Abstract

We investigate the simultaneous trapping and melting of a large number of gold (Au) nanorods by using a single focused laser beam at 800 nm which is in resonance with the longitudinal surface plasmon resonance of Au nanorods. The trapping and melting processes were monitored by the two-photon luminescence of Au nanorods. A multi-ring-shaped pattern was observed in the steady state of the trapping process. In addition, optical trapping of clusters of Au nanorods in the orbits circling the focus was observed. The morphology of the structure after trapping and melting of Au nanorods was characterized by scanning electron microscope. It was revealed that Au nanorods were selectively melted in the trapping region. While Au nanorods distributed in the dark rings were completely melted, those located in the bright rings remain unmelted. The multi-ring-shaped pattern formed by the interference between the incident light and the scattered light plays an important role in the trapping and melting of Au nanorods.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science275(5303), 1102–1106 (1997).
    [CrossRef] [PubMed]
  2. X. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, “Cancer cells assemble and align gold nanorods conjugated to antibodies to produce highly enhanced, sharp, and polarized surface Raman spectra: A potential cancer diagnostic marker,” Nano Lett.7(6), 1591–1597 (2007).
    [CrossRef] [PubMed]
  3. X. Qian, X. H. Peng, D. O. Ansari, Q. Yin-Goen, G. Z. Chen, D. M. Shin, L. Yang, A. N. Young, M. D. Wang, and S. Nie, “In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags,” Nat. Biotechnol.26(1), 83–90 (2008).
    [CrossRef] [PubMed]
  4. P. Zijlstra, J. W. M. Chon, and M. Gu, “Five-dimensional optical recording mediated by surface plasmons in gold nanorods,” Nature459(7245), 410–413 (2009).
    [CrossRef] [PubMed]
  5. J. W. M. Chon, C. Bullen, P. Zijlstra, and M. Gu, “Spectral encoding on gold nanorods doped in a silica sol-gel matrix and its application to high-density optical data storage,” Adv. Funct. Mater.17(6), 875–880 (2007).
    [CrossRef]
  6. H. Wang, T. B. Huff, D. A. Zweifel, W. He, P. S. Low, A. Wei, and J. X. Cheng, “In vitro and in vivo two-photon luminescence imaging of single gold nanorods,” Proc. Natl. Acad. Sci. U.S.A.102(44), 15752–15756 (2005).
    [CrossRef] [PubMed]
  7. N. J. Durr, T. Larson, D. K. Smith, B. A. Korgel, K. Sokolov, and A. Ben-Yakar, “Two-photon luminescence imaging of cancer cells using molecularly targeted gold nanorods,” Nano Lett.7(4), 941–945 (2007).
    [CrossRef] [PubMed]
  8. X. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, “Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods,” J. Am. Chem. Soc.128(6), 2115–2120 (2006).
    [CrossRef] [PubMed]
  9. I. H. El-Sayed, X. Huang, and M. A. El-Sayed, “Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: applications in oral cancer,” Nano Lett.5(5), 829–834 (2005).
    [CrossRef] [PubMed]
  10. C. Yu and J. Irudayaraj, “Multiplex biosensor using gold nanorods,” Anal. Chem.79(2), 572–579 (2007).
    [CrossRef] [PubMed]
  11. K. M. Mayer, S. Lee, H. Liao, B. C. Rostro, A. Fuentes, P. T. Scully, C. L. Nehl, and J. H. Hafner, “A label-free immunoassay based upon localized surface plasmon resonance of gold nanorods,” ACS Nano2(4), 687–692 (2008).
    [CrossRef] [PubMed]
  12. A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett.24(4), 156–159 (1970).
    [CrossRef]
  13. A. Ashkin, J. M. Dziedzic, and T. Yamane, “Optical trapping and manipulation of single cells using infrared laser beams,” Nature330(6150), 769–771 (1987).
    [CrossRef] [PubMed]
  14. A. Ashkin and J. M. Dziedzic, “Optical trapping and manipulation of viruses and bacteria,” Science235(4795), 1517–1520 (1987).
    [CrossRef] [PubMed]
  15. C. Selhuber-Unkel, I. Zins, O. Schubert, C. Sönnichsen, and L. B. Oddershede, “Quantitative optical trapping of single gold nanorods,” Nano Lett.8(9), 2998–3003 (2008).
    [CrossRef] [PubMed]
  16. M. Pelton, M. Liu, H. Y. Kim, G. Smith, P. Guyot-Sionnest, and N. F. Scherer, “Optical trapping and alignment of single gold nanorods by using plasmon resonances,” Opt. Lett.31(13), 2075–2077 (2006).
    [CrossRef] [PubMed]
  17. L. Tong, V. D. Miljković, and M. Käll, “Alignment, rotation, and spinning of single plasmonic nanoparticles and nanowires using polarization dependent optical forces,” Nano Lett.10(1), 268–273 (2010).
    [CrossRef] [PubMed]
  18. S. Link, C. Burda, B. Nikoobakht, and M. A. El-Sayed, “How long does it take to melt a gold nanorod,” Chem. Phys. Lett.315(1-2), 12–18 (1999).
    [CrossRef]
  19. S. Link, C. Burda, B. Nikoobakht, and M. A. El-Sayed, “Laser-induced shape changes of colloidal gold nanorods using femtosecond and nanosecond laser pulses,” J. Phys. Chem. B104(26), 6152–6163 (2000).
    [CrossRef]
  20. S. Link, Z. L. Wang, and M. A. El-Sayed, “How does a gold nanorod melt?” J. Phys. Chem. B104(33), 7867–7870 (2000).
    [CrossRef]
  21. S. Link, C. Burda, M. B. Mohamed, B. Nikoobakht, and M. A. El-Sayed, “Laser photothermal melting and fragmentation of gold nanorods: energy and laser pulse-width dependence,” J. Phys. Chem. A103(9), 1165–1170 (1999).
    [CrossRef]
  22. W. Schaertl and C. Roos, “Convection and thermodiffusion of colloidal gold tracers by laser light scattering,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics60(22 Pt B), 2020–2028 (1999).
    [CrossRef] [PubMed]
  23. R. Spill, W. Köhler, G. Lindenblatt, and W. Schaertl, “Thermal diffusion and Soret feedback of gold-doped polyorganosiloxane nanospheres in toluene,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics62(66 Pt B), 8361–8368 (2000).
    [CrossRef] [PubMed]
  24. M. M. Burns, J. M. Fournier, and J. A. Golovchenko, “Optical binding,” Phys. Rev. Lett.63(12), 1233–1236 (1989).
    [CrossRef] [PubMed]
  25. M. M. Burns, J. M. Fournier, and J. A. Golovchenko, “Optical matter: crystallization and binding in intense optical fields,” Science249(4970), 749–754 (1990).
    [CrossRef] [PubMed]
  26. S. A. Tatarkova, A. E. Carruthers, and K. Dholakia, “One-dimensional optically bound arrays of microscopic particles,” Phys. Rev. Lett.89(28), 283901 (2002).
    [CrossRef] [PubMed]
  27. A. Haldar, S. B. Pal, B. Roy, A. Banerjee, and S. Dutta Gupta, “Self assembly of microparticles in stable ring structures in an optical trap,” Phys. Rev. A (to be published).
  28. J. Liu, Q. F. Dai, Z. M. Meng, X. G. Huang, L. J. Wu, Q. Guo, W. Hu, S. Lan, A. V. Gopal, and V. A. Trofimov, “All-optical switching using controlled formation of large volume three-dimensional optical matter,” Appl. Phys. Lett.92(23), 233108 (2008).
    [CrossRef]
  29. G. Obara, N. Maeda, T. Miyanishi, M. Terakawa, N. N. Nedyalkov, and M. Obara, “Plasmonic and Mie scattering control of far-field interference for regular ripple formation on various material substrates,” Opt. Express19(20), 19093–19103 (2011).
    [CrossRef] [PubMed]
  30. G. Obara, Y. Tanaka, T. Miyanishi, and M. Obara, “Uniform plasmonic near-field nanopatterning by backward irradiation of femtosecond laser,” Appl. Phys., A Mater. Sci. Process.102(3), 551–557 (2011).
    [CrossRef]
  31. Y. Tanaka, G. Obara, A. Zenidaka, N. N. Nedyalkov, M. Terakawa, and M. Obara, “Near-field interaction of two-dimensional high-permittivity spherical particle arrays on substrate in the Mie resonance scattering domain,” Opt. Express18(26), 27226–27237 (2010).
    [CrossRef] [PubMed]
  32. G. Obara, Y. Tanaka, N. N. Nedyalkov, M. Terakawa, and M. Obara, “Direct observation of surface plasmon far field for regular surface ripple formation by femtosecond laser pulse irradiation of gold nanostructures on silicon substrates,” Appl. Phys. Lett.99(6), 061106 (2011).
    [CrossRef]
  33. J. W. Yao, C. Y. Zhang, H. Y. Liu, Q. F. Dai, L. J. Wu, S. Lan, A. V. Gopal, V. A. Trofimov, and T. M. Lysak, “High spatial frequency periodic structures induced on metal surface by femtosecond laser pulses,” Opt. Express20(2), 905–911 (2012).
    [CrossRef] [PubMed]

2012

2011

G. Obara, N. Maeda, T. Miyanishi, M. Terakawa, N. N. Nedyalkov, and M. Obara, “Plasmonic and Mie scattering control of far-field interference for regular ripple formation on various material substrates,” Opt. Express19(20), 19093–19103 (2011).
[CrossRef] [PubMed]

G. Obara, Y. Tanaka, T. Miyanishi, and M. Obara, “Uniform plasmonic near-field nanopatterning by backward irradiation of femtosecond laser,” Appl. Phys., A Mater. Sci. Process.102(3), 551–557 (2011).
[CrossRef]

G. Obara, Y. Tanaka, N. N. Nedyalkov, M. Terakawa, and M. Obara, “Direct observation of surface plasmon far field for regular surface ripple formation by femtosecond laser pulse irradiation of gold nanostructures on silicon substrates,” Appl. Phys. Lett.99(6), 061106 (2011).
[CrossRef]

2010

Y. Tanaka, G. Obara, A. Zenidaka, N. N. Nedyalkov, M. Terakawa, and M. Obara, “Near-field interaction of two-dimensional high-permittivity spherical particle arrays on substrate in the Mie resonance scattering domain,” Opt. Express18(26), 27226–27237 (2010).
[CrossRef] [PubMed]

L. Tong, V. D. Miljković, and M. Käll, “Alignment, rotation, and spinning of single plasmonic nanoparticles and nanowires using polarization dependent optical forces,” Nano Lett.10(1), 268–273 (2010).
[CrossRef] [PubMed]

2009

P. Zijlstra, J. W. M. Chon, and M. Gu, “Five-dimensional optical recording mediated by surface plasmons in gold nanorods,” Nature459(7245), 410–413 (2009).
[CrossRef] [PubMed]

2008

X. Qian, X. H. Peng, D. O. Ansari, Q. Yin-Goen, G. Z. Chen, D. M. Shin, L. Yang, A. N. Young, M. D. Wang, and S. Nie, “In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags,” Nat. Biotechnol.26(1), 83–90 (2008).
[CrossRef] [PubMed]

C. Selhuber-Unkel, I. Zins, O. Schubert, C. Sönnichsen, and L. B. Oddershede, “Quantitative optical trapping of single gold nanorods,” Nano Lett.8(9), 2998–3003 (2008).
[CrossRef] [PubMed]

K. M. Mayer, S. Lee, H. Liao, B. C. Rostro, A. Fuentes, P. T. Scully, C. L. Nehl, and J. H. Hafner, “A label-free immunoassay based upon localized surface plasmon resonance of gold nanorods,” ACS Nano2(4), 687–692 (2008).
[CrossRef] [PubMed]

J. Liu, Q. F. Dai, Z. M. Meng, X. G. Huang, L. J. Wu, Q. Guo, W. Hu, S. Lan, A. V. Gopal, and V. A. Trofimov, “All-optical switching using controlled formation of large volume three-dimensional optical matter,” Appl. Phys. Lett.92(23), 233108 (2008).
[CrossRef]

2007

C. Yu and J. Irudayaraj, “Multiplex biosensor using gold nanorods,” Anal. Chem.79(2), 572–579 (2007).
[CrossRef] [PubMed]

N. J. Durr, T. Larson, D. K. Smith, B. A. Korgel, K. Sokolov, and A. Ben-Yakar, “Two-photon luminescence imaging of cancer cells using molecularly targeted gold nanorods,” Nano Lett.7(4), 941–945 (2007).
[CrossRef] [PubMed]

J. W. M. Chon, C. Bullen, P. Zijlstra, and M. Gu, “Spectral encoding on gold nanorods doped in a silica sol-gel matrix and its application to high-density optical data storage,” Adv. Funct. Mater.17(6), 875–880 (2007).
[CrossRef]

X. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, “Cancer cells assemble and align gold nanorods conjugated to antibodies to produce highly enhanced, sharp, and polarized surface Raman spectra: A potential cancer diagnostic marker,” Nano Lett.7(6), 1591–1597 (2007).
[CrossRef] [PubMed]

2006

X. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, “Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods,” J. Am. Chem. Soc.128(6), 2115–2120 (2006).
[CrossRef] [PubMed]

M. Pelton, M. Liu, H. Y. Kim, G. Smith, P. Guyot-Sionnest, and N. F. Scherer, “Optical trapping and alignment of single gold nanorods by using plasmon resonances,” Opt. Lett.31(13), 2075–2077 (2006).
[CrossRef] [PubMed]

2005

I. H. El-Sayed, X. Huang, and M. A. El-Sayed, “Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: applications in oral cancer,” Nano Lett.5(5), 829–834 (2005).
[CrossRef] [PubMed]

H. Wang, T. B. Huff, D. A. Zweifel, W. He, P. S. Low, A. Wei, and J. X. Cheng, “In vitro and in vivo two-photon luminescence imaging of single gold nanorods,” Proc. Natl. Acad. Sci. U.S.A.102(44), 15752–15756 (2005).
[CrossRef] [PubMed]

2002

S. A. Tatarkova, A. E. Carruthers, and K. Dholakia, “One-dimensional optically bound arrays of microscopic particles,” Phys. Rev. Lett.89(28), 283901 (2002).
[CrossRef] [PubMed]

2000

R. Spill, W. Köhler, G. Lindenblatt, and W. Schaertl, “Thermal diffusion and Soret feedback of gold-doped polyorganosiloxane nanospheres in toluene,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics62(66 Pt B), 8361–8368 (2000).
[CrossRef] [PubMed]

S. Link, C. Burda, B. Nikoobakht, and M. A. El-Sayed, “Laser-induced shape changes of colloidal gold nanorods using femtosecond and nanosecond laser pulses,” J. Phys. Chem. B104(26), 6152–6163 (2000).
[CrossRef]

S. Link, Z. L. Wang, and M. A. El-Sayed, “How does a gold nanorod melt?” J. Phys. Chem. B104(33), 7867–7870 (2000).
[CrossRef]

1999

S. Link, C. Burda, M. B. Mohamed, B. Nikoobakht, and M. A. El-Sayed, “Laser photothermal melting and fragmentation of gold nanorods: energy and laser pulse-width dependence,” J. Phys. Chem. A103(9), 1165–1170 (1999).
[CrossRef]

W. Schaertl and C. Roos, “Convection and thermodiffusion of colloidal gold tracers by laser light scattering,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics60(22 Pt B), 2020–2028 (1999).
[CrossRef] [PubMed]

