Abstract

This work presents an optically tunable chirped fiber Bragg grating (CFBG). The CFBG is obtained by a side-polished fiber Bragg grating (SPFBG) whose thickness of the residual cladding layer in the polished area (DRC) varies with position along the length of the grating, which is coated with a photoresponsive liquid crystal (LC) overlay. The reflection spectrum of the CFBG is tuned by refractive index (RI) modulation, which comes from the phase transition of the overlaid photoresponsive LC under ultraviolet (UV) light irradiation. The broadening in the reflection spectrum and corresponding shift in the central wavelength are observed with UV light irradiation density of 0.64mW/mm2. During the phase transition of the photoresponsive LC, the RI increase of the overlaid LC leads to the change of the CFBG reflection spectrum and the change is reversible and repeatable. The optically tunable CFBGs have potential use in optical DWDM system and an all-fiber telecommunication system.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. X. Y. Dong, P. Shum, N. Q. Ngo, C. C. Chan, J. Ng, and C. Zhao, “Largely tunable CFBG-based dispersion compensator with fixed center wavelength,” Opt. Express 11(22), 2970–2974 (2003).
    [CrossRef]
  2. B. J. Eggleton, A. Ahuja, P. S. Westbrook, J. A. Rogers, P. Kuo, T. N. Nielsen, and B. Mikkelsen, “Integrated tunable fiber gratings for dispersion management in high-bit rate systems,” J. Lightwave Technol. 18(11), 1418–1432 (2000).
    [CrossRef]
  3. V. Italia, M. Pisco, S. Campopiano, A. Cusano, and A. Cutolo, “Chirped fiber Bragg gratings for electrically tunable time delay lines,” IEEE J. Sel. Top. Quantum Electron. 11(2), 408–416 (2005).
    [CrossRef]
  4. M. Pisco, S. Campopiano, A. Cutolo, and A. Cusano, “Continuously variable optical delay line based on a chirped fiber Bragg grating,” IEEE Photon. Technol. Lett. 18(24), 2551–2553 (2006).
    [CrossRef]
  5. N. Q. Ngo, D. Liu, S. C. Tjin, X. Y. Dong, and P. Shum, “Thermally switchable and discretely tunable comb filter with a linearly chirped fiber Bragg grating,” Opt. Lett. 30(22), 2994–2996 (2005).
    [CrossRef]
  6. Y. G. Han, X. Y. Dong, J. H. Lee, and S. B. Lee, “Wavelength-spacing-tunable multichannel filter incorporating a sampled chirped fiber Bragg grating based on a symmetrical chirp-tuning technique without center wavelength shift,” Opt. Lett. 31(24), 3571–3573 (2006).
    [CrossRef]
  7. B. Dong, Q. D. Zhao, L. H. Liu, G. L. Huang, L. Jin, J. Zhou, and T. Q. Liao, “Tunable chirped fiber Bragg grating filter based on special strain function modulation and its application in fiber sensor,” J. Lightwave Technol. 26(14), 2286–2290 (2008).
    [CrossRef]
  8. K. Rottwitt, M. J. Guy, A. Boskovic, D. U. Noske, J. R. Taylor, and R. Kashyap, “Interaction of uniform phase picosecond pulses with chirped and unchirped photosensitive fiber Bragg gratings,” Electron. Lett. 30(12), 995- (1994).
    [CrossRef]
  9. J. Lauzon, S. Thibault, J. Martin, and F. Ouellette, “Implementation and characterization of fiber Bragg gratings linearly chirped by a temperature gradient,” Opt. Lett. 19(23), 2027–2029 (1994).
    [CrossRef]
  10. S. Y. Li, N. Q. Ngo, S. C. Tjin, P. Shum, and J. Zhang, “Thermally tunable narrow-bandpass filter based on a linearly chirped fiber Bragg grating,” Opt. Lett. 29(1), 29–31 (2004).
    [CrossRef]
  11. J. L. Cruz, A. Diez, M. V. Andres, A. Segura, B. Ortega, and L. Dong, “Fiber Bragg grating tuned and chirped using magnetic fields,” Electron. Lett. 33(3), 235–236 (1997).
    [CrossRef]
  12. B. J. Eggleton, J. A. Rogers, P. S. Westbrook, and T. A. Strasser, “Electrically tunable power efficient dispersion compensating fiber Bragg grating,” IEEE Photon. Technol. Lett. 11(7), 854–856 (1999).
    [CrossRef]
  13. Y. Y. Zhang, D. X. Wang, E. G. Dai, D. M. Wu, and A. S. Xu, “Electrically tunable dispersion compensator based on nonlinearly chirped fiber Bragg grating,” Microw. Opt. Technol. Lett. 37(4), 288–292 (2003).
    [CrossRef]
