Abstract

The availability of macroscopic, nearly periodic structures known as eutectics opens a new path for controlling light at wavelength scales determined by the geometrical parameters of these materials and the intrinsic properties of their component phases. Here, we analyze the optical waveguiding properties of eutectic mixtures of alkali halides, formed by close-packed arrangements of aligned cylindrical inclusions. The wavelengths of phonon polaritons in these constituents are conveniently situated in the infrared and are slightly larger than the diameter and separation of the inclusions, typically consisting on single-crystal wires down to submicrometer diameter. We first discuss the gap mode and the guiding properties of metallic cylindrical waveguides in the visible and near-infrared, and in particular we investigate the transition between cylinder touching and non-touching regimes. Then, we demonstrate that these properties can be extended to the mid infrared by means of phonon polaritons. Finally, we analyze the guiding properties of an actual eutectic. For typical eutectic dimensions, we conclude that crosstalk between neighboring cylindrical wires is small, thus providing a promising platform for signal propagation and image analysis in the mid infrared.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Quinten, A. Leitner, J. R. Krenn, and F. R. Aussenegg, “Electromagnetic energy transport via linear chains of silver nanoparticles,” Opt. Lett. 23, 1331–1333 (1998).
    [CrossRef]
  2. S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, and H. A. Atwater, “Plasmonics - a route to nanoscale optical devices,” Adv. Mater. 13, 1501–1505 (2001).
    [CrossRef]
  3. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508–511 (2006).
    [CrossRef] [PubMed]
  4. E. Moreno, S. G. Rodrigo, S. I. Bozhevolnyi, L. Martín-Moreno, and F. J. García-Vidal, “Guiding and focusing of electromagnetic fields with wedge plasmon polaritons,” Phys. Rev. Lett. 100, 023901 (2008).
    [CrossRef] [PubMed]
  5. R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for sub-wavelength confinement and long-range propagation,” Nat. Photonics 2, 496–500 (2008).
    [CrossRef]
  6. A. Manjavacas and F. J. García de Abajo, “Robust plasmon waveguides in strongly interacting nanowire arrays,” Nano Lett. 9, 1285–1289 (2009).
    [CrossRef]
  7. A. Manjavacas and F. J. García de Abajo, “Coupling of gap plasmons in multi-wire waveguides,” Opt. Express 17, 19401–19413 (2009).
    [CrossRef] [PubMed]
  8. J. A. Conway, S. Sahni, and T. Szkopek, “Plasmonic interconnects versus conventional interconnects: A comparison of latency, crosstalk and energy costs,” Opt. Express 15, 4474–4484 (2007).
    [CrossRef] [PubMed]
  9. A. J. Huber, B. Deutsch, L. Novotny, and R. Hillenbrand, “Focusing of surface phonon polaritons,” Appl. Phys. Lett. 92, 203104 (2008).
    [CrossRef]
  10. N. W. Ashcroft and N. D. Mermin, Solid State Physics (Harcourt College Publishers, New York, 1976).
  11. J. S. Kirkaldy, “Predicting the patterns in lamellar growth,” Phys. Rev. B 30, 6889–6895 (1984).
    [CrossRef]
  12. J. Llorca and V. M. Orera, “Directionally-solidified eutectic ceramic oxides,” Prog. Mat. Sci. 51, 711–809 (2006).
    [CrossRef]
  13. D. A. Pawlak, G. Lerondel, I. Dmytruk, Y. Kagamitani, S. Durbin, and T. Fukuda, “Second order self-organized pattern of terbium-scandium-aluminum garnet and terbium-scandium perovskite eutectic,” J. Appl. Phys. 91, 9731–9736 (2002).
    [CrossRef]
  14. D. A. Pawlak, K. Kolodziejak, S. Turczynski, J. Kisielewski, K. Rozniatowski, R. Diduszko, M. Kaczkan, and M. Malinowski, “Self-organized, rodlike, micrometer-scale microstructure of Tb3Sc2Al3O12-TbScO3:Pr eutectic,” Chem. Mater. 18, 2450–2457 (2006).
    [CrossRef]
  15. D. A. Pawlak, S. Turczynski, M. Gajc, K. Kolodziejak, R. Diduszko, K. Rozniatowski, J. Smalc, and I. Vendik, “How far are we from making metamaterials by self-organization? The microstructure of highly anisotropic particles with an SRR-like geometry,” Adv. Funct. Mat. 20, 1116–1124 (2010).
    [CrossRef]
  16. A. Larrea, L. Contreras, R. I. Merino, J. Llorca, and V. M. Orera, “Microstructure and physical properties of CaF2-MgO eutectics produced by the Bridgman method,” J. Mater. Res. 15, 1314–1319 (2000).
    [CrossRef]
  17. F. J. García de Abajo and A. Howie, “Relativistic electron energy loss and electron-induced photon emission in inhomogeneous dielectrics,” Phys. Rev. Lett. 80, 5180–5183 (1998).
    [CrossRef]
  18. F. J. García de Abajo and A. Howie, “Retarded field calculation of electron energy loss in inhomogeneous dielectrics,” Phys. Rev. B 65, 115418 (2002).
    [CrossRef]
  19. F. J. García de Abajo, A. G. Pattantyus-Abraham, N. Zabala, A. Rivacoba, M. O. Wolf, and P. M. Echenique, “Cherenkov effect as a probe of photonic nanostructures,” Phys. Rev. Lett. 91, 143902 (2003).
    [CrossRef] [PubMed]
  20. E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, San Diego, 1985).
  21. I. Romero, J. Aizpurua, G. W. Bryant, and F. J. García de Abajo, “Plasmons in nearly touching metallic nanoparticles: Singular response in the limit of touching dimers,” Opt. Express 14, 9988–9999 (2006).
    [CrossRef] [PubMed]
  22. J. P. Kottmann and O. J. F. Martin, “Plasmon resonant coupling in metallic nanowires,” Opt. Express 8, 655–663 (2001).
    [CrossRef] [PubMed]
  23. V. M. Orera and A. Larrea, “NaCl-assisted growth of micrometer-wide long single crystalline fluoride fibres,” Opt. Mater. 27, 1726–1729 (2005).
    [CrossRef]
  24. P. A. Belov and Y. Hao, “Subwavelength imaging at optical frequencies using a transmission device formed by a periodic layered metal-dielectric structure operating in the canalization regime,” Phys. Rev. B 73, 113110 (2006).
    [CrossRef]

2010 (1)

D. A. Pawlak, S. Turczynski, M. Gajc, K. Kolodziejak, R. Diduszko, K. Rozniatowski, J. Smalc, and I. Vendik, “How far are we from making metamaterials by self-organization? The microstructure of highly anisotropic particles with an SRR-like geometry,” Adv. Funct. Mat. 20, 1116–1124 (2010).
[CrossRef]

2009 (2)

A. Manjavacas and F. J. García de Abajo, “Robust plasmon waveguides in strongly interacting nanowire arrays,” Nano Lett. 9, 1285–1289 (2009).
[CrossRef]

A. Manjavacas and F. J. García de Abajo, “Coupling of gap plasmons in multi-wire waveguides,” Opt. Express 17, 19401–19413 (2009).
[CrossRef] [PubMed]

2008 (3)

E. Moreno, S. G. Rodrigo, S. I. Bozhevolnyi, L. Martín-Moreno, and F. J. García-Vidal, “Guiding and focusing of electromagnetic fields with wedge plasmon polaritons,” Phys. Rev. Lett. 100, 023901 (2008).
[CrossRef] [PubMed]

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for sub-wavelength confinement and long-range propagation,” Nat. Photonics 2, 496–500 (2008).
[CrossRef]

A. J. Huber, B. Deutsch, L. Novotny, and R. Hillenbrand, “Focusing of surface phonon polaritons,” Appl. Phys. Lett. 92, 203104 (2008).
[CrossRef]

2007 (1)

2006 (5)

I. Romero, J. Aizpurua, G. W. Bryant, and F. J. García de Abajo, “Plasmons in nearly touching metallic nanoparticles: Singular response in the limit of touching dimers,” Opt. Express 14, 9988–9999 (2006).
[CrossRef] [PubMed]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508–511 (2006).
[CrossRef] [PubMed]

J. Llorca and V. M. Orera, “Directionally-solidified eutectic ceramic oxides,” Prog. Mat. Sci. 51, 711–809 (2006).
[CrossRef]

D. A. Pawlak, K. Kolodziejak, S. Turczynski, J. Kisielewski, K. Rozniatowski, R. Diduszko, M. Kaczkan, and M. Malinowski, “Self-organized, rodlike, micrometer-scale microstructure of Tb3Sc2Al3O12-TbScO3:Pr eutectic,” Chem. Mater. 18, 2450–2457 (2006).
[CrossRef]

P. A. Belov and Y. Hao, “Subwavelength imaging at optical frequencies using a transmission device formed by a periodic layered metal-dielectric structure operating in the canalization regime,” Phys. Rev. B 73, 113110 (2006).
[CrossRef]

2005 (1)

V. M. Orera and A. Larrea, “NaCl-assisted growth of micrometer-wide long single crystalline fluoride fibres,” Opt. Mater. 27, 1726–1729 (2005).
[CrossRef]

2003 (1)

F. J. García de Abajo, A. G. Pattantyus-Abraham, N. Zabala, A. Rivacoba, M. O. Wolf, and P. M. Echenique, “Cherenkov effect as a probe of photonic nanostructures,” Phys. Rev. Lett. 91, 143902 (2003).
[CrossRef] [PubMed]

2002 (2)

F. J. García de Abajo and A. Howie, “Retarded field calculation of electron energy loss in inhomogeneous dielectrics,” Phys. Rev. B 65, 115418 (2002).
[CrossRef]

D. A. Pawlak, G. Lerondel, I. Dmytruk, Y. Kagamitani, S. Durbin, and T. Fukuda, “Second order self-organized pattern of terbium-scandium-aluminum garnet and terbium-scandium perovskite eutectic,” J. Appl. Phys. 91, 9731–9736 (2002).
[CrossRef]

2001 (2)

S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, and H. A. Atwater, “Plasmonics - a route to nanoscale optical devices,” Adv. Mater. 13, 1501–1505 (2001).
[CrossRef]

J. P. Kottmann and O. J. F. Martin, “Plasmon resonant coupling in metallic nanowires,” Opt. Express 8, 655–663 (2001).
[CrossRef] [PubMed]

2000 (1)

A. Larrea, L. Contreras, R. I. Merino, J. Llorca, and V. M. Orera, “Microstructure and physical properties of CaF2-MgO eutectics produced by the Bridgman method,” J. Mater. Res. 15, 1314–1319 (2000).
[CrossRef]

1998 (2)

F. J. García de Abajo and A. Howie, “Relativistic electron energy loss and electron-induced photon emission in inhomogeneous dielectrics,” Phys. Rev. Lett. 80, 5180–5183 (1998).
[CrossRef]

M. Quinten, A. Leitner, J. R. Krenn, and F. R. Aussenegg, “Electromagnetic energy transport via linear chains of silver nanoparticles,” Opt. Lett. 23, 1331–1333 (1998).
[CrossRef]

1984 (1)

J. S. Kirkaldy, “Predicting the patterns in lamellar growth,” Phys. Rev. B 30, 6889–6895 (1984).
[CrossRef]

Aizpurua, J.

Ashcroft, N. W.

N. W. Ashcroft and N. D. Mermin, Solid State Physics (Harcourt College Publishers, New York, 1976).

Atwater, H. A.

S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, and H. A. Atwater, “Plasmonics - a route to nanoscale optical devices,” Adv. Mater. 13, 1501–1505 (2001).
[CrossRef]

Aussenegg, F. R.

Belov, P. A.

P. A. Belov and Y. Hao, “Subwavelength imaging at optical frequencies using a transmission device formed by a periodic layered metal-dielectric structure operating in the canalization regime,” Phys. Rev. B 73, 113110 (2006).
[CrossRef]

Bozhevolnyi, S. I.

E. Moreno, S. G. Rodrigo, S. I. Bozhevolnyi, L. Martín-Moreno, and F. J. García-Vidal, “Guiding and focusing of electromagnetic fields with wedge plasmon polaritons,” Phys. Rev. Lett. 100, 023901 (2008).
[CrossRef] [PubMed]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508–511 (2006).
[CrossRef] [PubMed]

Brongersma, M. L.

S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, and H. A. Atwater, “Plasmonics - a route to nanoscale optical devices,” Adv. Mater. 13, 1501–1505 (2001).
[CrossRef]

Bryant, G. W.

Contreras, L.

A. Larrea, L. Contreras, R. I. Merino, J. Llorca, and V. M. Orera, “Microstructure and physical properties of CaF2-MgO eutectics produced by the Bridgman method,” J. Mater. Res. 15, 1314–1319 (2000).
[CrossRef]

Conway, J. A.

Deutsch, B.

A. J. Huber, B. Deutsch, L. Novotny, and R. Hillenbrand, “Focusing of surface phonon polaritons,” Appl. Phys. Lett. 92, 203104 (2008).
[CrossRef]

Devaux, E.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508–511 (2006).
[CrossRef] [PubMed]

Diduszko, R.

D. A. Pawlak, S. Turczynski, M. Gajc, K. Kolodziejak, R. Diduszko, K. Rozniatowski, J. Smalc, and I. Vendik, “How far are we from making metamaterials by self-organization? The microstructure of highly anisotropic particles with an SRR-like geometry,” Adv. Funct. Mat. 20, 1116–1124 (2010).
[CrossRef]

D. A. Pawlak, K. Kolodziejak, S. Turczynski, J. Kisielewski, K. Rozniatowski, R. Diduszko, M. Kaczkan, and M. Malinowski, “Self-organized, rodlike, micrometer-scale microstructure of Tb3Sc2Al3O12-TbScO3:Pr eutectic,” Chem. Mater. 18, 2450–2457 (2006).
[CrossRef]

Dmytruk, I.

D. A. Pawlak, G. Lerondel, I. Dmytruk, Y. Kagamitani, S. Durbin, and T. Fukuda, “Second order self-organized pattern of terbium-scandium-aluminum garnet and terbium-scandium perovskite eutectic,” J. Appl. Phys. 91, 9731–9736 (2002).
[CrossRef]

Durbin, S.

D. A. Pawlak, G. Lerondel, I. Dmytruk, Y. Kagamitani, S. Durbin, and T. Fukuda, “Second order self-organized pattern of terbium-scandium-aluminum garnet and terbium-scandium perovskite eutectic,” J. Appl. Phys. 91, 9731–9736 (2002).
[CrossRef]

Ebbesen, T. W.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508–511 (2006).
[CrossRef] [PubMed]

Echenique, P. M.

F. J. García de Abajo, A. G. Pattantyus-Abraham, N. Zabala, A. Rivacoba, M. O. Wolf, and P. M. Echenique, “Cherenkov effect as a probe of photonic nanostructures,” Phys. Rev. Lett. 91, 143902 (2003).
[CrossRef] [PubMed]

Fukuda, T.

D. A. Pawlak, G. Lerondel, I. Dmytruk, Y. Kagamitani, S. Durbin, and T. Fukuda, “Second order self-organized pattern of terbium-scandium-aluminum garnet and terbium-scandium perovskite eutectic,” J. Appl. Phys. 91, 9731–9736 (2002).
[CrossRef]

Gajc, M.

D. A. Pawlak, S. Turczynski, M. Gajc, K. Kolodziejak, R. Diduszko, K. Rozniatowski, J. Smalc, and I. Vendik, “How far are we from making metamaterials by self-organization? The microstructure of highly anisotropic particles with an SRR-like geometry,” Adv. Funct. Mat. 20, 1116–1124 (2010).
[CrossRef]

García de Abajo, F. J.

A. Manjavacas and F. J. García de Abajo, “Robust plasmon waveguides in strongly interacting nanowire arrays,” Nano Lett. 9, 1285–1289 (2009).
[CrossRef]

A. Manjavacas and F. J. García de Abajo, “Coupling of gap plasmons in multi-wire waveguides,” Opt. Express 17, 19401–19413 (2009).
[CrossRef] [PubMed]

I. Romero, J. Aizpurua, G. W. Bryant, and F. J. García de Abajo, “Plasmons in nearly touching metallic nanoparticles: Singular response in the limit of touching dimers,” Opt. Express 14, 9988–9999 (2006).
[CrossRef] [PubMed]

F. J. García de Abajo, A. G. Pattantyus-Abraham, N. Zabala, A. Rivacoba, M. O. Wolf, and P. M. Echenique, “Cherenkov effect as a probe of photonic nanostructures,” Phys. Rev. Lett. 91, 143902 (2003).
[CrossRef] [PubMed]

F. J. García de Abajo and A. Howie, “Retarded field calculation of electron energy loss in inhomogeneous dielectrics,” Phys. Rev. B 65, 115418 (2002).
[CrossRef]

F. J. García de Abajo and A. Howie, “Relativistic electron energy loss and electron-induced photon emission in inhomogeneous dielectrics,” Phys. Rev. Lett. 80, 5180–5183 (1998).
[CrossRef]

García-Vidal, F. J.

E. Moreno, S. G. Rodrigo, S. I. Bozhevolnyi, L. Martín-Moreno, and F. J. García-Vidal, “Guiding and focusing of electromagnetic fields with wedge plasmon polaritons,” Phys. Rev. Lett. 100, 023901 (2008).
[CrossRef] [PubMed]

Genov, D. A.

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for sub-wavelength confinement and long-range propagation,” Nat. Photonics 2, 496–500 (2008).
[CrossRef]

Hao, Y.

P. A. Belov and Y. Hao, “Subwavelength imaging at optical frequencies using a transmission device formed by a periodic layered metal-dielectric structure operating in the canalization regime,” Phys. Rev. B 73, 113110 (2006).
[CrossRef]

Hillenbrand, R.

A. J. Huber, B. Deutsch, L. Novotny, and R. Hillenbrand, “Focusing of surface phonon polaritons,” Appl. Phys. Lett. 92, 203104 (2008).
[CrossRef]

Howie, A.

F. J. García de Abajo and A. Howie, “Retarded field calculation of electron energy loss in inhomogeneous dielectrics,” Phys. Rev. B 65, 115418 (2002).
[CrossRef]

F. J. García de Abajo and A. Howie, “Relativistic electron energy loss and electron-induced photon emission in inhomogeneous dielectrics,” Phys. Rev. Lett. 80, 5180–5183 (1998).
[CrossRef]

Huber, A. J.

A. J. Huber, B. Deutsch, L. Novotny, and R. Hillenbrand, “Focusing of surface phonon polaritons,” Appl. Phys. Lett. 92, 203104 (2008).
[CrossRef]

Kaczkan, M.

D. A. Pawlak, K. Kolodziejak, S. Turczynski, J. Kisielewski, K. Rozniatowski, R. Diduszko, M. Kaczkan, and M. Malinowski, “Self-organized, rodlike, micrometer-scale microstructure of Tb3Sc2Al3O12-TbScO3:Pr eutectic,” Chem. Mater. 18, 2450–2457 (2006).
[CrossRef]

Kagamitani, Y.

D. A. Pawlak, G. Lerondel, I. Dmytruk, Y. Kagamitani, S. Durbin, and T. Fukuda, “Second order self-organized pattern of terbium-scandium-aluminum garnet and terbium-scandium perovskite eutectic,” J. Appl. Phys. 91, 9731–9736 (2002).
[CrossRef]

Kik, P. G.

S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, and H. A. Atwater, “Plasmonics - a route to nanoscale optical devices,” Adv. Mater. 13, 1501–1505 (2001).
[CrossRef]

Kirkaldy, J. S.

J. S. Kirkaldy, “Predicting the patterns in lamellar growth,” Phys. Rev. B 30, 6889–6895 (1984).
[CrossRef]

Kisielewski, J.

D. A. Pawlak, K. Kolodziejak, S. Turczynski, J. Kisielewski, K. Rozniatowski, R. Diduszko, M. Kaczkan, and M. Malinowski, “Self-organized, rodlike, micrometer-scale microstructure of Tb3Sc2Al3O12-TbScO3:Pr eutectic,” Chem. Mater. 18, 2450–2457 (2006).
[CrossRef]

Kolodziejak, K.

D. A. Pawlak, S. Turczynski, M. Gajc, K. Kolodziejak, R. Diduszko, K. Rozniatowski, J. Smalc, and I. Vendik, “How far are we from making metamaterials by self-organization? The microstructure of highly anisotropic particles with an SRR-like geometry,” Adv. Funct. Mat. 20, 1116–1124 (2010).
[CrossRef]

D. A. Pawlak, K. Kolodziejak, S. Turczynski, J. Kisielewski, K. Rozniatowski, R. Diduszko, M. Kaczkan, and M. Malinowski, “Self-organized, rodlike, micrometer-scale microstructure of Tb3Sc2Al3O12-TbScO3:Pr eutectic,” Chem. Mater. 18, 2450–2457 (2006).
[CrossRef]

Kottmann, J. P.

Krenn, J. R.

Laluet, J. Y.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508–511 (2006).
[CrossRef] [PubMed]

Larrea, A.

V. M. Orera and A. Larrea, “NaCl-assisted growth of micrometer-wide long single crystalline fluoride fibres,” Opt. Mater. 27, 1726–1729 (2005).
[CrossRef]

A. Larrea, L. Contreras, R. I. Merino, J. Llorca, and V. M. Orera, “Microstructure and physical properties of CaF2-MgO eutectics produced by the Bridgman method,” J. Mater. Res. 15, 1314–1319 (2000).
[CrossRef]

Leitner, A.

Lerondel, G.

D. A. Pawlak, G. Lerondel, I. Dmytruk, Y. Kagamitani, S. Durbin, and T. Fukuda, “Second order self-organized pattern of terbium-scandium-aluminum garnet and terbium-scandium perovskite eutectic,” J. Appl. Phys. 91, 9731–9736 (2002).
[CrossRef]

Llorca, J.

J. Llorca and V. M. Orera, “Directionally-solidified eutectic ceramic oxides,” Prog. Mat. Sci. 51, 711–809 (2006).
[CrossRef]

A. Larrea, L. Contreras, R. I. Merino, J. Llorca, and V. M. Orera, “Microstructure and physical properties of CaF2-MgO eutectics produced by the Bridgman method,” J. Mater. Res. 15, 1314–1319 (2000).
[CrossRef]

Maier, S. A.

S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, and H. A. Atwater, “Plasmonics - a route to nanoscale optical devices,” Adv. Mater. 13, 1501–1505 (2001).
[CrossRef]

Malinowski, M.

D. A. Pawlak, K. Kolodziejak, S. Turczynski, J. Kisielewski, K. Rozniatowski, R. Diduszko, M. Kaczkan, and M. Malinowski, “Self-organized, rodlike, micrometer-scale microstructure of Tb3Sc2Al3O12-TbScO3:Pr eutectic,” Chem. Mater. 18, 2450–2457 (2006).
[CrossRef]

Manjavacas, A.

A. Manjavacas and F. J. García de Abajo, “Coupling of gap plasmons in multi-wire waveguides,” Opt. Express 17, 19401–19413 (2009).
[CrossRef] [PubMed]

A. Manjavacas and F. J. García de Abajo, “Robust plasmon waveguides in strongly interacting nanowire arrays,” Nano Lett. 9, 1285–1289 (2009).
[CrossRef]

Martin, O. J. F.

Martín-Moreno, L.

E. Moreno, S. G. Rodrigo, S. I. Bozhevolnyi, L. Martín-Moreno, and F. J. García-Vidal, “Guiding and focusing of electromagnetic fields with wedge plasmon polaritons,” Phys. Rev. Lett. 100, 023901 (2008).
[CrossRef] [PubMed]

Meltzer, S.

S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, and H. A. Atwater, “Plasmonics - a route to nanoscale optical devices,” Adv. Mater. 13, 1501–1505 (2001).
[CrossRef]

Merino, R. I.

A. Larrea, L. Contreras, R. I. Merino, J. Llorca, and V. M. Orera, “Microstructure and physical properties of CaF2-MgO eutectics produced by the Bridgman method,” J. Mater. Res. 15, 1314–1319 (2000).
[CrossRef]

Mermin, N. D.

N. W. Ashcroft and N. D. Mermin, Solid State Physics (Harcourt College Publishers, New York, 1976).

Moreno, E.

E. Moreno, S. G. Rodrigo, S. I. Bozhevolnyi, L. Martín-Moreno, and F. J. García-Vidal, “Guiding and focusing of electromagnetic fields with wedge plasmon polaritons,” Phys. Rev. Lett. 100, 023901 (2008).
[CrossRef] [PubMed]

Novotny, L.

A. J. Huber, B. Deutsch, L. Novotny, and R. Hillenbrand, “Focusing of surface phonon polaritons,” Appl. Phys. Lett. 92, 203104 (2008).
[CrossRef]

Orera, V. M.

J. Llorca and V. M. Orera, “Directionally-solidified eutectic ceramic oxides,” Prog. Mat. Sci. 51, 711–809 (2006).
[CrossRef]

V. M. Orera and A. Larrea, “NaCl-assisted growth of micrometer-wide long single crystalline fluoride fibres,” Opt. Mater. 27, 1726–1729 (2005).
[CrossRef]

A. Larrea, L. Contreras, R. I. Merino, J. Llorca, and V. M. Orera, “Microstructure and physical properties of CaF2-MgO eutectics produced by the Bridgman method,” J. Mater. Res. 15, 1314–1319 (2000).
[CrossRef]

Oulton, R. F.

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for sub-wavelength confinement and long-range propagation,” Nat. Photonics 2, 496–500 (2008).
[CrossRef]

Palik, E. D.

E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, San Diego, 1985).

Pattantyus-Abraham, A. G.

F. J. García de Abajo, A. G. Pattantyus-Abraham, N. Zabala, A. Rivacoba, M. O. Wolf, and P. M. Echenique, “Cherenkov effect as a probe of photonic nanostructures,” Phys. Rev. Lett. 91, 143902 (2003).
[CrossRef] [PubMed]

Pawlak, D. A.

D. A. Pawlak, S. Turczynski, M. Gajc, K. Kolodziejak, R. Diduszko, K. Rozniatowski, J. Smalc, and I. Vendik, “How far are we from making metamaterials by self-organization? The microstructure of highly anisotropic particles with an SRR-like geometry,” Adv. Funct. Mat. 20, 1116–1124 (2010).
[CrossRef]

D. A. Pawlak, K. Kolodziejak, S. Turczynski, J. Kisielewski, K. Rozniatowski, R. Diduszko, M. Kaczkan, and M. Malinowski, “Self-organized, rodlike, micrometer-scale microstructure of Tb3Sc2Al3O12-TbScO3:Pr eutectic,” Chem. Mater. 18, 2450–2457 (2006).
[CrossRef]

D. A. Pawlak, G. Lerondel, I. Dmytruk, Y. Kagamitani, S. Durbin, and T. Fukuda, “Second order self-organized pattern of terbium-scandium-aluminum garnet and terbium-scandium perovskite eutectic,” J. Appl. Phys. 91, 9731–9736 (2002).
[CrossRef]

Pile, D. F. P.

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for sub-wavelength confinement and long-range propagation,” Nat. Photonics 2, 496–500 (2008).
[CrossRef]

Quinten, M.

Requicha, A. A. G.

S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, and H. A. Atwater, “Plasmonics - a route to nanoscale optical devices,” Adv. Mater. 13, 1501–1505 (2001).
[CrossRef]

Rivacoba, A.

F. J. García de Abajo, A. G. Pattantyus-Abraham, N. Zabala, A. Rivacoba, M. O. Wolf, and P. M. Echenique, “Cherenkov effect as a probe of photonic nanostructures,” Phys. Rev. Lett. 91, 143902 (2003).
[CrossRef] [PubMed]

Rodrigo, S. G.

E. Moreno, S. G. Rodrigo, S. I. Bozhevolnyi, L. Martín-Moreno, and F. J. García-Vidal, “Guiding and focusing of electromagnetic fields with wedge plasmon polaritons,” Phys. Rev. Lett. 100, 023901 (2008).
[CrossRef] [PubMed]

Romero, I.

Rozniatowski, K.

D. A. Pawlak, S. Turczynski, M. Gajc, K. Kolodziejak, R. Diduszko, K. Rozniatowski, J. Smalc, and I. Vendik, “How far are we from making metamaterials by self-organization? The microstructure of highly anisotropic particles with an SRR-like geometry,” Adv. Funct. Mat. 20, 1116–1124 (2010).
[CrossRef]

D. A. Pawlak, K. Kolodziejak, S. Turczynski, J. Kisielewski, K. Rozniatowski, R. Diduszko, M. Kaczkan, and M. Malinowski, “Self-organized, rodlike, micrometer-scale microstructure of Tb3Sc2Al3O12-TbScO3:Pr eutectic,” Chem. Mater. 18, 2450–2457 (2006).
[CrossRef]

Sahni, S.

Smalc, J.

D. A. Pawlak, S. Turczynski, M. Gajc, K. Kolodziejak, R. Diduszko, K. Rozniatowski, J. Smalc, and I. Vendik, “How far are we from making metamaterials by self-organization? The microstructure of highly anisotropic particles with an SRR-like geometry,” Adv. Funct. Mat. 20, 1116–1124 (2010).
[CrossRef]

Sorger, V. J.

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for sub-wavelength confinement and long-range propagation,” Nat. Photonics 2, 496–500 (2008).
[CrossRef]

Szkopek, T.

Turczynski, S.

D. A. Pawlak, S. Turczynski, M. Gajc, K. Kolodziejak, R. Diduszko, K. Rozniatowski, J. Smalc, and I. Vendik, “How far are we from making metamaterials by self-organization? The microstructure of highly anisotropic particles with an SRR-like geometry,” Adv. Funct. Mat. 20, 1116–1124 (2010).
[CrossRef]

D. A. Pawlak, K. Kolodziejak, S. Turczynski, J. Kisielewski, K. Rozniatowski, R. Diduszko, M. Kaczkan, and M. Malinowski, “Self-organized, rodlike, micrometer-scale microstructure of Tb3Sc2Al3O12-TbScO3:Pr eutectic,” Chem. Mater. 18, 2450–2457 (2006).
[CrossRef]

Vendik, I.

D. A. Pawlak, S. Turczynski, M. Gajc, K. Kolodziejak, R. Diduszko, K. Rozniatowski, J. Smalc, and I. Vendik, “How far are we from making metamaterials by self-organization? The microstructure of highly anisotropic particles with an SRR-like geometry,” Adv. Funct. Mat. 20, 1116–1124 (2010).
[CrossRef]

Volkov, V. S.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508–511 (2006).
[CrossRef] [PubMed]

Wolf, M. O.

F. J. García de Abajo, A. G. Pattantyus-Abraham, N. Zabala, A. Rivacoba, M. O. Wolf, and P. M. Echenique, “Cherenkov effect as a probe of photonic nanostructures,” Phys. Rev. Lett. 91, 143902 (2003).
[CrossRef] [PubMed]

Zabala, N.

F. J. García de Abajo, A. G. Pattantyus-Abraham, N. Zabala, A. Rivacoba, M. O. Wolf, and P. M. Echenique, “Cherenkov effect as a probe of photonic nanostructures,” Phys. Rev. Lett. 91, 143902 (2003).
[CrossRef] [PubMed]

Zhang, X.

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for sub-wavelength confinement and long-range propagation,” Nat. Photonics 2, 496–500 (2008).
[CrossRef]

Adv. Funct. Mat. (1)

D. A. Pawlak, S. Turczynski, M. Gajc, K. Kolodziejak, R. Diduszko, K. Rozniatowski, J. Smalc, and I. Vendik, “How far are we from making metamaterials by self-organization? The microstructure of highly anisotropic particles with an SRR-like geometry,” Adv. Funct. Mat. 20, 1116–1124 (2010).
[CrossRef]

Adv. Mater. (1)

S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, and H. A. Atwater, “Plasmonics - a route to nanoscale optical devices,” Adv. Mater. 13, 1501–1505 (2001).
[CrossRef]

Appl. Phys. Lett. (1)

A. J. Huber, B. Deutsch, L. Novotny, and R. Hillenbrand, “Focusing of surface phonon polaritons,” Appl. Phys. Lett. 92, 203104 (2008).
[CrossRef]

Chem. Mater. (1)

D. A. Pawlak, K. Kolodziejak, S. Turczynski, J. Kisielewski, K. Rozniatowski, R. Diduszko, M. Kaczkan, and M. Malinowski, “Self-organized, rodlike, micrometer-scale microstructure of Tb3Sc2Al3O12-TbScO3:Pr eutectic,” Chem. Mater. 18, 2450–2457 (2006).
[CrossRef]

J. Appl. Phys. (1)

D. A. Pawlak, G. Lerondel, I. Dmytruk, Y. Kagamitani, S. Durbin, and T. Fukuda, “Second order self-organized pattern of terbium-scandium-aluminum garnet and terbium-scandium perovskite eutectic,” J. Appl. Phys. 91, 9731–9736 (2002).
[CrossRef]

J. Mater. Res. (1)

A. Larrea, L. Contreras, R. I. Merino, J. Llorca, and V. M. Orera, “Microstructure and physical properties of CaF2-MgO eutectics produced by the Bridgman method,” J. Mater. Res. 15, 1314–1319 (2000).
[CrossRef]

Nano Lett. (1)

A. Manjavacas and F. J. García de Abajo, “Robust plasmon waveguides in strongly interacting nanowire arrays,” Nano Lett. 9, 1285–1289 (2009).
[CrossRef]

Nat. Photonics (1)

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for sub-wavelength confinement and long-range propagation,” Nat. Photonics 2, 496–500 (2008).
[CrossRef]

Nature (1)

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508–511 (2006).
[CrossRef] [PubMed]

Opt. Express (4)

Opt. Lett. (1)

Opt. Mater. (1)

V. M. Orera and A. Larrea, “NaCl-assisted growth of micrometer-wide long single crystalline fluoride fibres,” Opt. Mater. 27, 1726–1729 (2005).
[CrossRef]

Phys. Rev. B (3)

P. A. Belov and Y. Hao, “Subwavelength imaging at optical frequencies using a transmission device formed by a periodic layered metal-dielectric structure operating in the canalization regime,” Phys. Rev. B 73, 113110 (2006).
[CrossRef]

F. J. García de Abajo and A. Howie, “Retarded field calculation of electron energy loss in inhomogeneous dielectrics,” Phys. Rev. B 65, 115418 (2002).
[CrossRef]

J. S. Kirkaldy, “Predicting the patterns in lamellar growth,” Phys. Rev. B 30, 6889–6895 (1984).
[CrossRef]

Phys. Rev. Lett. (3)

F. J. García de Abajo and A. Howie, “Relativistic electron energy loss and electron-induced photon emission in inhomogeneous dielectrics,” Phys. Rev. Lett. 80, 5180–5183 (1998).
[CrossRef]

F. J. García de Abajo, A. G. Pattantyus-Abraham, N. Zabala, A. Rivacoba, M. O. Wolf, and P. M. Echenique, “Cherenkov effect as a probe of photonic nanostructures,” Phys. Rev. Lett. 91, 143902 (2003).
[CrossRef] [PubMed]

E. Moreno, S. G. Rodrigo, S. I. Bozhevolnyi, L. Martín-Moreno, and F. J. García-Vidal, “Guiding and focusing of electromagnetic fields with wedge plasmon polaritons,” Phys. Rev. Lett. 100, 023901 (2008).
[CrossRef] [PubMed]

Prog. Mat. Sci. (1)

J. Llorca and V. M. Orera, “Directionally-solidified eutectic ceramic oxides,” Prog. Mat. Sci. 51, 711–809 (2006).
[CrossRef]

Other (2)

N. W. Ashcroft and N. D. Mermin, Solid State Physics (Harcourt College Publishers, New York, 1976).

E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, San Diego, 1985).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Gap plasmons of aligned silver nanowires in silica: non-touching configuration. (a) Schematic view of the geometry. The wires have a diameter of 200 nm and their separation varies from 1 nm to 200 nm. (b) Spectral dependence of the local density of photonic states (LDOS) at the gap center for fixed parallel wave vector k‖ = 27 μm−1 along the wire axes. (c) Spatial distribution of the LDOS for the low-energy gap modes. Zooms of the gap region of plots A–D are shown as well. The color scale is normalized to the intensity maximum for each separation.

Fig. 2
Fig. 2

Gap plasmons of aligned silver nanowires in silica: overlapping configuration. See Fig. 1 for further details and parameters. The LDOS in (b) is calculated 10 nm outside the neck of the dimer profile. The field plots in (c) correspond to the lowest-energy modes labeled in (b).

Fig. 3
Fig. 3

Gap plasmons of non-touching (a)–(h) and overlapping (i)–(p) aligned silver nanowire pairs embedded in silica. The gap distance d is shown by labels, and d < 0 corresponds to the touching configuration. The dispersion diagrams show the LDOS outside the silica light cone at the gap center in (a)–(h) and at a point situated 10 nm outside the dimer neck in (i)–(p).

Fig. 4
Fig. 4

Gap phonon polaritons in self-standing KCl microwire pairs. (a) Schematic view of the geometry. The wire diameter is 4 μm. (b) Dielectric function of KCl. (c)(e) Dispersion diagrams showing the total density of photonic states as a function of wave vector parallel to the wires (horizontal axis) and light wavelength (vertical axis) over the spectral region indicated by the shaded area of (b). Different gap distances d are considered, as shown by labels.

Fig. 5
Fig. 5

Same as Fig. 4 for LiF microwires in NaCl. Panel (b) compares the dielectric functions of these two materials within the polaritonic range of interest. The permittivity of NaCl is also shown multiplied by a factor of 30 (dashed curves).

Fig. 6
Fig. 6

Polaritonic modes in aligned LiF microwires arranged in a hexagonal lattice inside NaCl. (a) Cross section of a fabricated eutectic showing this type of arragement for wires of 3.3 μm in diameter and a volume fraction of LiF ≈ 0.24. (b)(d) Dispersion diagrams showing the total density of photonic states outside the NaCl light cone as a function of wave vector parallel to the wires (horizontal axis) and light wavelength (vertical axis) over the wavelength region corresponding to the shaded area of Fig. 5(b) for finite arrangements of close-packed aligned nanowires consisting of N = 1, 7, and 19 wires, respectively (see insets).

Metrics