,” in Proceedings of ACM SIGGRAPH 27 (2000), pp. 307–318.

Chan, W.-S.

W.-S. Chan, E. Y. Lam, M. K. Ng, and G. Y. Mak, “Super-resolution reconstruction in a computational compound-eye imaging system,” Multidim. Syst. Sign. Process 18, 83–101 (2007).
[CrossRef]

Chen, H. H.

C.-K. Liang, T.-H. Lin, B.-Y. Wong, C. Liu, and H. H. Chen, “Programmable aperture photography: multiplexed light field acquisition,” in Proceedings of ACM SIGGRAPH 27 (2008), pp. 1–10.
[CrossRef]

Christensen, M. P.

Cohen, M. F.

S. J. Gortler, R. Grzeszczuk, R. Szeliski, and M. F. Cohen, “The lumigraph,” in Proceedings of ACM SIGGRAPH (1996), pp. 43–54.

Curless, B.

T. Georgeiv, K. C. Zheng, B. Curless, D. Salesin, S. Nayar, and C. Intwala, “Spatio-angular resolution tradeoff in integral photography,” in Proceedings of Eurographics Symposium on Rendering (2006), pp. 263–272.

Douglas, S. C.

Dowski, E. R.

Durand, F.

A. Levin, W. T. Freeman, and F. Durand, “Understanding camera trade-offs through a Bayesian analysis of light field projections,” in Proceedings of the 10th European Conference on Computer Vision (2008), pp. 88–101.

Duval, G.

R. Ng, M. Levoy, M. Brédif, G. Duval, M. Horowitz, and P. Hanrahan, “Light field photography with a hand-held plenoptic camera,” Stanford Tech. Report CTSR (2005), pp. 1–11.

Fatemi, E.

L. I. Rudin, S. Osher, and E. Fatemi, “Nonlinear total variation based noise removal algorithms,” Physica D 60, 259–268 (1992).
[CrossRef]

Freeman, W. T.

A. Levin, W. T. Freeman, and F. Durand, “Understanding camera trade-offs through a Bayesian analysis of light field projections,” in Proceedings of the 10th European Conference on Computer Vision (2008), pp. 88–101.

Georgeiv, T.

T. Georgeiv, K. C. Zheng, B. Curless, D. Salesin, S. Nayar, and C. Intwala, “Spatio-angular resolution tradeoff in integral photography,” in Proceedings of Eurographics Symposium on Rendering (2006), pp. 263–272.

Georgiev, T.

A. Lumsdaine and T. Georgiev, “The focused plenoptic camera,” in Proceedings of IEEE International Conference on Computational Photography (IEEE, 2009), pp. 1–8.

Goodman, J. W.

J. W. Goodman, Introduction to Fourier Optics, 3rd ed. (Roberts and Company Publishers, 2004).

Gortler, S. J.

S. J. Gortler, R. Grzeszczuk, R. Szeliski, and M. F. Cohen, “The lumigraph,” in Proceedings of ACM SIGGRAPH (1996), pp. 43–54.

Grzeszczuk, R.

S. J. Gortler, R. Grzeszczuk, R. Szeliski, and M. F. Cohen, “The lumigraph,” in Proceedings of ACM SIGGRAPH (1996), pp. 43–54.

Hanrahan, P.

R. Ng, M. Levoy, M. Brédif, G. Duval, M. Horowitz, and P. Hanrahan, “Light field photography with a hand-held plenoptic camera,” Stanford Tech. Report CTSR (2005), pp. 1–11.

M. Levoy and P. Hanrahan, “Light field rendering,” in Proceedings of ACM SIGGRAPH (1996), pp. 31–42.

Haupt, J. D.

W. U. Bajwa, J. D. Haupt, G. M. Raz, S. J. Wright, and R. D. Nowak, “Toeplitz-structured compressed sensing matrices,” in Proceedings of IEEE/SP 14th Workshop on Statistical Signal Processing, (IEEE, 2007), pp. 294–298.

Horowitz, M.

R. Ng, M. Levoy, M. Brédif, G. Duval, M. Horowitz, and P. Hanrahan, “Light field photography with a hand-held plenoptic camera,” Stanford Tech. Report CTSR (2005), pp. 1–11.

B. Wilburn, N. Joshi, V. Vaish, E.-V. Talvala, E. Antunez, A. Barth, A. Adams, M. Horowitz, and M. Levoy, “High performance imaging using large camera arrays,” in Proceedings of ACM SIGGRAPH (2005), pp. 765–776.

Indebetouw, G.

Intwala, C.

T. Georgeiv, K. C. Zheng, B. Curless, D. Salesin, S. Nayar, and C. Intwala, “Spatio-angular resolution tradeoff in integral photography,” in Proceedings of Eurographics Symposium on Rendering (2006), pp. 263–272.

Joshi, N.

B. Wilburn, N. Joshi, V. Vaish, E.-V. Talvala, E. Antunez, A. Barth, A. Adams, M. Horowitz, and M. Levoy, “High performance imaging using large camera arrays,” in Proceedings of ACM SIGGRAPH (2005), pp. 765–776.

Lam, E. Y.

Z. Xu and E. Y. Lam, “Image reconstruction using spectroscopic and hyperspectral information for compressive terahertz imaging,” J. Opt. Soc. Am. A 27, 1638–1646 (2010).
[CrossRef]

X. Zhang and E. Y. Lam, “Edge-preserving sectional image reconstruction in optical scanning holography,” J. Opt. Soc. Am. A 27, 1630–1637 (2010).
[CrossRef]

E. Y. Lam, X. Zhang, H. Vo, T.-C. Poon, and G. Indebetouw, “Three-dimensional microscopy and sectional image reconstruction using optical scanning holography,” Appl. Opt. 48, H113–H119 (2009).
[CrossRef] [PubMed]

W.-S. Chan, E. Y. Lam, M. K. Ng, and G. Y. Mak, “Super-resolution reconstruction in a computational compound-eye imaging system,” Multidim. Syst. Sign. Process 18, 83–101 (2007).
[CrossRef]

E. Y. Lam, “Computational photography: Advances and challenges,” in Tribute to Joseph W. Goodman, H. J. Caulfield and H. H. Arsenault, eds., Proc. SPIE 8122, 81220O (2011).

Z. Xu and E. Y. Lam, “A spatial projection analysis of light field capture,” in Frontiers in Optics, (Optical Society of America, 2010), p. FWH2.

Z. Xu and E. Y. Lam, “Light field superresolution reconstruction in computational photography,” in Signal Recovery and Synthesis, (Optical Society of America, 2011), p. SMB3.

Levin, A.

A. Levin, W. T. Freeman, and F. Durand, “Understanding camera trade-offs through a Bayesian analysis of light field projections,” in Proceedings of the 10th European Conference on Computer Vision (2008), pp. 88–101.

Levoy, M.

B. Wilburn, N. Joshi, V. Vaish, E.-V. Talvala, E. Antunez, A. Barth, A. Adams, M. Horowitz, and M. Levoy, “High performance imaging using large camera arrays,” in Proceedings of ACM SIGGRAPH (2005), pp. 765–776.

M. Levoy and P. Hanrahan, “Light field rendering,” in Proceedings of ACM SIGGRAPH (1996), pp. 31–42.

R. Ng, M. Levoy, M. Brédif, G. Duval, M. Horowitz, and P. Hanrahan, “Light field photography with a hand-held plenoptic camera,” Stanford Tech. Report CTSR (2005), pp. 1–11.

Liang, C.-K.

C.-K. Liang, T.-H. Lin, B.-Y. Wong, C. Liu, and H. H. Chen, “Programmable aperture photography: multiplexed light field acquisition,” in Proceedings of ACM SIGGRAPH 27 (2008), pp. 1–10.
[CrossRef]

Lin, T.-H.

C.-K. Liang, T.-H. Lin, B.-Y. Wong, C. Liu, and H. H. Chen, “Programmable aperture photography: multiplexed light field acquisition,” in Proceedings of ACM SIGGRAPH 27 (2008), pp. 1–10.
[CrossRef]

Lippmann, G.

G. Lippmann, “Épreuves réversibles donnant la sensation du relief,” J. Phys. Théor. Appl. 7, 821–825 (1908).
[CrossRef] [PubMed]

Liu, C.

C.-K. Liang, T.-H. Lin, B.-Y. Wong, C. Liu, and H. H. Chen, “Programmable aperture photography: multiplexed light field acquisition,” in Proceedings of ACM SIGGRAPH 27 (2008), pp. 1–10.
[CrossRef]

Lumsdaine, A.

A. Lumsdaine and T. Georgiev, “The focused plenoptic camera,” in Proceedings of IEEE International Conference on Computational Photography (IEEE, 2009), pp. 1–8.

Mait, J.

Mak, G. Y.

W.-S. Chan, E. Y. Lam, M. K. Ng, and G. Y. Mak, “Super-resolution reconstruction in a computational compound-eye imaging system,” Multidim. Syst. Sign. Process 18, 83–101 (2007).
[CrossRef]

Mirani, T.

Mohan, A.

A. Veeraraghavan, R. Raskar, A. Agrawal, A. Mohan, and J. Tumblin, “Dappled photography: mask enhanced cameras for heterodyned light fields and coded aperture refocusing,” in Proceedings of ACM SIGGRAPH 26, (2007).

Morgan, S.

W. Yin, S. Morgan, J. Yang, and Y. Zhang, “Practical compressive sensing with Toeplitz and circulant matrices,” in Visual Communications and Image Processing, Proc. SPIE  7744, 77440K (2010).

Nayar, S.

T. Georgeiv, K. C. Zheng, B. Curless, D. Salesin, S. Nayar, and C. Intwala, “Spatio-angular resolution tradeoff in integral photography,” in Proceedings of Eurographics Symposium on Rendering (2006), pp. 263–272.

Ng, M. K.

W.-S. Chan, E. Y. Lam, M. K. Ng, and G. Y. Mak, “Super-resolution reconstruction in a computational compound-eye imaging system,” Multidim. Syst. Sign. Process 18, 83–101 (2007).
[CrossRef]

Ng, R.

R. Ng, M. Levoy, M. Brédif, G. Duval, M. Horowitz, and P. Hanrahan, “Light field photography with a hand-held plenoptic camera,” Stanford Tech. Report CTSR (2005), pp. 1–11.

Nowak, R. D.

W. U. Bajwa, J. D. Haupt, G. M. Raz, S. J. Wright, and R. D. Nowak, “Toeplitz-structured compressed sensing matrices,” in Proceedings of IEEE/SP 14th Workshop on Statistical Signal Processing, (IEEE, 2007), pp. 294–298.

Osher, S.

L. I. Rudin, S. Osher, and E. Fatemi, “Nonlinear total variation based noise removal algorithms,” Physica D 60, 259–268 (1992).
[CrossRef]

Poon, T.-C.

Rajan, D.

Raskar, R.

A. Agrawal, A. Veeraraghavan, and R. Raskar, “Reinterpretable imager: Towards variable post-capture space, angle and time resolution in photography,” Comput. Graph. Forum 29, 763–772 (2010).
[CrossRef]

A. Veeraraghavan, R. Raskar, A. Agrawal, A. Mohan, and J. Tumblin, “Dappled photography: mask enhanced cameras for heterodyned light fields and coded aperture refocusing,” in Proceedings of ACM SIGGRAPH 26, (2007).

Raz, G. M.

W. U. Bajwa, J. D. Haupt, G. M. Raz, S. J. Wright, and R. D. Nowak, “Toeplitz-structured compressed sensing matrices,” in Proceedings of IEEE/SP 14th Workshop on Statistical Signal Processing, (IEEE, 2007), pp. 294–298.

Rudin, L. I.

L. I. Rudin, S. Osher, and E. Fatemi, “Nonlinear total variation based noise removal algorithms,” Physica D 60, 259–268 (1992).
[CrossRef]

Salesin, D.

T. Georgeiv, K. C. Zheng, B. Curless, D. Salesin, S. Nayar, and C. Intwala, “Spatio-angular resolution tradeoff in integral photography,” in Proceedings of Eurographics Symposium on Rendering (2006), pp. 263–272.

Shum, H.-Y.

J.-X. Chai, X. Tong, S.-C. Chan, and H.-Y. Shum, “Plenoptic sampling,” in Proceedings of ACM SIGGRAPH 27 (2000), pp. 307–318.

Szeliski, R.

S. J. Gortler, R. Grzeszczuk, R. Szeliski, and M. F. Cohen, “The lumigraph,” in Proceedings of ACM SIGGRAPH (1996), pp. 43–54.

Talvala, E.-V.

B. Wilburn, N. Joshi, V. Vaish, E.-V. Talvala, E. Antunez, A. Barth, A. Adams, M. Horowitz, and M. Levoy, “High performance imaging using large camera arrays,” in Proceedings of ACM SIGGRAPH (2005), pp. 765–776.

Tong, X.

J.-X. Chai, X. Tong, S.-C. Chan, and H.-Y. Shum, “Plenoptic sampling,” in Proceedings of ACM SIGGRAPH 27 (2000), pp. 307–318.

Tumblin, J.

A. Veeraraghavan, R. Raskar, A. Agrawal, A. Mohan, and J. Tumblin, “Dappled photography: mask enhanced cameras for heterodyned light fields and coded aperture refocusing,” in Proceedings of ACM SIGGRAPH 26, (2007).

Vaish, V.

B. Wilburn, N. Joshi, V. Vaish, E.-V. Talvala, E. Antunez, A. Barth, A. Adams, M. Horowitz, and M. Levoy, “High performance imaging using large camera arrays,” in Proceedings of ACM SIGGRAPH (2005), pp. 765–776.

van der Gracht, J.

Veeraraghavan, A.

A. Agrawal, A. Veeraraghavan, and R. Raskar, “Reinterpretable imager: Towards variable post-capture space, angle and time resolution in photography,” Comput. Graph. Forum 29, 763–772 (2010).
[CrossRef]

A. Veeraraghavan, R. Raskar, A. Agrawal, A. Mohan, and J. Tumblin, “Dappled photography: mask enhanced cameras for heterodyned light fields and coded aperture refocusing,” in Proceedings of ACM SIGGRAPH 26, (2007).

Vo, H.

Wang, J. Y.

E. H. Adelson and J. Y. Wang, “Single lens stereo with a plenoptic camera,” IEEE Trans. Pattern Anal. Mach. Intell. 14, 99–106 (1992).
[CrossRef]

Wilburn, B.

B. Wilburn, N. Joshi, V. Vaish, E.-V. Talvala, E. Antunez, A. Barth, A. Adams, M. Horowitz, and M. Levoy, “High performance imaging using large camera arrays,” in Proceedings of ACM SIGGRAPH (2005), pp. 765–776.

Wong, B.-Y.

C.-K. Liang, T.-H. Lin, B.-Y. Wong, C. Liu, and H. H. Chen, “Programmable aperture photography: multiplexed light field acquisition,” in Proceedings of ACM SIGGRAPH 27 (2008), pp. 1–10.
[CrossRef]

Wood, S. L.

Wright, S. J.

W. U. Bajwa, J. D. Haupt, G. M. Raz, S. J. Wright, and R. D. Nowak, “Toeplitz-structured compressed sensing matrices,” in Proceedings of IEEE/SP 14th Workshop on Statistical Signal Processing, (IEEE, 2007), pp. 294–298.

Xu, Z.

Z. Xu and E. Y. Lam, “Image reconstruction using spectroscopic and hyperspectral information for compressive terahertz imaging,” J. Opt. Soc. Am. A 27, 1638–1646 (2010).
[CrossRef]

Z. Xu and E. Y. Lam, “A spatial projection analysis of light field capture,” in Frontiers in Optics, (Optical Society of America, 2010), p. FWH2.

Z. Xu and E. Y. Lam, “Light field superresolution reconstruction in computational photography,” in Signal Recovery and Synthesis, (Optical Society of America, 2011), p. SMB3.

Yang, J.

W. Yin, S. Morgan, J. Yang, and Y. Zhang, “Practical compressive sensing with Toeplitz and circulant matrices,” in Visual Communications and Image Processing, Proc. SPIE  7744, 77440K (2010).

Yin, W.

W. Yin, S. Morgan, J. Yang, and Y. Zhang, “Practical compressive sensing with Toeplitz and circulant matrices,” in Visual Communications and Image Processing, Proc. SPIE  7744, 77440K (2010).

Zhang, X.

Zhang, Y.

W. Yin, S. Morgan, J. Yang, and Y. Zhang, “Practical compressive sensing with Toeplitz and circulant matrices,” in Visual Communications and Image Processing, Proc. SPIE  7744, 77440K (2010).

Zheng, K. C.

T. Georgeiv, K. C. Zheng, B. Curless, D. Salesin, S. Nayar, and C. Intwala, “Spatio-angular resolution tradeoff in integral photography,” in Proceedings of Eurographics Symposium on Rendering (2006), pp. 263–272.

Appl. Opt. (3)

Comput. Graph. Forum (1)

A. Agrawal, A. Veeraraghavan, and R. Raskar, “Reinterpretable imager: Towards variable post-capture space, angle and time resolution in photography,” Comput. Graph. Forum 29, 763–772 (2010).
[CrossRef]

IEEE Trans. Pattern Anal. Mach. Intell. (1)

E. H. Adelson and J. Y. Wang, “Single lens stereo with a plenoptic camera,” IEEE Trans. Pattern Anal. Mach. Intell. 14, 99–106 (1992).
[CrossRef]

J. Opt. Soc. Am. A (2)

J. Phys. Théor. Appl. (1)

G. Lippmann, “Épreuves réversibles donnant la sensation du relief,” J. Phys. Théor. Appl. 7, 821–825 (1908).
[CrossRef] [PubMed]