  14. Y. H. Huang, Y. Zhou, C. Doyle, and S. T. Wu, “Tuning the photonic band gap in cholesteric liquid crystal by temperature-dependent dopant solubility,” Opt. Express 14(3), 1236–1242 (2006).
    [CrossRef]
  15. V. Y. Zyryanov, S. A. Myslivets, V. A. Gunyakov, A. M. Parshin, V. G. Arkhipkin, V. F. Shabanov, and W. Lee, “Magnetic-field tunable defect modes in a photonic-crystal/liquid –crystal cell,” Opt. Express 18(2), 1283–1288 (2010).
    [CrossRef]
  16. H. T. Dai, Y. J. Liu, X. W. Sun, and D. Luo, “A negative-positive tunable liquid-crystal microlens array by printing,” Opt. Express 17(6), 4317–4323 (2009).
    [CrossRef]
  17. T. T. Alkeskjold, J. Lægsgaard, a. Bjarklev, D. S. Hermann, J. Anawati, J. Broeng, Li, and S. T. Wu, “All-optical modulation in dye-doped nematic liquid crystal photonic bandgap fibers,” Opt. Express 12(24), 5857–5871 (2004).
    [CrossRef]
  18. P. V. Shibaev, R. L. Sanford, D. Chiappetta, V. Milner, A. Genack, and A. Bobrovsky, “Light controllable tuning and switching of lasing in chiral liquid crystals,” Opt. Express 13(7), 2358–2363 (2005).
    [CrossRef]
  19. U. A. Hrozhyk, S. V. Serak, N. V. Tabiryan, and T. J. Bunning, “Photoinduced isotropic state of cholesteric liquid crystals: novel dynamic photonic materials,” Adv. Mater. (Deerfield Beach Fla.) 19(20), 3244–3247 (2007).
    [CrossRef]
  20. V. K. S. Hsiao and C. Y. Ko, “Light-controllable photoresponsive liquid-crystal photonic crystal fiber,” Opt. Express 16, 12670–12676 (2008).
  21. V. K. S. Hsiao, Z. Li, Z. Chen, P. C. Peng, and J. Y. Tang, “optically controllable side-polished fiber attenuator with photoresponsive liquid crystal overlay,” Opt. Express 17(22), 19988–19994 (2009).
    [CrossRef]
  22. Z. Li, V. K. S. Hsiao, Z. Chen, J. Y. Tang, F. L. Zhao, and H. Z. Wang, “Optically tunable fiber Bragg grating,” IEEE Photon. Technol. Lett. 22(15), 1123–1125 (2010).
    [CrossRef]
  23. C. D. Hussey and J. D. Minelly, “Optical fibre polishing with a motor-driven polishing wheel,” Electron. Lett. 24(13), 805–807 (1988).
    [CrossRef]
  24. Z. Chen and L. Liu, “Wavelength tuning of fiber Bragg grating based on fiber side polishing,” Proc. SPIE (Advanced Sensor Technologies and Applications) 7157, 71570J/1–71570J/6 (2009).
  25. K. C. Byron, T. Bricheno, I. Bennion, and K. Sugden, “Fabrication of chirped Bragg gratings in photosenstive fiber,” Electron. Lett. 29(18), 1659–1660 (1993).
    [CrossRef]
  26. J. L. Cruz, L. Dong, S. Barcelos, and L. Reekie, “Fiber Bragg gratings with various chirp profiles made in etched tapers,” Appl. Opt. 35(34), 6781–6787 (1996).
    [CrossRef]
  27. H. B. Liu, H. Y. Liu, G. D. Peng, and T. W. Whitbread, “Tunalbe dispersion using linearly chirped polymer optical fiber Bragg gratings with fixed center wavelength,” IEEE Photon. Technol. Lett. 17(2), 411–413 (2005).
    [CrossRef]
  28. S. M. Tseng and C. L. Chen, “Side-polished fibers,” Appl. Opt. 31(18), 3438–3447 (1992).
    [CrossRef]
  29. X. Zhang, Y. H. Xia, Y. Q. Huang, and X. M. Ren, “Analysis of shift in Bragg wavelength of fiber Bragg gratings with finite cladding radius,” Acta Photonica Sinica 32, 222–224 (2003).
  30. D. W. Berreman, “Solid surface shape and the alignment of an adjacent nematic liquid crystal,” Phys. Rev. Lett. 28(26), 1683–1688 (1972).
    [CrossRef]
  31. A. Shishido, O. Tsutsumi, A. Kanazawa, T. Shiono, T. Ikeda, and N. Tamai, “Rapid optical switching by means of photoinduced change in refractive index of azobenzene liquid crystal detected by reflection-mode analysis,” J. Am. Chem. Soc. 119(33), 7791–7796 (1997).
    [CrossRef]
  32. A. Yamaguchi, N. Nakagawa, K. Igarashi, T. Sekikawa, H. Nishioka, H. Asanuma, and M. Yamashita, “Photoisomerization dynamics study on cis-azobenzene derivative using ultraviolet-to-visible tunable femtosecond pulses,” Appl. Surf. Sci. 255(24), 9864–9868 (2009).
    [CrossRef]
  33. T. Ikeda, “Photomodulation of liquid crystal orientations for photonic applications,” J. Mater. Chem. 13(9), 2037–2057 (2003).
    [CrossRef]

2010 (2)

V. Y. Zyryanov, S. A. Myslivets, V. A. Gunyakov, A. M. Parshin, V. G. Arkhipkin, V. F. Shabanov, and W. Lee, “Magnetic-field tunable defect modes in a photonic-crystal/liquid –crystal cell,” Opt. Express 18(2), 1283–1288 (2010).
[CrossRef]

Z. Li, V. K. S. Hsiao, Z. Chen, J. Y. Tang, F. L. Zhao, and H. Z. Wang, “Optically tunable fiber Bragg grating,” IEEE Photon. Technol. Lett. 22(15), 1123–1125 (2010).
[CrossRef]

2009 (3)

V. K. S. Hsiao, Z. Li, Z. Chen, P. C. Peng, and J. Y. Tang, “optically controllable side-polished fiber attenuator with photoresponsive liquid crystal overlay,” Opt. Express 17(22), 19988–19994 (2009).
[CrossRef]

A. Yamaguchi, N. Nakagawa, K. Igarashi, T. Sekikawa, H. Nishioka, H. Asanuma, and M. Yamashita, “Photoisomerization dynamics study on cis-azobenzene derivative using ultraviolet-to-visible tunable femtosecond pulses,” Appl. Surf. Sci. 255(24), 9864–9868 (2009).
[CrossRef]

H. T. Dai, Y. J. Liu, X. W. Sun, and D. Luo, “A negative-positive tunable liquid-crystal microlens array by printing,” Opt. Express 17(6), 4317–4323 (2009).
[CrossRef]

2008 (2)

2007 (1)

U. A. Hrozhyk, S. V. Serak, N. V. Tabiryan, and T. J. Bunning, “Photoinduced isotropic state of cholesteric liquid crystals: novel dynamic photonic materials,” Adv. Mater. (Deerfield Beach Fla.) 19(20), 3244–3247 (2007).
[CrossRef]

2006 (3)

2005 (4)

P. V. Shibaev, R. L. Sanford, D. Chiappetta, V. Milner, A. Genack, and A. Bobrovsky, “Light controllable tuning and switching of lasing in chiral liquid crystals,” Opt. Express 13(7), 2358–2363 (2005).
[CrossRef]

N. Q. Ngo, D. Liu, S. C. Tjin, X. Y. Dong, and P. Shum, “Thermally switchable and discretely tunable comb filter with a linearly chirped fiber Bragg grating,” Opt. Lett. 30(22), 2994–2996 (2005).
[CrossRef]

V. Italia, M. Pisco, S. Campopiano, A. Cusano, and A. Cutolo, “Chirped fiber Bragg gratings for electrically tunable time delay lines,” IEEE J. Sel. Top. Quantum Electron. 11(2), 408–416 (2005).
[CrossRef]

H. B. Liu, H. Y. Liu, G. D. Peng, and T. W. Whitbread, “Tunalbe dispersion using linearly chirped polymer optical fiber Bragg gratings with fixed center wavelength,” IEEE Photon. Technol. Lett. 17(2), 411–413 (2005).
[CrossRef]

2004 (2)

2003 (4)

Y. Y. Zhang, D. X. Wang, E. G. Dai, D. M. Wu, and A. S. Xu, “Electrically tunable dispersion compensator based on nonlinearly chirped fiber Bragg grating,” Microw. Opt. Technol. Lett. 37(4), 288–292 (2003).
[CrossRef]

X. Y. Dong, P. Shum, N. Q. Ngo, C. C. Chan, J. Ng, and C. Zhao, “Largely tunable CFBG-based dispersion compensator with fixed center wavelength,” Opt. Express 11(22), 2970–2974 (2003).
[CrossRef]

T. Ikeda, “Photomodulation of liquid crystal orientations for photonic applications,” J. Mater. Chem. 13(9), 2037–2057 (2003).
[CrossRef]

X. Zhang, Y. H. Xia, Y. Q. Huang, and X. M. Ren, “Analysis of shift in Bragg wavelength of fiber Bragg gratings with finite cladding radius,” Acta Photonica Sinica 32, 222–224 (2003).

2000 (1)

1999 (1)

B. J. Eggleton, J. A. Rogers, P. S. Westbrook, and T. A. Strasser, “Electrically tunable power efficient dispersion compensating fiber Bragg grating,” IEEE Photon. Technol. Lett. 11(7), 854–856 (1999).
[CrossRef]

1997 (2)

J. L. Cruz, A. Diez, M. V. Andres, A. Segura, B. Ortega, and L. Dong, “Fiber Bragg grating tuned and chirped using magnetic fields,” Electron. Lett. 33(3), 235–236 (1997).
[CrossRef]

A. Shishido, O. Tsutsumi, A. Kanazawa, T. Shiono, T. Ikeda, and N. Tamai, “Rapid optical switching by means of photoinduced change in refractive index of azobenzene liquid crystal detected by reflection-mode analysis,” J. Am. Chem. Soc. 119(33), 7791–7796 (1997).
[CrossRef]

1996 (1)

1994 (2)

K. Rottwitt, M. J. Guy, A. Boskovic, D. U. Noske, J. R. Taylor, and R. Kashyap, “Interaction of uniform phase picosecond pulses with chirped and unchirped photosensitive fiber Bragg gratings,” Electron. Lett. 30(12), 995- (1994).
[CrossRef]

J. Lauzon, S. Thibault, J. Martin, and F. Ouellette, “Implementation and characterization of fiber Bragg gratings linearly chirped by a temperature gradient,” Opt. Lett. 19(23), 2027–2029 (1994).
[CrossRef]

1993 (1)

K. C. Byron, T. Bricheno, I. Bennion, and K. Sugden, “Fabrication of chirped Bragg gratings in photosenstive fiber,” Electron. Lett. 29(18), 1659–1660 (1993).
[CrossRef]

1992 (1)

1988 (1)

C. D. Hussey and J. D. Minelly, “Optical fibre polishing with a motor-driven polishing wheel,” Electron. Lett. 24(13), 805–807 (1988).
[CrossRef]

1972 (1)

D. W. Berreman, “Solid surface shape and the alignment of an adjacent nematic liquid crystal,” Phys. Rev. Lett. 28(26), 1683–1688 (1972).
[CrossRef]

Ahuja, A.

Alkeskjold, T. T.

Anawati, J.

Andres, M. V.

J. L. Cruz, A. Diez, M. V. Andres, A. Segura, B. Ortega, and L. Dong, “Fiber Bragg grating tuned and chirped using magnetic fields,” Electron. Lett. 33(3), 235–236 (1997).
[CrossRef]

Arkhipkin, V. G.

Asanuma, H.

A. Yamaguchi, N. Nakagawa, K. Igarashi, T. Sekikawa, H. Nishioka, H. Asanuma, and M. Yamashita, “Photoisomerization dynamics study on cis-azobenzene derivative using ultraviolet-to-visible tunable femtosecond pulses,” Appl. Surf. Sci. 255(24), 9864–9868 (2009).
[CrossRef]

Barcelos, S.

Bennion, I.

K. C. Byron, T. Bricheno, I. Bennion, and K. Sugden, “Fabrication of chirped Bragg gratings in photosenstive fiber,” Electron. Lett. 29(18), 1659–1660 (1993).
[CrossRef]

Berreman, D. W.

D. W. Berreman, “Solid surface shape and the alignment of an adjacent nematic liquid crystal,” Phys. Rev. Lett. 28(26), 1683–1688 (1972).
[CrossRef]

Bjarklev, a.

Bobrovsky, A.

Boskovic, A.

K. Rottwitt, M. J. Guy, A. Boskovic, D. U. Noske, J. R. Taylor, and R. Kashyap, “Interaction of uniform phase picosecond pulses with chirped and unchirped photosensitive fiber Bragg gratings,” Electron. Lett. 30(12), 995- (1994).
[CrossRef]

Bricheno, T.

K. C. Byron, T. Bricheno, I. Bennion, and K. Sugden, “Fabrication of chirped Bragg gratings in photosenstive fiber,” Electron. Lett. 29(18), 1659–1660 (1993).
[CrossRef]

Broeng, J.

Bunning, T. J.

U. A. Hrozhyk, S. V. Serak, N. V. Tabiryan, and T. J. Bunning, “Photoinduced isotropic state of cholesteric liquid crystals: novel dynamic photonic materials,” Adv. Mater. (Deerfield Beach Fla.) 19(20), 3244–3247 (2007).
[CrossRef]

Byron, K. C.

K. C. Byron, T. Bricheno, I. Bennion, and K. Sugden, “Fabrication of chirped Bragg gratings in photosenstive fiber,” Electron. Lett. 29(18), 1659–1660 (1993).
[CrossRef]

Campopiano, S.

M. Pisco, S. Campopiano, A. Cutolo, and A. Cusano, “Continuously variable optical delay line based on a chirped fiber Bragg grating,” IEEE Photon. Technol. Lett. 18(24), 2551–2553 (2006).
[CrossRef]

V. Italia, M. Pisco, S. Campopiano, A. Cusano, and A. Cutolo, “Chirped fiber Bragg gratings for electrically tunable time delay lines,” IEEE J. Sel. Top. Quantum Electron. 11(2), 408–416 (2005).
[CrossRef]

Chan, C. C.

Chen, C. L.

Chen, Z.

Z. Li, V. K. S. Hsiao, Z. Chen, J. Y. Tang, F. L. Zhao, and H. Z. Wang, “Optically tunable fiber Bragg grating,” IEEE Photon. Technol. Lett. 22(15), 1123–1125 (2010).
[CrossRef]

V. K. S. Hsiao, Z. Li, Z. Chen, P. C. Peng, and J. Y. Tang, “optically controllable side-polished fiber attenuator with photoresponsive liquid crystal overlay,” Opt. Express 17(22), 19988–19994 (2009).
[CrossRef]

Chiappetta, D.

Cruz, J. L.

J. L. Cruz, A. Diez, M. V. Andres, A. Segura, B. Ortega, and L. Dong, “Fiber Bragg grating tuned and chirped using magnetic fields,” Electron. Lett. 33(3), 235–236 (1997).
[CrossRef]

J. L. Cruz, L. Dong, S. Barcelos, and L. Reekie, “Fiber Bragg gratings with various chirp profiles made in etched tapers,” Appl. Opt. 35(34), 6781–6787 (1996).
[CrossRef]

Cusano, A.

M. Pisco, S. Campopiano, A. Cutolo, and A. Cusano, “Continuously variable optical delay line based on a chirped fiber Bragg grating,” IEEE Photon. Technol. Lett. 18(24), 2551–2553 (2006).
[CrossRef]

V. Italia, M. Pisco, S. Campopiano, A. Cusano, and A. Cutolo, “Chirped fiber Bragg gratings for electrically tunable time delay lines,” IEEE J. Sel. Top. Quantum Electron. 11(2), 408–416 (2005).
[CrossRef]

Cutolo, A.

M. Pisco, S. Campopiano, A. Cutolo, and A. Cusano, “Continuously variable optical delay line based on a chirped fiber Bragg grating,” IEEE Photon. Technol. Lett. 18(24), 2551–2553 (2006).
[CrossRef]

V. Italia, M. Pisco, S. Campopiano, A. Cusano, and A. Cutolo, “Chirped fiber Bragg gratings for electrically tunable time delay lines,” IEEE J. Sel. Top. Quantum Electron. 11(2), 408–416 (2005).
[CrossRef]

Dai, E. G.

Y. Y. Zhang, D. X. Wang, E. G. Dai, D. M. Wu, and A. S. Xu, “Electrically tunable dispersion compensator based on nonlinearly chirped fiber Bragg grating,” Microw. Opt. Technol. Lett. 37(4), 288–292 (2003).
[CrossRef]

Dai, H. T.

Diez, A.

J. L. Cruz, A. Diez, M. V. Andres, A. Segura, B. Ortega, and L. Dong, “Fiber Bragg grating tuned and chirped using magnetic fields,” Electron. Lett. 33(3), 235–236 (1997).
[CrossRef]

Dong, B.

Dong, L.

J. L. Cruz, A. Diez, M. V. Andres, A. Segura, B. Ortega, and L. Dong, “Fiber Bragg grating tuned and chirped using magnetic fields,” Electron. Lett. 33(3), 235–236 (1997).
[CrossRef]

J. L. Cruz, L. Dong, S. Barcelos, and L. Reekie, “Fiber Bragg gratings with various chirp profiles made in etched tapers,” Appl. Opt. 35(34), 6781–6787 (1996).
[CrossRef]

Dong, X. Y.

Doyle, C.

Eggleton, B. J.

B. J. Eggleton, A. Ahuja, P. S. Westbrook, J. A. Rogers, P. Kuo, T. N. Nielsen, and B. Mikkelsen, “Integrated tunable fiber gratings for dispersion management in high-bit rate systems,” J. Lightwave Technol. 18(11), 1418–1432 (2000).
[CrossRef]

B. J. Eggleton, J. A. Rogers, P. S. Westbrook, and T. A. Strasser, “Electrically tunable power efficient dispersion compensating fiber Bragg grating,” IEEE Photon. Technol. Lett. 11(7), 854–856 (1999).
[CrossRef]

Genack, A.

Gunyakov, V. A.

Guy, M. J.

K. Rottwitt, M. J. Guy, A. Boskovic, D. U. Noske, J. R. Taylor, and R. Kashyap, “Interaction of uniform phase picosecond pulses with chirped and unchirped photosensitive fiber Bragg gratings,” Electron. Lett. 30(12), 995- (1994).
[CrossRef]

Han, Y. G.

Hermann, D. S.

Hrozhyk, U. A.

U. A. Hrozhyk, S. V. Serak, N. V. Tabiryan, and T. J. Bunning, “Photoinduced isotropic state of cholesteric liquid crystals: novel dynamic photonic materials,” Adv. Mater. (Deerfield Beach Fla.) 19(20), 3244–3247 (2007).
[CrossRef]

Hsiao, V. K. S.

Huang, G. L.

Huang, Y. H.

Huang, Y. Q.

X. Zhang, Y. H. Xia, Y. Q. Huang, and X. M. Ren, “Analysis of shift in Bragg wavelength of fiber Bragg gratings with finite cladding radius,” Acta Photonica Sinica 32, 222–224 (2003).

Hussey, C. D.

C. D. Hussey and J. D. Minelly, “Optical fibre polishing with a motor-driven polishing wheel,” Electron. Lett. 24(13), 805–807 (1988).
[CrossRef]

Igarashi, K.

A. Yamaguchi, N. Nakagawa, K. Igarashi, T. Sekikawa, H. Nishioka, H. Asanuma, and M. Yamashita, “Photoisomerization dynamics study on cis-azobenzene derivative using ultraviolet-to-visible tunable femtosecond pulses,” Appl. Surf. Sci. 255(24), 9864–9868 (2009).
[CrossRef]

Ikeda, T.

T. Ikeda, “Photomodulation of liquid crystal orientations for photonic applications,” J. Mater. Chem. 13(9), 2037–2057 (2003).
[CrossRef]

A. Shishido, O. Tsutsumi, A. Kanazawa, T. Shiono, T. Ikeda, and N. Tamai, “Rapid optical switching by means of photoinduced change in refractive index of azobenzene liquid crystal detected by reflection-mode analysis,” J. Am. Chem. Soc. 119(33), 7791–7796 (1997).
[CrossRef]

Italia, V.

V. Italia, M. Pisco, S. Campopiano, A. Cusano, and A. Cutolo, “Chirped fiber Bragg gratings for electrically tunable time delay lines,” IEEE J. Sel. Top. Quantum Electron. 11(2), 408–416 (2005).
[CrossRef]

Jin, L.

Kanazawa, A.

A. Shishido, O. Tsutsumi, A. Kanazawa, T. Shiono, T. Ikeda, and N. Tamai, “Rapid optical switching by means of photoinduced change in refractive index of azobenzene liquid crystal detected by reflection-mode analysis,” J. Am. Chem. Soc. 119(33), 7791–7796 (1997).
[CrossRef]

Kashyap, R.

K. