Abstract

We report a new dual band compact oblique photography camera (LC11) that is the first to benefit from the incorporation of telecentricity. LC11 has a common front end F/6.6 telescope with 280 mm in aperture that forms its electro-optical (EO, F/7.5) and MWIR (F/5.6) modules. The design allows a substantial reduction in volume and weight due to i) the EO/MWIR compensator and relay lens groups arranged very close to the primary mirror (M1), and ii) light-weighted M1 and SiC main frame (MF) structure. Telecentricity of up to 2 and 0.2 degrees for the EO and MWIR modules, respectively, is achieved by balancing optical power among all lenses. The initial field test shows 0.32 ± 0.05 (EO)/0.20 ± 0.06 (MWIR) in measured MTF at 28 (EO) and 13 (MWIR) cycles/mm in target frequency, and an improved operability with a greater reduction in operational volume and mass than other existing LOROP cameras.

© 2012 OSA

Full Article  |  PDF Article

Errata

Kwang-Woo Park, Jeong-Yeol Han, Jongin Bae, Sug-Whan Kim, Chang-Woo Kim, Hyug-Gyo Rhee, Ho-Soon Yang, and Yun-Woo Lee, "Novel compact dual-band LOROP camera with telecentricity: erratum," Opt. Express 21, 443-443 (2013)
https://www.osapublishing.org/oe/abstract.cfm?uri=oe-21-1-443

References

  • View by:
  • |
  • |
  • |

  1. V. Petrushevsky, “High-resolution long-range oblique IR imaging from an airborne platform,” Proc. SPIE 6395, 1–9 (2006).
  2. A. G. Lareau, “Electro-optical imaging array with motion compensation,” U.S. patent 5,155,597 (Oct. 13, 1992).
  3. A. G. Lareau, “Electro-optical imaging array with motion compensation,” Proc. SPIE 2023, 65–79 (1993).
    [CrossRef]
  4. A. G. Lareau, “Electro-optical imaging detector array for a moving vehicle which includes two axis image motion compensation and transfers pixels in row directions and column directions,” U.S. patent 5,798,786 (Aug. 25, 1998).
  5. R. G. Sementelli, “EO/IR dual-band reconnaissance system DB-110,” Proc. SPIE 2555, 222–231 (1995).
    [CrossRef]
  6. R. N. Lane and J. K. Delaney, “DB-110 performance update,” Proc. SPIE 3431, 108–118 (1998).
    [CrossRef]
  7. K. Riehl., “RAPTOR (DB-110) reconnaissance system: in operation,” Proc. SPIE 4824, 1–12 (2002).
    [CrossRef]
  8. D. Lange, W. Abrams, M. A. Iyengar, R. Lane, and A. Defrietas, “Goodrich DB-110 system: multiband operation today and tomorrow,” Proc. SPIE 5109, 22–36 (2003).
    [CrossRef]
  9. Goodrich Co, Ltd., “Goodrich DB-110 aerial reconnaissance pod provides real-time critical intelligence for defense missions,” http://www.goodrich.com/gr-ext-templating/images/Goodrich%20Content/Enterprise%20Content/Market%20Capabilities/Defense%20and%20Space/51440_DB-110_Reconnaissance.pdf .
  10. A. Bodkin, A. Sheinis, and J. McCann, “Compact multi-band (VIS/IR) zoom imager for high resolution long range surveillance,” Proc. SPIE 5783, 816–826 (2005).
    [CrossRef]
  11. J. M. Topaz, D. Freiman, and I. Porat, “Dual-wavelength camera for long-range reconnaissance platforms,” Proc. SPIE 4820, 728–735 (2003).
    [CrossRef]
  12. D. M. Stuart, “Sensor design for unmanned aerial vehicles,” Proc. IEEE 3, 285–295 (1997).
  13. Opto Engineering, “Telecentric lenses tutorial,” http://www.opto-engineering.com/telecentric-lenses-tutorial.html .
  14. M. Watanabe and S. K. Nayar, “Telecentric optics for constant magnification imaging,” Technical report, Department of Computer Science, Columbia University CUCS-026–95, Sept. 1995.
  15. R. A. Petrozzo and S. W. Singer, “Telecentric lenses simplify non-contact metrology,” Test & Measurement World Magazine (Oct. 4–9, 2001).
  16. P. E. Murphy, T. G. Brown, and D. T. Moore, “Measurement and calibration of interferometric imaging aberrations,” Appl. Opt. 39(34), 6421–6429 (2000).
    [CrossRef] [PubMed]
  17. S. Djidel, J. K. Gansel, H. I. Campbell, and A. H. Greenaway, “High-speed, 3-dimensional, telecentric imaging,” Opt. Express 14(18), 8269–8277 (2006).
    [CrossRef] [PubMed]
  18. Z. Hu and A. M. Rollins, “Quasi-telecentric optical design of a microscope-compatible OCT scanner,” Opt. Express 13(17), 6407–6415 (2005).
    [CrossRef] [PubMed]
  19. T. Arai and K. Yano, “Telecentric zoom lens,” U.S. patent 7,177,090 (Feb. 13, 2007).
  20. N. K. Kawasaki and M. A. Oyama, “Telecentric zoom lens,” U.S. Patent 5,764,419 (June 9, 1998).
  21. F. Watanabe, “Telecentric projection lens system,” U.S. Patent 5,905,596 (May 18, 1999).
  22. M. Tateoka, “Telecentric projection lenses,” U.S. Patent 4,441,792 (Apr. 10, 1984).
  23. Y.-S. Lan and C.-M. Lin, “Design of a relay lens with telecentricity in a holographic recording system,” Appl. Opt. 48(18), 3391–3395 (2009).
    [CrossRef] [PubMed]
  24. J.-Y. Han, S. Marchuk, H. Kim, C. Kim, and K. Park, “Imaging EO/IR optical system for long range oblique photography,” Proc. SPIE 8020, 802009, 802009-6 (2011).
    [CrossRef]
  25. K.-W. Park, Y.-S. Shin, C.-W. Kim, and S.-W. Kim, “Airborne frame camera MTF characteristics due to the B.S.M. (Back Scan Mechanism),” in Proceedings of ADD 40th Anniversary Meeting, Y.-S. Kim, ed. (Daejeon Convention Center, Daejeon, Korea, 2010), pp. 122–125.
  26. J. C. Leachtenauer, W. Malila, J. Irvine, L. Colburn, and N. Salvaggio, “General image-quality equation: GIQE,” Appl. Opt. 36(32), 8322–8328 (1997).
    [CrossRef] [PubMed]
  27. J. C. Leachtenauer, W. Malila, J. Irvine, L. Colburn, and N. Salvaggio, “General image-quality equation for infrared imagery,” Appl. Opt. 39(26), 4826–4828 (2000).
    [CrossRef] [PubMed]
  28. J. C. Leachtenauer and R. G. Driggers, Surveillance and Reconnaissance Imaging Systems Modeling and Performance Prediction (Artech House, 2001), Chap. 10.
  29. R. J. Noll, “Zernike polynomials and atmospheric turbulence,” J. Opt. Soc. Am. 66(3), 207–211 (1976).
    [CrossRef]
  30. R. R. Shannon, The Art and Science of Optical Design (Cambridge University Press, 1997), Chap. 4.
  31. W. B. King, “Correlation between the relative modulation function and the magnitude of the variance of the wave-aberration difference function,” J. Opt. Soc. Am. 59(6), 692–697 (1969).
    [CrossRef]
  32. J. W. Coltman, “The specification of imaging properties by response to a sine wave input,” J. Opt. Soc. Am. 44(6), 468–469 (1954).
    [CrossRef]
  33. Aerospace Research Information Center, “Recon/optical CA-295 dual-band digital framing camera,” www.aric.or.kr/trend/accessory/content.asp?classify=10&search=&idx=605&page=1 .

2011 (1)

J.-Y. Han, S. Marchuk, H. Kim, C. Kim, and K. Park, “Imaging EO/IR optical system for long range oblique photography,” Proc. SPIE 8020, 802009, 802009-6 (2011).
[CrossRef]

2009 (1)

2006 (2)

S. Djidel, J. K. Gansel, H. I. Campbell, and A. H. Greenaway, “High-speed, 3-dimensional, telecentric imaging,” Opt. Express 14(18), 8269–8277 (2006).
[CrossRef] [PubMed]

V. Petrushevsky, “High-resolution long-range oblique IR imaging from an airborne platform,” Proc. SPIE 6395, 1–9 (2006).

2005 (2)

A. Bodkin, A. Sheinis, and J. McCann, “Compact multi-band (VIS/IR) zoom imager for high resolution long range surveillance,” Proc. SPIE 5783, 816–826 (2005).
[CrossRef]

Z. Hu and A. M. Rollins, “Quasi-telecentric optical design of a microscope-compatible OCT scanner,” Opt. Express 13(17), 6407–6415 (2005).
[CrossRef] [PubMed]

2003 (2)

J. M. Topaz, D. Freiman, and I. Porat, “Dual-wavelength camera for long-range reconnaissance platforms,” Proc. SPIE 4820, 728–735 (2003).
[CrossRef]

D. Lange, W. Abrams, M. A. Iyengar, R. Lane, and A. Defrietas, “Goodrich DB-110 system: multiband operation today and tomorrow,” Proc. SPIE 5109, 22–36 (2003).
[CrossRef]

2002 (1)

K. Riehl., “RAPTOR (DB-110) reconnaissance system: in operation,” Proc. SPIE 4824, 1–12 (2002).
[CrossRef]

2000 (2)

1998 (1)

R. N. Lane and J. K. Delaney, “DB-110 performance update,” Proc. SPIE 3431, 108–118 (1998).
[CrossRef]

1997 (2)

1995 (1)

R. G. Sementelli, “EO/IR dual-band reconnaissance system DB-110,” Proc. SPIE 2555, 222–231 (1995).
[CrossRef]

1993 (1)

A. G. Lareau, “Electro-optical imaging array with motion compensation,” Proc. SPIE 2023, 65–79 (1993).
[CrossRef]

1976 (1)

1969 (1)

1954 (1)

Abrams, W.

D. Lange, W. Abrams, M. A. Iyengar, R. Lane, and A. Defrietas, “Goodrich DB-110 system: multiband operation today and tomorrow,” Proc. SPIE 5109, 22–36 (2003).
[CrossRef]

Bodkin, A.

A. Bodkin, A. Sheinis, and J. McCann, “Compact multi-band (VIS/IR) zoom imager for high resolution long range surveillance,” Proc. SPIE 5783, 816–826 (2005).
[CrossRef]

Brown, T. G.

Campbell, H. I.

Colburn, L.

Coltman, J. W.

Defrietas, A.

D. Lange, W. Abrams, M. A. Iyengar, R. Lane, and A. Defrietas, “Goodrich DB-110 system: multiband operation today and tomorrow,” Proc. SPIE 5109, 22–36 (2003).
[CrossRef]

Delaney, J. K.

R. N. Lane and J. K. Delaney, “DB-110 performance update,” Proc. SPIE 3431, 108–118 (1998).
[CrossRef]

Djidel, S.

Freiman, D.

J. M. Topaz, D. Freiman, and I. Porat, “Dual-wavelength camera for long-range reconnaissance platforms,” Proc. SPIE 4820, 728–735 (2003).
[CrossRef]

Gansel, J. K.

Greenaway, A. H.

Han, J.-Y.

J.-Y. Han, S. Marchuk, H. Kim, C. Kim, and K. Park, “Imaging EO/IR optical system for long range oblique photography,” Proc. SPIE 8020, 802009, 802009-6 (2011).
[CrossRef]

Hu, Z.

Irvine, J.

Iyengar, M. A.

D. Lange, W. Abrams, M. A. Iyengar, R. Lane, and A. Defrietas, “Goodrich DB-110 system: multiband operation today and tomorrow,” Proc. SPIE 5109, 22–36 (2003).
[CrossRef]

Kim, C.

J.-Y. Han, S. Marchuk, H. Kim, C. Kim, and K. Park, “Imaging EO/IR optical system for long range oblique photography,” Proc. SPIE 8020, 802009, 802009-6 (2011).
[CrossRef]

Kim, H.

J.-Y. Han, S. Marchuk, H. Kim, C. Kim, and K. Park, “Imaging EO/IR optical system for long range oblique photography,” Proc. SPIE 8020, 802009, 802009-6 (2011).
[CrossRef]

King, W. B.

Lan, Y.-S.

Lane, R.

D. Lange, W. Abrams, M. A. Iyengar, R. Lane, and A. Defrietas, “Goodrich DB-110 system: multiband operation today and tomorrow,” Proc. SPIE 5109, 22–36 (2003).
[CrossRef]

Lane, R. N.

R. N. Lane and J. K. Delaney, “DB-110 performance update,” Proc. SPIE 3431, 108–118 (1998).
[CrossRef]

Lange, D.

D. Lange, W. Abrams, M. A. Iyengar, R. Lane, and A. Defrietas, “Goodrich DB-110 system: multiband operation today and tomorrow,” Proc. SPIE 5109, 22–36 (2003).
[CrossRef]

Lareau, A. G.

A. G. Lareau, “Electro-optical imaging array with motion compensation,” Proc. SPIE 2023, 65–79 (1993).
[CrossRef]

Leachtenauer, J. C.

Lin, C.-M.

Malila, W.

Marchuk, S.

J.-Y. Han, S. Marchuk, H. Kim, C. Kim, and K. Park, “Imaging EO/IR optical system for long range oblique photography,” Proc. SPIE 8020, 802009, 802009-6 (2011).
[CrossRef]

McCann, J.

A. Bodkin, A. Sheinis, and J. McCann, “Compact multi-band (VIS/IR) zoom imager for high resolution long range surveillance,” Proc. SPIE 5783, 816–826 (2005).
[CrossRef]

Moore, D. T.

Murphy, P. E.

Noll, R. J.

Park, K.

J.-Y. Han, S. Marchuk, H. Kim, C. Kim, and K. Park, “Imaging EO/IR optical system for long range oblique photography,” Proc. SPIE 8020, 802009, 802009-6 (2011).
[CrossRef]

Petrushevsky, V.

V. Petrushevsky, “High-resolution long-range oblique IR imaging from an airborne platform,” Proc. SPIE 6395, 1–9 (2006).

Porat, I.

J. M. Topaz, D. Freiman, and I. Porat, “Dual-wavelength camera for long-range reconnaissance platforms,” Proc. SPIE 4820, 728–735 (2003).
[CrossRef]

Riehl, K.

K. Riehl., “RAPTOR (DB-110) reconnaissance system: in operation,” Proc. SPIE 4824, 1–12 (2002).
[CrossRef]

Rollins, A. M.

Salvaggio, N.

Sementelli, R. G.

R. G. Sementelli, “EO/IR dual-band reconnaissance system DB-110,” Proc. SPIE 2555, 222–231 (1995).
[CrossRef]

Sheinis, A.

A. Bodkin, A. Sheinis, and J. McCann, “Compact multi-band (VIS/IR) zoom imager for high resolution long range surveillance,” Proc. SPIE 5783, 816–826 (2005).
[CrossRef]

Stuart, D. M.

D. M. Stuart, “Sensor design for unmanned aerial vehicles,” Proc. IEEE 3, 285–295 (1997).

Topaz, J. M.

J. M. Topaz, D. Freiman, and I. Porat, “Dual-wavelength camera for long-range reconnaissance platforms,” Proc. SPIE 4820, 728–735 (2003).
[CrossRef]

Appl. Opt. (4)

J. Opt. Soc. Am. (3)

Opt. Express (2)

Proc. IEEE (1)

D. M. Stuart, “Sensor design for unmanned aerial vehicles,” Proc. IEEE 3, 285–295 (1997).

Proc. SPIE (9)

V. Petrushevsky, “High-resolution long-range oblique IR imaging from an airborne platform,” Proc. SPIE 6395, 1–9 (2006).

A. G. Lareau, “Electro-optical imaging array with motion compensation,” Proc. SPIE 2023, 65–79 (1993).
[CrossRef]

R. G. Sementelli, “EO/IR dual-band reconnaissance system DB-110,” Proc. SPIE 2555, 222–231 (1995).
[CrossRef]

R. N. Lane and J. K. Delaney, “DB-110 performance update,” Proc. SPIE 3431, 108–118 (1998).
[CrossRef]

K. Riehl., “RAPTOR (DB-110) reconnaissance system: in operation,” Proc. SPIE 4824, 1–12 (2002).
[CrossRef]

D. Lange, W. Abrams, M. A. Iyengar, R. Lane, and A. Defrietas, “Goodrich DB-110 system: multiband operation today and tomorrow,” Proc. SPIE 5109, 22–36 (2003).
[CrossRef]

J.-Y. Han, S. Marchuk, H. Kim, C. Kim, and K. Park, “Imaging EO/IR optical system for long range oblique photography,” Proc. SPIE 8020, 802009, 802009-6 (2011).
[CrossRef]

A. Bodkin, A. Sheinis, and J. McCann, “Compact multi-band (VIS/IR) zoom imager for high resolution long range surveillance,” Proc. SPIE 5783, 816–826 (2005).
[CrossRef]

J. M. Topaz, D. Freiman, and I. Porat, “Dual-wavelength camera for long-range reconnaissance platforms,” Proc. SPIE 4820, 728–735 (2003).
[CrossRef]

Other (14)

K.-W. Park, Y.-S. Shin, C.-W. Kim, and S.-W. Kim, “Airborne frame camera MTF characteristics due to the B.S.M. (Back Scan Mechanism),” in Proceedings of ADD 40th Anniversary Meeting, Y.-S. Kim, ed. (Daejeon Convention Center, Daejeon, Korea, 2010), pp. 122–125.

R. R. Shannon, The Art and Science of Optical Design (Cambridge University Press, 1997), Chap. 4.

J. C. Leachtenauer and R. G. Driggers, Surveillance and Reconnaissance Imaging Systems Modeling and Performance Prediction (Artech House, 2001), Chap. 10.

Aerospace Research Information Center, “Recon/optical CA-295 dual-band digital framing camera,” www.aric.or.kr/trend/accessory/content.asp?classify=10&search=&idx=605&page=1 .

Goodrich Co, Ltd., “Goodrich DB-110 aerial reconnaissance pod provides real-time critical intelligence for defense missions,” http://www.goodrich.com/gr-ext-templating/images/Goodrich%20Content/Enterprise%20Content/Market%20Capabilities/Defense%20and%20Space/51440_DB-110_Reconnaissance.pdf .

A. G. Lareau, “Electro-optical imaging detector array for a moving vehicle which includes two axis image motion compensation and transfers pixels in row directions and column directions,” U.S. patent 5,798,786 (Aug. 25, 1998).

A. G. Lareau, “Electro-optical imaging array with motion compensation,” U.S. patent 5,155,597 (Oct. 13, 1992).

Opto Engineering, “Telecentric lenses tutorial,” http://www.opto-engineering.com/telecentric-lenses-tutorial.html .

M. Watanabe and S. K. Nayar, “Telecentric optics for constant magnification imaging,” Technical report, Department of Computer Science, Columbia University CUCS-026–95, Sept. 1995.

R. A. Petrozzo and S. W. Singer, “Telecentric lenses simplify non-contact metrology,” Test & Measurement World Magazine (Oct. 4–9, 2001).

T. Arai and K. Yano, “Telecentric zoom lens,” U.S. patent 7,177,090 (Feb. 13, 2007).

N. K. Kawasaki and M. A. Oyama, “Telecentric zoom lens,” U.S. Patent 5,764,419 (June 9, 1998).

F. Watanabe, “Telecentric projection lens system,” U.S. Patent 5,905,596 (May 18, 1999).

M. Tateoka, “Telecentric projection lenses,” U.S. Patent 4,441,792 (Apr. 10, 1984).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Optical system configuration comprising (a) EO and (b) MWIR modules.

Fig. 2
Fig. 2

Optical schematic layout of (a) EO and (b) MWIR module.

Fig. 3
Fig. 3

Optical design MTF for (a) EO and (b) MWIR wavelength bands (The black solid, red dashed and blue dashed and dotted lines represent diffraction limited, on-axis and off-axis MTF, respectively.)

Fig. 4
Fig. 4

Stray light rays run from left side in incident angle of (a) −5.6 to −6.6 degrees and (b) +4.7 to +7.8 degrees and (c) ray tracing proving stray light suppression by (d) the cone shape baffle.

Fig. 5
Fig. 5

(a) WFE of M1, (b) WFE of the front-end telescope, (c) WFE of the EO lens compensator group, and (d) WFE of the MWIR relay lens group (The measured RMS WFE are (a) 23.5 nm, (b) 44.7 nm, (c) 20.0 nm, and (d) 246.0 nm, respectively.)

Fig. 6
Fig. 6

(a) WFE of the EO optical system and (b) the USAF image to acquire the MWIR optical system CTF (The measured WFE was 104.0 nm RMS, and the CTF measured at the 3G1E of the USAF target was 0.298.)

Fig. 7
Fig. 7

Displacement of the compensator i.e. (a) focal plane for EO module and (b) relay lens group for MWIR module by temperature change (The solid, dashed, and dotted lines represent the simulation results, measured results, and difference between the simulation results and the measured results, respectively.)

Fig. 8
Fig. 8

(a) Vibration transmitted to the gimbal (purple line) and LC11 (red line) simulated by the FEA analysis with respect to a random vibration profile (black line), and the experiment results of the vibration transmitted to the gimbal (green line) and LC11 (blue line), (b) tilting angle of M1 by the vibration applied to LC11, and (c) the LOS change by M1 and M2 tilts.

Fig. 9
Fig. 9

Outdoor day time images taken 6 km from (a) EO and (b) MWIR module

Tables (5)

Tables Icon

Table 1 Optical Design Requirements of LC11

Tables Icon

Table 2 Surface Deformations of M1 and M2 Caused by Gravity and Thermal Condition

Tables Icon

Table 3 Frequency and Vibration Analysis for M1 in Support Cell

Tables Icon

Table 4 Simulation and Measurement Results of LC11

Tables Icon

Table 5 Volume and Weight Comparison of LOROP Cameras

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

θ= 1 2 FOV×FPS×Overlap×Tint×F÷OL

Metrics