S. Link, C. Burda, B. Nikoobakht, and M. A. El-Sayed, “How long does it take to melt a gold nanorod,” Chem. Phys. Lett.315(1-2), 12–18 (1999).
[CrossRef]

1997

S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science275(5303), 1102–1106 (1997).
[CrossRef] [PubMed]

1990

M. M. Burns, J. M. Fournier, and J. A. Golovchenko, “Optical matter: crystallization and binding in intense optical fields,” Science249(4970), 749–754 (1990).
[CrossRef] [PubMed]

1989

M. M. Burns, J. M. Fournier, and J. A. Golovchenko, “Optical binding,” Phys. Rev. Lett.63(12), 1233–1236 (1989).
[CrossRef] [PubMed]

1987

A. Ashkin, J. M. Dziedzic, and T. Yamane, “Optical trapping and manipulation of single cells using infrared laser beams,” Nature330(6150), 769–771 (1987).
[CrossRef] [PubMed]

A. Ashkin and J. M. Dziedzic, “Optical trapping and manipulation of viruses and bacteria,” Science235(4795), 1517–1520 (1987).
[CrossRef] [PubMed]

1970

A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett.24(4), 156–159 (1970).
[CrossRef]

Ansari, D. O.

X. Qian, X. H. Peng, D. O. Ansari, Q. Yin-Goen, G. Z. Chen, D. M. Shin, L. Yang, A. N. Young, M. D. Wang, and S. Nie, “In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags,” Nat. Biotechnol.26(1), 83–90 (2008).
[CrossRef] [PubMed]

Ashkin, A.

A. Ashkin and J. M. Dziedzic, “Optical trapping and manipulation of viruses and bacteria,” Science235(4795), 1517–1520 (1987).
[CrossRef] [PubMed]

A. Ashkin, J. M. Dziedzic, and T. Yamane, “Optical trapping and manipulation of single cells using infrared laser beams,” Nature330(6150), 769–771 (1987).
[CrossRef] [PubMed]

A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett.24(4), 156–159 (1970).
[CrossRef]

Banerjee, A.

A. Haldar, S. B. Pal, B. Roy, A. Banerjee, and S. Dutta Gupta, “Self assembly of microparticles in stable ring structures in an optical trap,” Phys. Rev. A (to be published).

Ben-Yakar, A.

N. J. Durr, T. Larson, D. K. Smith, B. A. Korgel, K. Sokolov, and A. Ben-Yakar, “Two-photon luminescence imaging of cancer cells using molecularly targeted gold nanorods,” Nano Lett.7(4), 941–945 (2007).
[CrossRef] [PubMed]

Bullen, C.

J. W. M. Chon, C. Bullen, P. Zijlstra, and M. Gu, “Spectral encoding on gold nanorods doped in a silica sol-gel matrix and its application to high-density optical data storage,” Adv. Funct. Mater.17(6), 875–880 (2007).
[CrossRef]

Burda, C.

S. Link, C. Burda, B. Nikoobakht, and M. A. El-Sayed, “Laser-induced shape changes of colloidal gold nanorods using femtosecond and nanosecond laser pulses,” J. Phys. Chem. B104(26), 6152–6163 (2000).
[CrossRef]

S. Link, C. Burda, B. Nikoobakht, and M. A. El-Sayed, “How long does it take to melt a gold nanorod,” Chem. Phys. Lett.315(1-2), 12–18 (1999).
[CrossRef]

S. Link, C. Burda, M. B. Mohamed, B. Nikoobakht, and M. A. El-Sayed, “Laser photothermal melting and fragmentation of gold nanorods: energy and laser pulse-width dependence,” J. Phys. Chem. A103(9), 1165–1170 (1999).
[CrossRef]

Burns, M. M.

M. M. Burns, J. M. Fournier, and J. A. Golovchenko, “Optical matter: crystallization and binding in intense optical fields,” Science249(4970), 749–754 (1990).
[CrossRef] [PubMed]

M. M. Burns, J. M. Fournier, and J. A. Golovchenko, “Optical binding,” Phys. Rev. Lett.63(12), 1233–1236 (1989).
[CrossRef] [PubMed]

Carruthers, A. E.

S. A. Tatarkova, A. E. Carruthers, and K. Dholakia, “One-dimensional optically bound arrays of microscopic particles,” Phys. Rev. Lett.89(28), 283901 (2002).
[CrossRef] [PubMed]

Chen, G. Z.

X. Qian, X. H. Peng, D. O. Ansari, Q. Yin-Goen, G. Z. Chen, D. M. Shin, L. Yang, A. N. Young, M. D. Wang, and S. Nie, “In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags,” Nat. Biotechnol.26(1), 83–90 (2008).
[CrossRef] [PubMed]

Cheng, J. X.

H. Wang, T. B. Huff, D. A. Zweifel, W. He, P. S. Low, A. Wei, and J. X. Cheng, “In vitro and in vivo two-photon luminescence imaging of single gold nanorods,” Proc. Natl. Acad. Sci. U.S.A.102(44), 15752–15756 (2005).
[CrossRef] [PubMed]

Chon, J. W. M.

P. Zijlstra, J. W. M. Chon, and M. Gu, “Five-dimensional optical recording mediated by surface plasmons in gold nanorods,” Nature459(7245), 410–413 (2009).
[CrossRef] [PubMed]

J. W. M. Chon, C. Bullen, P. Zijlstra, and M. Gu, “Spectral encoding on gold nanorods doped in a silica sol-gel matrix and its application to high-density optical data storage,” Adv. Funct. Mater.17(6), 875–880 (2007).
[CrossRef]

Dai, Q. F.

J. W. Yao, C. Y. Zhang, H. Y. Liu, Q. F. Dai, L. J. Wu, S. Lan, A. V. Gopal, V. A. Trofimov, and T. M. Lysak, “High spatial frequency periodic structures induced on metal surface by femtosecond laser pulses,” Opt. Express20(2), 905–911 (2012).
[CrossRef] [PubMed]

J. Liu, Q. F. Dai, Z. M. Meng, X. G. Huang, L. J. Wu, Q. Guo, W. Hu, S. Lan, A. V. Gopal, and V. A. Trofimov, “All-optical switching using controlled formation of large volume three-dimensional optical matter,” Appl. Phys. Lett.92(23), 233108 (2008).
[CrossRef]

Dholakia, K.

S. A. Tatarkova, A. E. Carruthers, and K. Dholakia, “One-dimensional optically bound arrays of microscopic particles,” Phys. Rev. Lett.89(28), 283901 (2002).
[CrossRef] [PubMed]

Durr, N. J.

N. J. Durr, T. Larson, D. K. Smith, B. A. Korgel, K. Sokolov, and A. Ben-Yakar, “Two-photon luminescence imaging of cancer cells using molecularly targeted gold nanorods,” Nano Lett.7(4), 941–945 (2007).
[CrossRef] [PubMed]

Dutta Gupta, S.

A. Haldar, S. B. Pal, B. Roy, A. Banerjee, and S. Dutta Gupta, “Self assembly of microparticles in stable ring structures in an optical trap,” Phys. Rev. A (to be published).

Dziedzic, J. M.

A. Ashkin and J. M. Dziedzic, “Optical trapping and manipulation of viruses and bacteria,” Science235(4795), 1517–1520 (1987).
[CrossRef] [PubMed]

A. Ashkin, J. M. Dziedzic, and T. Yamane, “Optical trapping and manipulation of single cells using infrared laser beams,” Nature330(6150), 769–771 (1987).
[CrossRef] [PubMed]

El-Sayed, I. H.

X. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, “Cancer cells assemble and align gold nanorods conjugated to antibodies to produce highly enhanced, sharp, and polarized surface Raman spectra: A potential cancer diagnostic marker,” Nano Lett.7(6), 1591–1597 (2007).
[CrossRef] [PubMed]

X. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, “Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods,” J. Am. Chem. Soc.128(6), 2115–2120 (2006).
[CrossRef] [PubMed]

I. H. El-Sayed, X. Huang, and M. A. El-Sayed, “Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: applications in oral cancer,” Nano Lett.5(5), 829–834 (2005).
[CrossRef] [PubMed]

El-Sayed, M. A.

X. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, “Cancer cells assemble and align gold nanorods conjugated to antibodies to produce highly enhanced, sharp, and polarized surface Raman spectra: A potential cancer diagnostic marker,” Nano Lett.7(6), 1591–1597 (2007).
[CrossRef] [PubMed]

X. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, “Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods,” J. Am. Chem. Soc.128(6), 2115–2120 (2006).
[CrossRef] [PubMed]

I. H. El-Sayed, X. Huang, and M. A. El-Sayed, “Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: applications in oral cancer,” Nano Lett.5(5), 829–834 (2005).
[CrossRef] [PubMed]

S. Link, C. Burda, B. Nikoobakht, and M. A. El-Sayed, “Laser-induced shape changes of colloidal gold nanorods using femtosecond and nanosecond laser pulses,” J. Phys. Chem. B104(26), 6152–6163 (2000).
[CrossRef]

S. Link, Z. L. Wang, and M. A. El-Sayed, “How does a gold nanorod melt?” J. Phys. Chem. B104(33), 7867–7870 (2000).
[CrossRef]

S. Link, C. Burda, B. Nikoobakht, and M. A. El-Sayed, “How long does it take to melt a gold nanorod,” Chem. Phys. Lett.315(1-2), 12–18 (1999).
[CrossRef]

S. Link, C. Burda, M. B. Mohamed, B. Nikoobakht, and M. A. El-Sayed, “Laser photothermal melting and fragmentation of gold nanorods: energy and laser pulse-width dependence,” J. Phys. Chem. A103(9), 1165–1170 (1999).
[CrossRef]

Emory, S. R.

S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science275(5303), 1102–1106 (1997).
[CrossRef] [PubMed]

Fournier, J. M.

M. M. Burns, J. M. Fournier, and J. A. Golovchenko, “Optical matter: crystallization and binding in intense optical fields,” Science249(4970), 749–754 (1990).
[CrossRef] [PubMed]

M. M. Burns, J. M. Fournier, and J. A. Golovchenko, “Optical binding,” Phys. Rev. Lett.63(12), 1233–1236 (1989).
[CrossRef] [PubMed]

Fuentes, A.

K. M. Mayer, S. Lee, H. Liao, B. C. Rostro, A. Fuentes, P. T. Scully, C. L. Nehl, and J. H. Hafner, “A label-free immunoassay based upon localized surface plasmon resonance of gold nanorods,” ACS Nano2(4), 687–692 (2008).
[CrossRef] [PubMed]

Golovchenko, J. A.

M. M. Burns, J. M. Fournier, and J. A. Golovchenko, “Optical matter: crystallization and binding in intense optical fields,” Science249(4970), 749–754 (1990).
[CrossRef] [PubMed]

M. M. Burns, J. M. Fournier, and J. A. Golovchenko, “Optical binding,” Phys. Rev. Lett.63(12), 1233–1236 (1989).
[CrossRef] [PubMed]

Gopal, A. V.

J. W. Yao, C. Y. Zhang, H. Y. Liu, Q. F. Dai, L. J. Wu, S. Lan, A. V. Gopal, V. A. Trofimov, and T. M. Lysak, “High spatial frequency periodic structures induced on metal surface by femtosecond laser pulses,” Opt. Express20(2), 905–911 (2012).
[CrossRef] [PubMed]

J. Liu, Q. F. Dai, Z. M. Meng, X. G. Huang, L. J. Wu, Q. Guo, W. Hu, S. Lan, A. V. Gopal, and V. A. Trofimov, “All-optical switching using controlled formation of large volume three-dimensional optical matter,” Appl. Phys. Lett.92(23), 233108 (2008).
[CrossRef]

Gu, M.

P. Zijlstra, J. W. M. Chon, and M. Gu, “Five-dimensional optical recording mediated by surface plasmons in gold nanorods,” Nature459(7245), 410–413 (2009).
[CrossRef] [PubMed]

J. W. M. Chon, C. Bullen, P. Zijlstra, and M. Gu, “Spectral encoding on gold nanorods doped in a silica sol-gel matrix and its application to high-density optical data storage,” Adv. Funct. Mater.17(6), 875–880 (2007).
[CrossRef]

Guo, Q.

J. Liu, Q. F. Dai, Z. M. Meng, X. G. Huang, L. J. Wu, Q. Guo, W. Hu, S. Lan, A. V. Gopal, and V. A. Trofimov, “All-optical switching using controlled formation of large volume three-dimensional optical matter,” Appl. Phys. Lett.92(23), 233108 (2008).
[CrossRef]

Guyot-Sionnest, P.

Hafner, J. H.

K. M. Mayer, S. Lee, H. Liao, B. C. Rostro, A. Fuentes, P. T. Scully, C. L. Nehl, and J. H. Hafner, “A label-free immunoassay based upon localized surface plasmon resonance of gold nanorods,” ACS Nano2(4), 687–692 (2008).
[CrossRef] [PubMed]

Haldar, A.

A. Haldar, S. B. Pal, B. Roy, A. Banerjee, and S. Dutta Gupta, “Self assembly of microparticles in stable ring structures in an optical trap,” Phys. Rev. A (to be published).

He, W.

H. Wang, T. B. Huff, D. A. Zweifel, W. He, P. S. Low, A. Wei, and J. X. Cheng, “In vitro and in vivo two-photon luminescence imaging of single gold nanorods,” Proc. Natl. Acad. Sci. U.S.A.102(44), 15752–15756 (2005).
[CrossRef] [PubMed]

Hu, W.

J. Liu, Q. F. Dai, Z. M. Meng, X. G. Huang, L. J. Wu, Q. Guo, W. Hu, S. Lan, A. V. Gopal, and V. A. Trofimov, “All-optical switching using controlled formation of large volume three-dimensional optical matter,” Appl. Phys. Lett.92(23), 233108 (2008).
[CrossRef]

Huang, X.

X. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, “Cancer cells assemble and align gold nanorods conjugated to antibodies to produce highly enhanced, sharp, and polarized surface Raman spectra: A potential cancer diagnostic marker,” Nano Lett.7(6), 1591–1597 (2007).
[CrossRef] [PubMed]

X. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, “Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods,” J. Am. Chem. Soc.128(6), 2115–2120 (2006).
[CrossRef] [PubMed]

I. H. El-Sayed, X. Huang, and M. A. El-Sayed, “Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: applications in oral cancer,” Nano Lett.5(5), 829–834 (2005).
[CrossRef] [PubMed]

Huang, X. G.

J. Liu, Q. F. Dai, Z. M. Meng, X. G. Huang, L. J. Wu, Q. Guo, W. Hu, S. Lan, A. V. Gopal, and V. A. Trofimov, “All-optical switching using controlled formation of large volume three-dimensional optical matter,” Appl. Phys. Lett.92(23), 233108 (2008).
[CrossRef]

Huff, T. B.

H. Wang, T. B. Huff, D. A. Zweifel, W. He, P. S. Low, A. Wei, and J. X. Cheng, “In vitro and in vivo two-photon luminescence imaging of single gold nanorods,” Proc. Natl. Acad. Sci. U.S.A.102(44), 15752–15756 (2005).
[CrossRef] [PubMed]

Irudayaraj, J.

C. Yu and J. Irudayaraj, “Multiplex biosensor using gold nanorods,” Anal. Chem.79(2), 572–579 (2007).
[CrossRef] [PubMed]

Käll, M.

L. Tong, V. D. Miljković, and M. Käll, “Alignment, rotation, and spinning of single plasmonic nanoparticles and nanowires using polarization dependent optical forces,” Nano Lett.10(1), 268–273 (2010).
[CrossRef] [PubMed]

Kim, H. Y.

Köhler, W.

R. Spill, W. Köhler, G. Lindenblatt, and W. Schaertl, “Thermal diffusion and Soret feedback of gold-doped polyorganosiloxane nanospheres in toluene,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics62(66 Pt B), 8361–8368 (2000).
[CrossRef] [PubMed]

Korgel, B. A.

N. J. Durr, T. Larson, D. K. Smith, B. A. Korgel, K. Sokolov, and A. Ben-Yakar, “Two-photon luminescence imaging of cancer cells using molecularly targeted gold nanorods,” Nano Lett.7(4), 941–945 (2007).
[CrossRef] [PubMed]

Lan, S.

J. W. Yao, C. Y. Zhang, H. Y. Liu, Q. F. Dai, L. J. Wu, S. Lan, A. V. Gopal, V. A. Trofimov, and T. M. Lysak, “High spatial frequency periodic structures induced on metal surface by femtosecond laser pulses,” Opt. Express20(2), 905–911 (2012).
[CrossRef] [PubMed]

J. Liu, Q. F. Dai, Z. M. Meng, X. G. Huang, L. J. Wu, Q. Guo, W. Hu, S. Lan, A. V. Gopal, and V. A. Trofimov, “All-optical switching using controlled formation of large volume three-dimensional optical matter,” Appl. Phys. Lett.92(23), 233108 (2008).
[CrossRef]

Larson, T.

N. J. Durr, T. Larson, D. K. Smith, B. A. Korgel, K. Sokolov, and A. Ben-Yakar, “Two-photon luminescence imaging of cancer cells using molecularly targeted gold nanorods,” Nano Lett.7(4), 941–945 (2007).
[CrossRef] [PubMed]

Lee, S.

K. M. Mayer, S. Lee, H. Liao, B. C. Rostro, A. Fuentes, P. T. Scully, C. L. Nehl, and J. H. Hafner, “A label-free immunoassay based upon localized surface plasmon resonance of gold nanorods,” ACS Nano2(4), 687–692 (2008).
[CrossRef] [PubMed]

Liao, H.

K. M. Mayer, S. Lee, H. Liao, B. C. Rostro, A. Fuentes, P. T. Scully, C. L. Nehl, and J. H. Hafner, “A label-free immunoassay based upon localized surface plasmon resonance of gold nanorods,” ACS Nano2(4), 687–692 (2008).
[CrossRef] [PubMed]

Lindenblatt, G.

R. Spill, W. Köhler, G. Lindenblatt, and W. Schaertl, “Thermal diffusion and Soret feedback of gold-doped polyorganosiloxane nanospheres in toluene,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics62(66 Pt B), 8361–8368 (2000).
[CrossRef] [PubMed]

Link, S.

S. Link, C. Burda, B. Nikoobakht, and M. A. El-Sayed, “Laser-induced shape changes of colloidal gold nanorods using femtosecond and nanosecond laser pulses,” J. Phys. Chem. B104(26), 6152–6163 (2000).
[CrossRef]

S. Link, Z. L. Wang, and M. A. El-Sayed, “How does a gold nanorod melt?” J. Phys. Chem. B104(33), 7867–7870 (2000).
[CrossRef]

S. Link, C. Burda, M. B. Mohamed, B. Nikoobakht, and M. A. El-Sayed, “Laser photothermal melting and fragmentation of gold nanorods: energy and laser pulse-width dependence,” J. Phys. Chem. A103(9), 1165–1170 (1999).
[CrossRef]

S. Link, C. Burda, B. Nikoobakht, and M. A. El-Sayed, “How long does it take to melt a gold nanorod,” Chem. Phys. Lett.315(1-2), 12–18 (1999).
[CrossRef]

Liu, H. Y.

Liu, J.

J. Liu, Q. F. Dai, Z. M. Meng, X. G. Huang, L. J. Wu, Q. Guo, W. Hu, S. Lan, A. V. Gopal, and V. A. Trofimov, “All-optical switching using controlled formation of large volume three-dimensional optical matter,” Appl. Phys. Lett.92(23), 233108 (2008).
[CrossRef]

Liu, M.

Low, P. S.

H. Wang, T. B. Huff, D. A. Zweifel, W. He, P. S. Low, A. Wei, and J. X. Cheng, “In vitro and in vivo two-photon luminescence imaging of single gold nanorods,” Proc. Natl. Acad. Sci. U.S.A.102(44), 15752–15756 (2005).
[CrossRef] [PubMed]

Lysak, T. M.

Maeda, N.

Mayer, K. M.

K. M. Mayer, S. Lee, H. Liao, B. C. Rostro, A. Fuentes, P. T. Scully, C. L. Nehl, and J. H. Hafner, “A label-free immunoassay based upon localized surface plasmon resonance of gold nanorods,” ACS Nano2(4), 687–692 (2008).
[CrossRef] [PubMed]

Meng, Z. M.

J. Liu, Q. F. Dai, Z. M. Meng, X. G. Huang, L. J. Wu, Q. Guo, W. Hu, S. Lan, A. V. Gopal, and V. A. Trofimov, “All-optical switching using controlled formation of large volume three-dimensional optical matter,” Appl. Phys. Lett.92(23), 233108 (2008).
[CrossRef]

Miljkovic, V. D.

L. Tong, V. D. Miljković, and M. Käll, “Alignment, rotation, and spinning of single plasmonic nanoparticles and nanowires using polarization dependent optical forces,” Nano Lett.10(1), 268–273 (2010).
[CrossRef] [PubMed]

Miyanishi, T.

G. Obara, N. Maeda, T. Miyanishi, M. Terakawa, N. N. Nedyalkov, and M. Obara, “Plasmonic and Mie scattering control of far-field interference for regular ripple formation on various material substrates,” Opt. Express19(20), 19093–19103 (2011).
[CrossRef] [PubMed]

G. Obara, Y. Tanaka, T. Miyanishi, and M. Obara, “Uniform plasmonic near-field nanopatterning by backward irradiation of femtosecond laser,” Appl. Phys., A Mater. Sci. Process.102(3), 551–557 (2011).
[CrossRef]

Mohamed, M. B.

S. Link, C. Burda, M. B. Mohamed, B. Nikoobakht, and M. A. El-Sayed, “Laser photothermal melting and fragmentation of gold nanorods: energy and laser pulse-width dependence,” J. Phys. Chem. A103(9), 1165–1170 (1999).
[CrossRef]

Nedyalkov, N. N.

Nehl, C. L.

K. M. Mayer, S. Lee, H. Liao, B. C. Rostro, A. Fuentes, P. T. Scully, C. L. Nehl, and J. H. Hafner, “A label-free immunoassay based upon localized surface plasmon resonance of gold nanorods,” ACS Nano2(4), 687–692 (2008).
[CrossRef] [PubMed]

Nie, S.

X. Qian, X. H. Peng, D. O. Ansari, Q. Yin-Goen, G. Z. Chen, D. M. Shin, L. Yang, A. N. Young, M. D. Wang, and S. Nie, “In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags,” Nat. Biotechnol.26(1), 83–90 (2008).
[CrossRef] [PubMed]

S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science275(5303), 1102–1106 (1997).
[CrossRef] [PubMed]

Nikoobakht, B.

S. Link, C. Burda, B. Nikoobakht, and M. A. El-Sayed, “Laser-induced shape changes of colloidal gold nanorods using femtosecond and nanosecond laser pulses,” J. Phys. Chem. B104(26), 6152–6163 (2000).
[CrossRef]

S. Link, C. Burda, B. Nikoobakht, and M. A. El-Sayed, “How long does it take to melt a gold nanorod,” Chem. Phys. Lett.315(1-2), 12–18 (1999).
[CrossRef]

S. Link, C. Burda, M. B. Mohamed, B. Nikoobakht, and M. A. El-Sayed, “Laser photothermal melting and fragmentation of gold nanorods: energy and laser pulse-width dependence,” J. Phys. Chem. A103(9), 1165–1170 (1999).
[CrossRef]

Obara, G.

G. Obara, Y. Tanaka, T. Miyanishi, and M. Obara, “Uniform plasmonic near-field nanopatterning by backward irradiation of femtosecond laser,” Appl. Phys., A Mater. Sci. Process.102(3), 551–557 (2011).
[CrossRef]

G. Obara, N. Maeda, T. Miyanishi, M. Terakawa, N. N. Nedyalkov, and M. Obara, “Plasmonic and Mie scattering control of far-field interference for regular ripple formation on various material substrates,” Opt. Express19(20), 19093–19103 (2011).
[CrossRef] [PubMed]

G. Obara, Y. Tanaka, N. N. Nedyalkov, M. Terakawa, and M. Obara, “Direct observation of surface plasmon far field for regular surface ripple formation by femtosecond laser pulse irradiation of gold nanostructures on silicon substrates,” Appl. Phys. Lett.99(6), 061106 (2011).
[CrossRef]

Y. Tanaka, G. Obara, A. Zenidaka, N. N. Nedyalkov, M. Terakawa, and M. Obara, “Near-field interaction of two-dimensional high-permittivity spherical particle arrays on substrate in the Mie resonance scattering domain,” Opt. Express18(26), 27226–27237 (2010).
[CrossRef] [PubMed]

Obara, M.

G. Obara, Y. Tanaka, T. Miyanishi, and M. Obara, “Uniform plasmonic near-field nanopatterning by backward irradiation of femtosecond laser,” Appl. Phys., A Mater. Sci. Process.102(3), 551–557 (2011).
[CrossRef]

G. Obara, Y. Tanaka, N. N. Nedyalkov, M. Terakawa, and M. Obara, “Direct observation of surface plasmon far field for regular surface ripple formation by femtosecond laser pulse irradiation of gold nanostructures on silicon substrates,” Appl. Phys. Lett.99(6), 061106 (2011).
[CrossRef]

G. Obara, N. Maeda, T. Miyanishi, M. Terakawa, N. N. Nedyalkov, and M. Obara, “Plasmonic and Mie scattering control of far-field interference for regular ripple formation on various material substrates,” Opt. Express19(20), 19093–19103 (2011).
[CrossRef] [PubMed]

Y. Tanaka, G. Obara, A. Zenidaka, N. N. Nedyalkov, M. Terakawa, and M. Obara, “Near-field interaction of two-dimensional high-permittivity spherical particle arrays on substrate in the Mie resonance scattering domain,” Opt. Express18(26), 27226–27237 (2010).
[CrossRef] [PubMed]

Oddershede, L. B.

C. Selhuber-Unkel, I. Zins, O. Schubert, C. Sönnichsen, and L. B. Oddershede, “Quantitative optical trapping of single gold nanorods,” Nano Lett.8(9), 2998–3003 (2008).
[CrossRef] [PubMed]

Pal, S. B.

A. Haldar, S. B. Pal, B. Roy, A. Banerjee, and S. Dutta Gupta, “Self assembly of microparticles in stable ring structures in an optical trap,” Phys. Rev. A (to be published).

Pelton, M.

Peng, X. H.

X. Qian, X. H. Peng, D. O. Ansari, Q. Yin-Goen, G. Z. Chen, D. M. Shin, L. Yang, A. N. Young, M. D. Wang, and S. Nie, “In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags,” Nat. Biotechnol.26(1), 83–90 (2008).
[CrossRef] [PubMed]

Qian, W.

X. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, “Cancer cells assemble and align gold nanorods conjugated to antibodies to produce highly enhanced, sharp, and polarized surface Raman spectra: A potential cancer diagnostic marker,” Nano Lett.7(6), 1591–1597 (2007).
[CrossRef] [PubMed]

X. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, “Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods,” J. Am. Chem. Soc.128(6), 2115–2120 (2006).
[CrossRef] [PubMed]

Qian, X.

X. Qian, X. H. Peng, D. O. Ansari, Q. Yin-Goen, G. Z. Chen, D. M. Shin, L. Yang, A. N. Young, M. D. Wang, and S. Nie, “In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags,” Nat. Biotechnol.26(1), 83–90 (2008).
[CrossRef] [PubMed]

Roos, C.

W. Schaertl and C. Roos, “Convection and thermodiffusion of colloidal gold tracers by laser light scattering,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics60(22 Pt B), 2020–2028 (1999).
[CrossRef] [PubMed]

Rostro, B. C.

K. M. Mayer, S. Lee, H. Liao, B. C. Rostro, A. Fuentes, P. T. Scully, C. L. Nehl, and J. H. Hafner, “A label-free immunoassay based upon localized surface plasmon resonance of gold nanorods,” ACS Nano2(4), 687–692 (2008).
[CrossRef] [PubMed]

Roy, B.

A. Haldar, S. B. Pal, B. Roy, A. Banerjee, and S. Dutta Gupta, “Self assembly of microparticles in stable ring structures in an optical trap,” Phys. Rev. A (to be published).

Schaertl, W.

R. Spill, W. Köhler, G. Lindenblatt, and W. Schaertl, “Thermal diffusion and Soret feedback of gold-doped polyorganosiloxane nanospheres in toluene,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics62(66 Pt B), 8361–8368 (2000).
[CrossRef] [PubMed]

W. Schaertl and C. Roos, “Convection and thermodiffusion of colloidal gold tracers by laser light scattering,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics60(22 Pt B), 2020–2028 (1999).
[CrossRef] [PubMed]

Scherer, N. F.

Schubert, O.

C. Selhuber-Unkel, I. Zins, O. Schubert, C. Sönnichsen, and L. B. Oddershede, “Quantitative optical trapping of single gold nanorods,” Nano Lett.8(9), 2998–3003 (2008).
[CrossRef] [PubMed]

Scully, P. T.

K. M. Mayer, S. Lee, H. Liao, B. C. Rostro, A. Fuentes, P. T. Scully, C. L. Nehl, and J. H. Hafner, “A label-free immunoassay based upon localized surface plasmon resonance of gold nanorods,” ACS Nano2(4), 687–692 (2008).
[CrossRef] [PubMed]

Selhuber-Unkel, C.

C. Selhuber-Unkel, I. Zins, O. Schubert, C. Sönnichsen, and L. B. Oddershede, “Quantitative optical trapping of single gold nanorods,” Nano Lett.8(9), 2998–3003 (2008).
[CrossRef] [PubMed]

Shin, D. M.

X. Qian, X. H. Peng, D. O. Ansari, Q. Yin-Goen, G. Z. Chen, D. M. Shin, L. Yang, A. N. Young, M. D. Wang, and S. Nie, “In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags,” Nat. Biotechnol.26(1), 83–90 (2008).
[CrossRef] [PubMed]

Smith, D. K.

N. J. Durr, T. Larson, D. K. Smith, B. A. Korgel, K. Sokolov, and A. Ben-Yakar, “Two-photon luminescence imaging of cancer cells using molecularly targeted gold nanorods,” Nano Lett.7(4), 941–945 (2007).
[CrossRef] [PubMed]

Smith, G.

Sokolov, K.

N. J. Durr, T. Larson, D. K. Smith, B. A. Korgel, K. Sokolov, and A. Ben-Yakar, “Two-photon luminescence imaging of cancer cells using molecularly targeted gold nanorods,” Nano Lett.7(4), 941–945 (2007).
[CrossRef] [PubMed]

Sönnichsen, C.

C. Selhuber-Unkel, I. Zins, O. Schubert, C. Sönnichsen, and L. B. Oddershede, “Quantitative optical trapping of single gold nanorods,” Nano Lett.8(9), 2998–3003 (2008).
[CrossRef] [PubMed]

Spill, R.

R. Spill, W. Köhler, G. Lindenblatt, and W. Schaertl, “Thermal diffusion and Soret feedback of gold-doped polyorganosiloxane nanospheres in toluene,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics62(66 Pt B), 8361–8368 (2000).
[CrossRef] [PubMed]

Tanaka, Y.

G. Obara, Y. Tanaka, N. N. Nedyalkov, M. Terakawa, and M. Obara, “Direct observation of surface plasmon far field for regular surface ripple formation by femtosecond laser pulse irradiation of gold nanostructures on silicon substrates,” Appl. Phys. Lett.99(6), 061106 (2011).
[CrossRef]

G. Obara, Y. Tanaka, T. Miyanishi, and M. Obara, “Uniform plasmonic near-field nanopatterning by backward irradiation of femtosecond laser,” Appl. Phys., A Mater. Sci. Process.102(3), 551–557 (2011).
[CrossRef]

Y. Tanaka, G. Obara, A. Zenidaka, N. N. Nedyalkov, M. Terakawa, and M. Obara, “Near-field interaction of two-dimensional high-permittivity spherical particle arrays on substrate in the Mie resonance scattering domain,” Opt. Express18(26), 27226–27237 (2010).
[CrossRef] [PubMed]

Tatarkova, S. A.

S. A. Tatarkova, A. E. Carruthers, and K. Dholakia, “One-dimensional optically bound arrays of microscopic particles,” Phys. Rev. Lett.89(28), 283901 (2002).
[CrossRef] [PubMed]

Terakawa, M.

Tong, L.

L. Tong, V. D. Miljković, and M. Käll, “Alignment, rotation, and spinning of single plasmonic nanoparticles and nanowires using polarization dependent optical forces,” Nano Lett.10(1), 268–273 (2010).
[CrossRef] [PubMed]

Trofimov, V. A.

J. W. Yao, C. Y. Zhang, H. Y. Liu, Q. F. Dai, L. J. Wu, S. Lan, A. V. Gopal, V. A. Trofimov, and T. M. Lysak, “High spatial frequency periodic structures induced on metal surface by femtosecond laser pulses,” Opt. Express20(2), 905–911 (2012).
[CrossRef] [PubMed]

J. Liu, Q. F. Dai, Z. M. Meng, X. G. Huang, L. J. Wu, Q. Guo, W. Hu, S. Lan, A. V. Gopal, and V. A. Trofimov, “All-optical switching using controlled formation of large volume three-dimensional optical matter,” Appl. Phys. Lett.92(23), 233108 (2008).
[CrossRef]

Wang, H.

H. Wang, T. B. Huff, D. A. Zweifel, W. He, P. S. Low, A. Wei, and J. X. Cheng, “In vitro and in vivo two-photon luminescence imaging of single gold nanorods,” Proc. Natl. Acad. Sci. U.S.A.102(44), 15752–15756 (2005).
[CrossRef] [PubMed]

Wang, M. D.

X. Qian, X. H. Peng, D. O. Ansari, Q. Yin-Goen, G. Z. Chen, D. M. Shin, L. Yang, A. N. Young, M. D. Wang, and S. Nie, “In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags,” Nat. Biotechnol.26(1), 83–90 (2008).
[CrossRef] [PubMed]

Wang, Z. L.

S. Link, Z. L. Wang, and M. A. El-Sayed, “How does a gold nanorod melt?” J. Phys. Chem. B104(33), 7867–7870 (2000).
[CrossRef]

Wei, A.

H. Wang, T. B. Huff, D. A. Zweifel, W. He, P. S. Low, A. Wei, and J. X. Cheng, “In vitro and in vivo two-photon luminescence imaging of single gold nanorods,” Proc. Natl. Acad. Sci. U.S.A.102(44), 15752–15756 (2005).
[CrossRef] [PubMed]

Wu, L. J.

J. W. Yao, C. Y. Zhang, H. Y. Liu, Q. F. Dai, L. J. Wu, S. Lan, A. V. Gopal, V. A. Trofimov, and T. M. Lysak, “High spatial frequency periodic structures induced on metal surface by femtosecond laser pulses,” Opt. Express20(2), 905–911 (2012).
[CrossRef] [PubMed]

J. Liu, Q. F. Dai, Z. M. Meng, X. G. Huang, L. J. Wu, Q. Guo, W. Hu, S. Lan, A. V. Gopal, and V. A. Trofimov, “All-optical switching using controlled formation of large volume three-dimensional optical matter,” Appl. Phys. Lett.92(23), 233108 (2008).
[CrossRef]

Yamane, T.

A. Ashkin, J. M. Dziedzic, and T. Yamane, “Optical trapping and manipulation of single cells using infrared laser beams,” Nature330(6150), 769–771 (1987).
[CrossRef] [PubMed]

Yang, L.

X. Qian, X. H. Peng, D. O. Ansari, Q. Yin-Goen, G. Z. Chen, D. M. Shin, L. Yang, A. N. Young, M. D. Wang, and S. Nie, “In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags,” Nat. Biotechnol.26(1), 83–90 (2008).
[CrossRef] [PubMed]

Yao, J. W.

Yin-Goen, Q.

X. Qian, X. H. Peng, D. O. Ansari, Q. Yin-Goen, G. Z. Chen, D. M. Shin, L. Yang, A. N. Young, M. D. Wang, and S. Nie, “In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags,” Nat. Biotechnol.26(1), 83–90 (2008).
[CrossRef] [PubMed]

Young, A. N.

X. Qian, X. H. Peng, D. O. Ansari, Q. Yin-Goen, G. Z. Chen, D. M. Shin, L. Yang, A. N. Young, M. D. Wang, and S. Nie, “In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags,” Nat. Biotechnol.26(1), 83–90 (2008).
[CrossRef] [PubMed]

Yu, C.

C. Yu and J. Irudayaraj, “Multiplex biosensor using gold nanorods,” Anal. Chem.79(2), 572–579 (2007).
[CrossRef] [PubMed]

Zenidaka, A.

Zhang, C. Y.

Zijlstra, P.

P. Zijlstra, J. W. M. Chon, and M. Gu, “Five-dimensional optical recording mediated by surface plasmons in gold nanorods,” Nature459(7245), 410–413 (2009).
[CrossRef] [PubMed]

J. W. M. Chon, C. Bullen, P. Zijlstra, and M. Gu, “Spectral encoding on gold nanorods doped in a silica sol-gel matrix and its application to high-density optical data storage,” Adv. Funct. Mater.17(6), 875–880 (2007).
[CrossRef]

Zins, I.

C. Selhuber-Unkel, I. Zins, O. Schubert, C. Sönnichsen, and L. B. Oddershede, “Quantitative optical trapping of single gold nanorods,” Nano Lett.8(9), 2998–3003 (2008).
[CrossRef] [PubMed]

Zweifel, D. A.

H. Wang, T. B. Huff, D. A. Zweifel, W. He, P. S. Low, A. Wei, and J. X. Cheng, “In vitro and in vivo two-photon luminescence imaging of single gold nanorods,” Proc. Natl. Acad. Sci. U.S.A.102(44), 15752–15756 (2005).
[CrossRef] [PubMed]

ACS Nano

K. M. Mayer, S. Lee, H. Liao, B. C. Rostro, A. Fuentes, P. T. Scully, C. L. Nehl, and J. H. Hafner, “A label-free immunoassay based upon localized surface plasmon resonance of gold nanorods,” ACS Nano2(4), 687–692 (2008).
[CrossRef] [PubMed]

Adv. Funct. Mater.

J. W. M. Chon, C. Bullen, P. Zijlstra, and M. Gu, “Spectral encoding on gold nanorods doped in a silica sol-gel matrix and its application to high-density optical data storage,” Adv. Funct. Mater.17(6), 875–880 (2007).
[CrossRef]

Anal. Chem.

C. Yu and J. Irudayaraj, “Multiplex biosensor using gold nanorods,” Anal. Chem.79(2), 572–579 (2007).
[CrossRef] [PubMed]

Appl. Phys. Lett.

J. Liu, Q. F. Dai, Z. M. Meng, X. G. Huang, L. J. Wu, Q. Guo, W. Hu, S. Lan, A. V. Gopal, and V. A. Trofimov, “All-optical switching using controlled formation of large volume three-dimensional optical matter,” Appl. Phys. Lett.92(23), 233108 (2008).
[CrossRef]

G. Obara, Y. Tanaka, N. N. Nedyalkov, M. Terakawa, and M. Obara, “Direct observation of surface plasmon far field for regular surface ripple formation by femtosecond laser pulse irradiation of gold nanostructures on silicon substrates,” Appl. Phys. Lett.99(6), 061106 (2011).
[CrossRef]

Appl. Phys., A Mater. Sci. Process.

G. Obara, Y. Tanaka, T. Miyanishi, and M. Obara, “Uniform plasmonic near-field nanopatterning by backward irradiation of femtosecond laser,” Appl. Phys., A Mater. Sci. Process.102(3), 551–557 (2011).
[CrossRef]

Chem. Phys. Lett.

S. Link, C. Burda, B. Nikoobakht, and M. A. El-Sayed, “How long does it take to melt a gold nanorod,” Chem. Phys. Lett.315(1-2), 12–18 (1999).
[CrossRef]

J. Am. Chem. Soc.

X. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, “Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods,” J. Am. Chem. Soc.128(6), 2115–2120 (2006).
[CrossRef] [PubMed]

J. Phys. Chem. A

S. Link, C. Burda, M. B. Mohamed, B. Nikoobakht, and M. A. El-Sayed, “Laser photothermal melting and fragmentation of gold nanorods: energy and laser pulse-width dependence,” J. Phys. Chem. A103(9), 1165–1170 (1999).
[CrossRef]

J. Phys. Chem. B

S. Link, C. Burda, B. Nikoobakht, and M. A. El-Sayed, “Laser-induced shape changes of colloidal gold nanorods using femtosecond and nanosecond laser pulses,” J. Phys. Chem. B104(26), 6152–6163 (2000).
[CrossRef]

S. Link, Z. L. Wang, and M. A. El-Sayed, “How does a gold nanorod melt?” J. Phys. Chem. B104(33), 7867–7870 (2000).
[CrossRef]

Nano Lett.

C. Selhuber-Unkel, I. Zins, O. Schubert, C. Sönnichsen, and L. B. Oddershede, “Quantitative optical trapping of single gold nanorods,” Nano Lett.8(9), 2998–3003 (2008).
[CrossRef] [PubMed]

L. Tong, V. D. Miljković, and M. Käll, “Alignment, rotation, and spinning of single plasmonic nanoparticles and nanowires using polarization dependent optical forces,” Nano Lett.10(1), 268–273 (2010).
[CrossRef] [PubMed]

I. H. El-Sayed, X. Huang, and M. A. El-Sayed, “Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: applications in oral cancer,” Nano Lett.5(5), 829–834 (2005).
[CrossRef] [PubMed]

N. J. Durr, T. Larson, D. K. Smith, B. A. Korgel, K. Sokolov, and A. Ben-Yakar, “Two-photon luminescence imaging of cancer cells using molecularly targeted gold nanorods,” Nano Lett.7(4), 941–945 (2007).
[CrossRef] [PubMed]

X. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, “Cancer cells assemble and align gold nanorods conjugated to antibodies to produce highly enhanced, sharp, and polarized surface Raman spectra: A potential cancer diagnostic marker,” Nano Lett.7(6), 1591–1597 (2007).
[CrossRef] [PubMed]

Nat. Biotechnol.

X. Qian, X. H. Peng, D. O. Ansari, Q. Yin-Goen, G. Z. Chen, D. M. Shin, L. Yang, A. N. Young, M. D. Wang, and S. Nie, “In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags,” Nat. Biotechnol.26(1), 83–90 (2008).
[CrossRef] [PubMed]

Nature

P. Zijlstra, J. W. M. Chon, and M. Gu, “Five-dimensional optical recording mediated by surface plasmons in gold nanorods,” Nature459(7245), 410–413 (2009).
[CrossRef] [PubMed]

A. Ashkin, J. M. Dziedzic, and T. Yamane, “Optical trapping and manipulation of single cells using infrared laser beams,” Nature330(6150), 769–771 (1987).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Phys. Rev. A

A. Haldar, S. B. Pal, B. Roy, A. Banerjee, and S. Dutta Gupta, “Self assembly of microparticles in stable ring structures in an optical trap,” Phys. Rev. A (to be published).

Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics

W. Schaertl and C. Roos, “Convection and thermodiffusion of colloidal gold tracers by laser light scattering,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics60(22 Pt B), 2020–2028 (1999).
[CrossRef] [PubMed]

R. Spill, W. Köhler, G. Lindenblatt, and W. Schaertl, “Thermal diffusion and Soret feedback of gold-doped polyorganosiloxane nanospheres in toluene,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics62(66 Pt B), 8361–8368 (2000).
[CrossRef] [PubMed]

Phys. Rev. Lett.

M. M. Burns, J. M. Fournier, and J. A. Golovchenko, “Optical binding,” Phys. Rev. Lett.63(12), 1233–1236 (1989).
[CrossRef] [PubMed]

S. A. Tatarkova, A. E. Carruthers, and K. Dholakia, “One-dimensional optically bound arrays of microscopic particles,” Phys. Rev. Lett.89(28), 283901 (2002).
[CrossRef] [PubMed]

A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett.24(4), 156–159 (1970).
[CrossRef]

Proc. Natl. Acad. Sci. U.S.A.

H. Wang, T. B. Huff, D. A. Zweifel, W. He, P. S. Low, A. Wei, and J. X. Cheng, “In vitro and in vivo two-photon luminescence imaging of single gold nanorods,” Proc. Natl. Acad. Sci. U.S.A.102(44), 15752–15756 (2005).
[CrossRef] [PubMed]

Science

S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science275(5303), 1102–1106 (1997).
[CrossRef] [PubMed]

A. Ashkin and J. M. Dziedzic, “Optical trapping and manipulation of viruses and bacteria,” Science235(4795), 1517–1520 (1987).
[CrossRef] [PubMed]

M. M. Burns, J. M. Fournier, and J. A. Golovchenko, “Optical matter: crystallization and binding in intense optical fields,” Science249(4970), 749–754 (1990).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic showing the trapping of Au nanorods by fs laser light at the upper wall of the sample cell. The arrows indicate the optical forces acting on Au nanorods.

Fig. 2
Fig. 2

TPL spectra of trapped Au nanorods recorded at different times after switching on the fs laser.

Fig. 3
Fig. 3

CCD images without illumination recorded at different times after switching on the laser light, showing the TPL from trapped Au nanorods.

Fig. 4
Fig. 4

CCD images with illumination showing one (a), two (b), and three (c and d) Au clusters trapped in the orbit circling the central particle. In each case, the orbit is indicated by a dashed circle.

Fig. 5
Fig. 5

CCD images with illumination. (a) and (b): two groups of Au clusters that are trapped in the orbit. Each group contains three Au clusters and moves as a whole in the orbit. (c)-(f): A cluster with a larger size (indicated by arrows) approached the orbit ((c) and (d)), got trapped for some time (e) and became detrapped eventually (f).

Fig. 6
Fig. 6

(a) SEM image of a typical structure formed by trapping and melting of Au nanorods. It shows a large particle at the centre surrounded by two rings. (b) A further magnification of (a) showing the existence of unmelted Au nanorods in between the central particle and the first ring.

Metrics