Multidim. Syst. Sign. Process (1)

W.-S. Chan, E. Y. Lam, M. K. Ng, and G. Y. Mak, “Super-resolution reconstruction in a computational compound-eye imaging system,” Multidim. Syst. Sign. Process 18, 83–101 (2007).
[CrossRef]

Opt. Express (1)

Physica D (1)

L. I. Rudin, S. Osher, and E. Fatemi, “Nonlinear total variation based noise removal algorithms,” Physica D 60, 259–268 (1992).
[CrossRef]

Proceedings of ACM SIGGRAPH (3)

A. Veeraraghavan, R. Raskar, A. Agrawal, A. Mohan, and J. Tumblin, “Dappled photography: mask enhanced cameras for heterodyned light fields and coded aperture refocusing,” in Proceedings of ACM SIGGRAPH 26, (2007).

J.-X. Chai, X. Tong, S.-C. Chan, and H.-Y. Shum, “Plenoptic sampling,” in Proceedings of ACM SIGGRAPH 27 (2000), pp. 307–318.

C.-K. Liang, T.-H. Lin, B.-Y. Wong, C. Liu, and H. H. Chen, “Programmable aperture photography: multiplexed light field acquisition,” in Proceedings of ACM SIGGRAPH 27 (2008), pp. 1–10.
[CrossRef]

Visual Communications and Image Processing (1)

W. Yin, S. Morgan, J. Yang, and Y. Zhang, “Practical compressive sensing with Toeplitz and circulant matrices,” in Visual Communications and Image Processing, Proc. SPIE  7744, 77440K (2010).

Other (15)

A. Levin, W. T. Freeman, and F. Durand, “Understanding camera trade-offs through a Bayesian analysis of light field projections,” in Proceedings of the 10th European Conference on Computer Vision (2008), pp. 88–101.

Z. Xu and E. Y. Lam, “A spatial projection analysis of light field capture,” in Frontiers in Optics, (Optical Society of America, 2010), p. FWH2.

W. U. Bajwa, J. D. Haupt, G. M. Raz, S. J. Wright, and R. D. Nowak, “Toeplitz-structured compressed sensing matrices,” in Proceedings of IEEE/SP 14th Workshop on Statistical Signal Processing, (IEEE, 2007), pp. 294–298.

“The (new) Stanford light field archive,” http://lightfield.stanford.edu/lfs.html .

A. Lumsdaine and T. Georgiev, “The focused plenoptic camera,” in Proceedings of IEEE International Conference on Computational Photography (IEEE, 2009), pp. 1–8.

R. N. Bracewell, The Fourier Transform and Its Applications, 3rd ed. (McGraw-Hill, 1999).

T. Georgeiv, K. C. Zheng, B. Curless, D. Salesin, S. Nayar, and C. Intwala, “Spatio-angular resolution tradeoff in integral photography,” in Proceedings of Eurographics Symposium on Rendering (2006), pp. 263–272.

Z. Xu and E. Y. Lam, “Light field superresolution reconstruction in computational photography,” in Signal Recovery and Synthesis, (Optical Society of America, 2011), p. SMB3.

B. Wilburn, N. Joshi, V. Vaish, E.-V. Talvala, E. Antunez, A. Barth, A. Adams, M. Horowitz, and M. Levoy, “High performance imaging using large camera arrays,” in Proceedings of ACM SIGGRAPH (2005), pp. 765–776.

R. Ng, M. Levoy, M. Brédif, G. Duval, M. Horowitz, and P. Hanrahan, “Light field photography with a hand-held plenoptic camera,” Stanford Tech. Report CTSR (2005), pp. 1–11.

E. Y. Lam, “Computational photography: Advances and challenges,” in Tribute to Joseph W. Goodman, H. J. Caulfield and H. H. Arsenault, eds., Proc. SPIE 8122, 81220O (2011).

M. Levoy and P. Hanrahan, “Light field rendering,” in Proceedings of ACM SIGGRAPH (1996), pp. 31–42.

J. W. Goodman, Introduction to Fourier Optics, 3rd ed. (Roberts and Company Publishers, 2004).

E. H. Adelson and J. R. Bergen, “The plenoptic function and the elements of early vision,” in Computational Models of Visual Processing, M. S. Landy and J. A. Movshon, eds. (MIT Press, 1991), pp. 3–20.

S. J. Gortler, R. Grzeszczuk, R. Szeliski, and M. F. Cohen, “The lumigraph,” in Proceedings of ACM SIGGRAPH (1996), pp. 43–54.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics