Abstract

CW and mode-locked laser operation based on an Yb3+:Y2O3 ceramic thin disk is reported. In CW laser operation, an output power of 70 W with an optical-to-optical efficiency of 57.4% was achieved. A higher slope efficiency of 70% was also obtained with a 50-W pump laser diode with more suitable emission characteristics. In mode-locked laser operation, pulses as short as 547 fs with an average power of 7.4 W were obtained. To our knowledge, this is the first demonstration of a high power CW and mode-locked laser operation based on Yb3+:Y2O3 ceramic thin disks.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. F. Krupke, “Ytterbium solid-state lasers: the first decade,” IEEE J. Sel. Top. Quantum Electron. 6(6), 1287–1296 (2000).
    [CrossRef]
  2. E. Stiles, “New developments in IPG fiber laser technology,” presented at The Fifth International Workshop on Fiber Lasers, Dresden, Germany, September 30–October 1, (2009).
  3. K. Beil, S. T. Fredrich-Thornton, F. Tellkamp, R. Peters, C. Kränkel, K. Petermann, and G. Huber, “Thermal and laser properties of Yb:LuAG for kW thin disk lasers,” Opt. Express 18(20), 20712–20722 (2010).
    [CrossRef] [PubMed]
  4. M. Baumgartl, F. Jansen, F. Stutzki, C. Jauregui, B. Ortaç, J. Limpert, and A. Tünnermann, “High average and peak power femtosecond large-pitch photonic-crystal-fiber laser,” Opt. Lett. 36(2), 244–246 (2011).
    [CrossRef] [PubMed]
  5. T. Eidam, J. Rothhardt, F. Stutzki, F. Jansen, S. Hädrich, H. Carstens, C. Jauregui, J. Limpert, and A. Tünnermann, “Fiber chirped-pulse amplification system emitting 3.8 GW peak power,” Opt. Express 19(1), 255–260 (2011).
    [CrossRef] [PubMed]
  6. T. Eidam, S. Hanf, E. Seise, T. V. Andersen, T. Gabler, C. Wirth, T. Schreiber, J. Limpert, and A. Tünnermann, “Femtosecond fiber CPA system emitting 830 W average output power,” Opt. Lett. 35(2), 94–96 (2010).
    [CrossRef] [PubMed]
  7. F. Schättiger, D. Bauer, J. Demsar, T. Dekorsy, J. Kleinbauer, D. H. Sutter, J. Puustinen, and M. Guina, “Characterization of InGaAs and InGaAsN semiconductor saturable absorber mirrors for high-power mode-locked thin-disk lasers,” Appl. Phys. B 106(3), 605–612 (2012).
    [CrossRef]
  8. C. R. E. Baer, C. Kränkel, C. J. Saraceno, O. H. Heckl, M. Golling, R. Peters, K. Petermann, T. Südmeyer, G. Huber, and U. Keller, “Femtosecond thin-disk laser with 141 W of average power,” Opt. Lett. 35(13), 2302–2304 (2010).
    [CrossRef] [PubMed]
  9. S. Ricaud, A. Jaffres, P. Loiseau, B. Viana, B. Weichelt, M. Abdou-Ahmed, A. Voss, T. Graf, D. Rytz, M. Delaigue, E. Mottay, P. Georges, and F. Druon, “Yb:CaGdAlO4 thin-disk laser,” Opt. Lett. 36(21), 4134–4136 (2011).
    [CrossRef] [PubMed]
  10. O. Pronin, J. Brons, C. Grasse, V. Pervak, G. Boehm, M.-C. Amann, V. L. Kalashnikov, A. Apolonski, and F. Krausz, “High-power 200 fs Kerr-lens mode-locked Yb:YAG thin-disk oscillator,” Opt. Lett. 36(24), 4746–4748 (2011).
    [CrossRef] [PubMed]
  11. C. J. Saraceno, O. H. Heckl, C. R. E. Baer, C. Schriber, M. Golling, K. Beil, C. Kränkel, T. Südmeyer, G. Huber, and U. Keller, “Sub-100 fs from a SESAM modelocked thin disk laser,” Appl. Phys. B 106(3), 559–562 (2012).
    [CrossRef]
  12. C. J. Saraceno, O. H. Heckl, C. R. E. Baer, M. Golling, T. Südmeyer, K. Beil, C. Kränkel, K. Petermann, G. Huber, and U. Keller, “SESAMs for high-power femtosecond modelocking: power scaling of an Yb:LuScO₃ thin disk laser to 23 W and 235 fs,” Opt. Express 19(21), 20288–20300 (2011).
    [CrossRef] [PubMed]
  13. A. A. Kaminskii, M. Sh. Akchurin, R. V. Gainutdinov, K. Takaichi, A. Shirakawa, H. Yagi, T. Yanagitani, and K. Ueda, “Microhardness and fracture toughness of Y2O3- and Y3Al5O12-based nanocrystalline laser ceramics,” Crystallogr. Rep. 50(5), 869–873 (2005).
    [CrossRef]
  14. L. D. Merkle, G. A. Newburgh, N. Ter-Gabrielyan, A. Michael, and M. Dubinskii, “Temperature-dependent lasing and spectroscopy of Yb:Y2O3 and Yb:Sc2O3,” Opt. Commun. 281(23), 5855–5861 (2008).
    [CrossRef]
  15. M. Tokurakawa, K. Takaichi, A. Shirakawa, K. I. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Diode-pumped 188 fs mode-locked Yb3+:Y2O3 ceramic laser,” Appl. Phys. Lett. 90(7), 071101 (2007).
    [CrossRef]
  16. M. Tokurakawa, A. Shirakawa, K. Ueda, H. Yagi, M. Noriyuki, T. Yanagitani, and A. A. Kaminskii, “Diode-pumped ultrashort-pulse generation based on Yb(3+):Sc(2)O(3) and Yb(3+):Y(2)O(3) ceramic multi-gain-media oscillator,” Opt. Express 17(5), 3353–3361 (2009).
    [CrossRef] [PubMed]
  17. R. Peters, C. Kränkel, K. Petermann, and G. Huber, “Broadly tunable high-power Yb:Lu(2)O(3) thin disk laser with 80% slope efficiency,” Opt. Express 15(11), 7075–7082 (2007).
    [CrossRef] [PubMed]
  18. J. Mende, J. Speiser, G. Spindler, W. L. Bohn, and A. Giesen, “Mode dynamics and thermal lens effects of thin-disk lasers,” Proc. SPIE 6871, 68710M, 68710M-11 (2008).
    [CrossRef]

2012 (2)

F. Schättiger, D. Bauer, J. Demsar, T. Dekorsy, J. Kleinbauer, D. H. Sutter, J. Puustinen, and M. Guina, “Characterization of InGaAs and InGaAsN semiconductor saturable absorber mirrors for high-power mode-locked thin-disk lasers,” Appl. Phys. B 106(3), 605–612 (2012).
[CrossRef]

C. J. Saraceno, O. H. Heckl, C. R. E. Baer, C. Schriber, M. Golling, K. Beil, C. Kränkel, T. Südmeyer, G. Huber, and U. Keller, “Sub-100 fs from a SESAM modelocked thin disk laser,” Appl. Phys. B 106(3), 559–562 (2012).
[CrossRef]

2011 (5)

2010 (3)

2009 (1)

2008 (2)

J. Mende, J. Speiser, G. Spindler, W. L. Bohn, and A. Giesen, “Mode dynamics and thermal lens effects of thin-disk lasers,” Proc. SPIE 6871, 68710M, 68710M-11 (2008).
[CrossRef]

L. D. Merkle, G. A. Newburgh, N. Ter-Gabrielyan, A. Michael, and M. Dubinskii, “Temperature-dependent lasing and spectroscopy of Yb:Y2O3 and Yb:Sc2O3,” Opt. Commun. 281(23), 5855–5861 (2008).
[CrossRef]

2007 (2)

M. Tokurakawa, K. Takaichi, A. Shirakawa, K. I. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Diode-pumped 188 fs mode-locked Yb3+:Y2O3 ceramic laser,” Appl. Phys. Lett. 90(7), 071101 (2007).
[CrossRef]

R. Peters, C. Kränkel, K. Petermann, and G. Huber, “Broadly tunable high-power Yb:Lu(2)O(3) thin disk laser with 80% slope efficiency,” Opt. Express 15(11), 7075–7082 (2007).
[CrossRef] [PubMed]

2005 (1)

A. A. Kaminskii, M. Sh. Akchurin, R. V. Gainutdinov, K. Takaichi, A. Shirakawa, H. Yagi, T. Yanagitani, and K. Ueda, “Microhardness and fracture toughness of Y2O3- and Y3Al5O12-based nanocrystalline laser ceramics,” Crystallogr. Rep. 50(5), 869–873 (2005).
[CrossRef]

2000 (1)

W. F. Krupke, “Ytterbium solid-state lasers: the first decade,” IEEE J. Sel. Top. Quantum Electron. 6(6), 1287–1296 (2000).
[CrossRef]

Abdou-Ahmed, M.

Akchurin, M. Sh.

A. A. Kaminskii, M. Sh. Akchurin, R. V. Gainutdinov, K. Takaichi, A. Shirakawa, H. Yagi, T. Yanagitani, and K. Ueda, “Microhardness and fracture toughness of Y2O3- and Y3Al5O12-based nanocrystalline laser ceramics,” Crystallogr. Rep. 50(5), 869–873 (2005).
[CrossRef]

Amann, M.-C.

Andersen, T. V.

Apolonski, A.

Baer, C. R. E.

Bauer, D.

F. Schättiger, D. Bauer, J. Demsar, T. Dekorsy, J. Kleinbauer, D. H. Sutter, J. Puustinen, and M. Guina, “Characterization of InGaAs and InGaAsN semiconductor saturable absorber mirrors for high-power mode-locked thin-disk lasers,” Appl. Phys. B 106(3), 605–612 (2012).
[CrossRef]

Baumgartl, M.

Beil, K.

Boehm, G.

Bohn, W. L.

J. Mende, J. Speiser, G. Spindler, W. L. Bohn, and A. Giesen, “Mode dynamics and thermal lens effects of thin-disk lasers,” Proc. SPIE 6871, 68710M, 68710M-11 (2008).
[CrossRef]

Brons, J.

Carstens, H.

Dekorsy, T.

F. Schättiger, D. Bauer, J. Demsar, T. Dekorsy, J. Kleinbauer, D. H. Sutter, J. Puustinen, and M. Guina, “Characterization of InGaAs and InGaAsN semiconductor saturable absorber mirrors for high-power mode-locked thin-disk lasers,” Appl. Phys. B 106(3), 605–612 (2012).
[CrossRef]

Delaigue, M.

Demsar, J.

F. Schättiger, D. Bauer, J. Demsar, T. Dekorsy, J. Kleinbauer, D. H. Sutter, J. Puustinen, and M. Guina, “Characterization of InGaAs and InGaAsN semiconductor saturable absorber mirrors for high-power mode-locked thin-disk lasers,” Appl. Phys. B 106(3), 605–612 (2012).
[CrossRef]

Druon, F.

Dubinskii, M.

L. D. Merkle, G. A. Newburgh, N. Ter-Gabrielyan, A. Michael, and M. Dubinskii, “Temperature-dependent lasing and spectroscopy of Yb:Y2O3 and Yb:Sc2O3,” Opt. Commun. 281(23), 5855–5861 (2008).
[CrossRef]

Eidam, T.

Fredrich-Thornton, S. T.

Gabler, T.

Gainutdinov, R. V.

A. A. Kaminskii, M. Sh. Akchurin, R. V. Gainutdinov, K. Takaichi, A. Shirakawa, H. Yagi, T. Yanagitani, and K. Ueda, “Microhardness and fracture toughness of Y2O3- and Y3Al5O12-based nanocrystalline laser ceramics,” Crystallogr. Rep. 50(5), 869–873 (2005).
[CrossRef]

Georges, P.

Giesen, A.

J. Mende, J. Speiser, G. Spindler, W. L. Bohn, and A. Giesen, “Mode dynamics and thermal lens effects of thin-disk lasers,” Proc. SPIE 6871, 68710M, 68710M-11 (2008).
[CrossRef]

Golling, M.

Graf, T.

Grasse, C.

Guina, M.

F. Schättiger, D. Bauer, J. Demsar, T. Dekorsy, J. Kleinbauer, D. H. Sutter, J. Puustinen, and M. Guina, “Characterization of InGaAs and InGaAsN semiconductor saturable absorber mirrors for high-power mode-locked thin-disk lasers,” Appl. Phys. B 106(3), 605–612 (2012).
[CrossRef]

Hädrich, S.

Hanf, S.

Heckl, O. H.

Huber, G.

Jaffres, A.

Jansen, F.

Jauregui, C.

Kalashnikov, V. L.

Kaminskii, A. A.

M. Tokurakawa, A. Shirakawa, K. Ueda, H. Yagi, M. Noriyuki, T. Yanagitani, and A. A. Kaminskii, “Diode-pumped ultrashort-pulse generation based on Yb(3+):Sc(2)O(3) and Yb(3+):Y(2)O(3) ceramic multi-gain-media oscillator,” Opt. Express 17(5), 3353–3361 (2009).
[CrossRef] [PubMed]

M. Tokurakawa, K. Takaichi, A. Shirakawa, K. I. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Diode-pumped 188 fs mode-locked Yb3+:Y2O3 ceramic laser,” Appl. Phys. Lett. 90(7), 071101 (2007).
[CrossRef]

A. A. Kaminskii, M. Sh. Akchurin, R. V. Gainutdinov, K. Takaichi, A. Shirakawa, H. Yagi, T. Yanagitani, and K. Ueda, “Microhardness and fracture toughness of Y2O3- and Y3Al5O12-based nanocrystalline laser ceramics,” Crystallogr. Rep. 50(5), 869–873 (2005).
[CrossRef]

Keller, U.

Kleinbauer, J.

F. Schättiger, D. Bauer, J. Demsar, T. Dekorsy, J. Kleinbauer, D. H. Sutter, J. Puustinen, and M. Guina, “Characterization of InGaAs and InGaAsN semiconductor saturable absorber mirrors for high-power mode-locked thin-disk lasers,” Appl. Phys. B 106(3), 605–612 (2012).
[CrossRef]

Kränkel, C.

Krausz, F.

Krupke, W. F.

W. F. Krupke, “Ytterbium solid-state lasers: the first decade,” IEEE J. Sel. Top. Quantum Electron. 6(6), 1287–1296 (2000).
[CrossRef]

Limpert, J.

Loiseau, P.

Mende, J.

J. Mende, J. Speiser, G. Spindler, W. L. Bohn, and A. Giesen, “Mode dynamics and thermal lens effects of thin-disk lasers,” Proc. SPIE 6871, 68710M, 68710M-11 (2008).
[CrossRef]

Merkle, L. D.

L. D. Merkle, G. A. Newburgh, N. Ter-Gabrielyan, A. Michael, and M. Dubinskii, “Temperature-dependent lasing and spectroscopy of Yb:Y2O3 and Yb:Sc2O3,” Opt. Commun. 281(23), 5855–5861 (2008).
[CrossRef]

Michael, A.

L. D. Merkle, G. A. Newburgh, N. Ter-Gabrielyan, A. Michael, and M. Dubinskii, “Temperature-dependent lasing and spectroscopy of Yb:Y2O3 and Yb:Sc2O3,” Opt. Commun. 281(23), 5855–5861 (2008).
[CrossRef]

Mottay, E.

Newburgh, G. A.

L. D. Merkle, G. A. Newburgh, N. Ter-Gabrielyan, A. Michael, and M. Dubinskii, “Temperature-dependent lasing and spectroscopy of Yb:Y2O3 and Yb:Sc2O3,” Opt. Commun. 281(23), 5855–5861 (2008).
[CrossRef]

Noriyuki, M.

Ortaç, B.

Pervak, V.

Petermann, K.

Peters, R.

Pronin, O.

Puustinen, J.

F. Schättiger, D. Bauer, J. Demsar, T. Dekorsy, J. Kleinbauer, D. H. Sutter, J. Puustinen, and M. Guina, “Characterization of InGaAs and InGaAsN semiconductor saturable absorber mirrors for high-power mode-locked thin-disk lasers,” Appl. Phys. B 106(3), 605–612 (2012).
[CrossRef]

Ricaud, S.

Rothhardt, J.

Rytz, D.

Saraceno, C. J.

Schättiger, F.

F. Schättiger, D. Bauer, J. Demsar, T. Dekorsy, J. Kleinbauer, D. H. Sutter, J. Puustinen, and M. Guina, “Characterization of InGaAs and InGaAsN semiconductor saturable absorber mirrors for high-power mode-locked thin-disk lasers,” Appl. Phys. B 106(3), 605–612 (2012).
[CrossRef]

Schreiber, T.

Schriber, C.

C. J. Saraceno, O. H. Heckl, C. R. E. Baer, C. Schriber, M. Golling, K. Beil, C. Kränkel, T. Südmeyer, G. Huber, and U. Keller, “Sub-100 fs from a SESAM modelocked thin disk laser,” Appl. Phys. B 106(3), 559–562 (2012).
[CrossRef]

Seise, E.

Shirakawa, A.

M. Tokurakawa, A. Shirakawa, K. Ueda, H. Yagi, M. Noriyuki, T. Yanagitani, and A. A. Kaminskii, “Diode-pumped ultrashort-pulse generation based on Yb(3+):Sc(2)O(3) and Yb(3+):Y(2)O(3) ceramic multi-gain-media oscillator,” Opt. Express 17(5), 3353–3361 (2009).
[CrossRef] [PubMed]

M. Tokurakawa, K. Takaichi, A. Shirakawa, K. I. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Diode-pumped 188 fs mode-locked Yb3+:Y2O3 ceramic laser,” Appl. Phys. Lett. 90(7), 071101 (2007).
[CrossRef]

A. A. Kaminskii, M. Sh. Akchurin, R. V. Gainutdinov, K. Takaichi, A. Shirakawa, H. Yagi, T. Yanagitani, and K. Ueda, “Microhardness and fracture toughness of Y2O3- and Y3Al5O12-based nanocrystalline laser ceramics,” Crystallogr. Rep. 50(5), 869–873 (2005).
[CrossRef]

Speiser, J.

J. Mende, J. Speiser, G. Spindler, W. L. Bohn, and A. Giesen, “Mode dynamics and thermal lens effects of thin-disk lasers,” Proc. SPIE 6871, 68710M, 68710M-11 (2008).
[CrossRef]

Spindler, G.

J. Mende, J. Speiser, G. Spindler, W. L. Bohn, and A. Giesen, “Mode dynamics and thermal lens effects of thin-disk lasers,” Proc. SPIE 6871, 68710M, 68710M-11 (2008).
[CrossRef]

Stutzki, F.

Südmeyer, T.

Sutter, D. H.

F. Schättiger, D. Bauer, J. Demsar, T. Dekorsy, J. Kleinbauer, D. H. Sutter, J. Puustinen, and M. Guina, “Characterization of InGaAs and InGaAsN semiconductor saturable absorber mirrors for high-power mode-locked thin-disk lasers,” Appl. Phys. B 106(3), 605–612 (2012).
[CrossRef]

Takaichi, K.

M. Tokurakawa, K. Takaichi, A. Shirakawa, K. I. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Diode-pumped 188 fs mode-locked Yb3+:Y2O3 ceramic laser,” Appl. Phys. Lett. 90(7), 071101 (2007).
[CrossRef]

A. A. Kaminskii, M. Sh. Akchurin, R. V. Gainutdinov, K. Takaichi, A. Shirakawa, H. Yagi, T. Yanagitani, and K. Ueda, “Microhardness and fracture toughness of Y2O3- and Y3Al5O12-based nanocrystalline laser ceramics,” Crystallogr. Rep. 50(5), 869–873 (2005).
[CrossRef]

Tellkamp, F.

Ter-Gabrielyan, N.

L. D. Merkle, G. A. Newburgh, N. Ter-Gabrielyan, A. Michael, and M. Dubinskii, “Temperature-dependent lasing and spectroscopy of Yb:Y2O3 and Yb:Sc2O3,” Opt. Commun. 281(23), 5855–5861 (2008).
[CrossRef]

Tokurakawa, M.

M. Tokurakawa, A. Shirakawa, K. Ueda, H. Yagi, M. Noriyuki, T. Yanagitani, and A. A. Kaminskii, “Diode-pumped ultrashort-pulse generation based on Yb(3+):Sc(2)O(3) and Yb(3+):Y(2)O(3) ceramic multi-gain-media oscillator,” Opt. Express 17(5), 3353–3361 (2009).
[CrossRef] [PubMed]

M. Tokurakawa, K. Takaichi, A. Shirakawa, K. I. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Diode-pumped 188 fs mode-locked Yb3+:Y2O3 ceramic laser,” Appl. Phys. Lett. 90(7), 071101 (2007).
[CrossRef]

Tünnermann, A.

Ueda, K.

M. Tokurakawa, A. Shirakawa, K. Ueda, H. Yagi, M. Noriyuki, T. Yanagitani, and A. A. Kaminskii, “Diode-pumped ultrashort-pulse generation based on Yb(3+):Sc(2)O(3) and Yb(3+):Y(2)O(3) ceramic multi-gain-media oscillator,” Opt. Express 17(5), 3353–3361 (2009).
[CrossRef] [PubMed]

A. A. Kaminskii, M. Sh. Akchurin, R. V. Gainutdinov, K. Takaichi, A. Shirakawa, H. Yagi, T. Yanagitani, and K. Ueda, “Microhardness and fracture toughness of Y2O3- and Y3Al5O12-based nanocrystalline laser ceramics,” Crystallogr. Rep. 50(5), 869–873 (2005).
[CrossRef]

Ueda, K. I.

M. Tokurakawa, K. Takaichi, A. Shirakawa, K. I. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Diode-pumped 188 fs mode-locked Yb3+:Y2O3 ceramic laser,” Appl. Phys. Lett. 90(7), 071101 (2007).
[CrossRef]

Viana, B.

Voss, A.

Weichelt, B.

Wirth, C.

Yagi, H.

M. Tokurakawa, A. Shirakawa, K. Ueda, H. Yagi, M. Noriyuki, T. Yanagitani, and A. A. Kaminskii, “Diode-pumped ultrashort-pulse generation based on Yb(3+):Sc(2)O(3) and Yb(3+):Y(2)O(3) ceramic multi-gain-media oscillator,” Opt. Express 17(5), 3353–3361 (2009).
[CrossRef] [PubMed]

M. Tokurakawa, K. Takaichi, A. Shirakawa, K. I. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Diode-pumped 188 fs mode-locked Yb3+:Y2O3 ceramic laser,” Appl. Phys. Lett. 90(7), 071101 (2007).
[CrossRef]

A. A. Kaminskii, M. Sh. Akchurin, R. V. Gainutdinov, K. Takaichi, A. Shirakawa, H. Yagi, T. Yanagitani, and K. Ueda, “Microhardness and fracture toughness of Y2O3- and Y3Al5O12-based nanocrystalline laser ceramics,” Crystallogr. Rep. 50(5), 869–873 (2005).
[CrossRef]

Yanagitani, T.

M. Tokurakawa, A. Shirakawa, K. Ueda, H. Yagi, M. Noriyuki, T. Yanagitani, and A. A. Kaminskii, “Diode-pumped ultrashort-pulse generation based on Yb(3+):Sc(2)O(3) and Yb(3+):Y(2)O(3) ceramic multi-gain-media oscillator,” Opt. Express 17(5), 3353–3361 (2009).
[CrossRef] [PubMed]

M. Tokurakawa, K. Takaichi, A. Shirakawa, K. I. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Diode-pumped 188 fs mode-locked Yb3+:Y2O3 ceramic laser,” Appl. Phys. Lett. 90(7), 071101 (2007).
[CrossRef]

A. A. Kaminskii, M. Sh. Akchurin, R. V. Gainutdinov, K. Takaichi, A. Shirakawa, H. Yagi, T. Yanagitani, and K. Ueda, “Microhardness and fracture toughness of Y2O3- and Y3Al5O12-based nanocrystalline laser ceramics,” Crystallogr. Rep. 50(5), 869–873 (2005).
[CrossRef]

Appl. Phys. B (2)

F. Schättiger, D. Bauer, J. Demsar, T. Dekorsy, J. Kleinbauer, D. H. Sutter, J. Puustinen, and M. Guina, “Characterization of InGaAs and InGaAsN semiconductor saturable absorber mirrors for high-power mode-locked thin-disk lasers,” Appl. Phys. B 106(3), 605–612 (2012).
[CrossRef]

C. J. Saraceno, O. H. Heckl, C. R. E. Baer, C. Schriber, M. Golling, K. Beil, C. Kränkel, T. Südmeyer, G. Huber, and U. Keller, “Sub-100 fs from a SESAM modelocked thin disk laser,” Appl. Phys. B 106(3), 559–562 (2012).
[CrossRef]

Appl. Phys. Lett. (1)

M. Tokurakawa, K. Takaichi, A. Shirakawa, K. I. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Diode-pumped 188 fs mode-locked Yb3+:Y2O3 ceramic laser,” Appl. Phys. Lett. 90(7), 071101 (2007).
[CrossRef]

Crystallogr. Rep. (1)

A. A. Kaminskii, M. Sh. Akchurin, R. V. Gainutdinov, K. Takaichi, A. Shirakawa, H. Yagi, T. Yanagitani, and K. Ueda, “Microhardness and fracture toughness of Y2O3- and Y3Al5O12-based nanocrystalline laser ceramics,” Crystallogr. Rep. 50(5), 869–873 (2005).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

W. F. Krupke, “Ytterbium solid-state lasers: the first decade,” IEEE J. Sel. Top. Quantum Electron. 6(6), 1287–1296 (2000).
[CrossRef]

Opt. Commun. (1)

L. D. Merkle, G. A. Newburgh, N. Ter-Gabrielyan, A. Michael, and M. Dubinskii, “Temperature-dependent lasing and spectroscopy of Yb:Y2O3 and Yb:Sc2O3,” Opt. Commun. 281(23), 5855–5861 (2008).
[CrossRef]

Opt. Express (5)

Opt. Lett. (5)

Proc. SPIE (1)

J. Mende, J. Speiser, G. Spindler, W. L. Bohn, and A. Giesen, “Mode dynamics and thermal lens effects of thin-disk lasers,” Proc. SPIE 6871, 68710M, 68710M-11 (2008).
[CrossRef]

Other (1)

E. Stiles, “New developments in IPG fiber laser technology,” presented at The Fifth International Workshop on Fiber Lasers, Dresden, Germany, September 30–October 1, (2009).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Fluorescence spectra of Yb3+-doped sesquioxide ceramics

Fig. 2
Fig. 2

Schematic picture of the CW laser cavity setup.

Fig. 3
Fig. 3

(a) Laser characteristics of the Yb3+:Y2O3 ceramic thin disk laser in CW mode. Pumped with the 50-W pump source. (b) Pumped with the 140 W pump source.

Fig. 4
Fig. 4

(a) Schematic picture of the mode-locked laser cavity. The inset shows the bottom side arm in the four CPMs configuration. We assume a thermally induced ROC of 2000 mm (convex) at the thin disk. (b) Calculated laser mode radius inside the cavity of two CPMs configuration. (c) Calculated laser mode radius inside the cavity of the four CPMs configuration.

Fig. 5
Fig. 5

(a) Autocorrelation trace in single pulse mode locked operation at a 2.3-W average power. The inset shows the spectrum. (b) Pulse train in a short time range (c) and in a long time range (bottom).

Fig. 6
Fig. 6

(a) Laser characteristics of the mode-locked Yb3+:Y2O3 ceramic thin disk laser. (b) Pulse train in double pulse operation

Fig. 7
Fig. 7

Autocorrelation trace in single pulse mode locked operation at a 7.4-W average power. The inset shows the spectrum.

Metrics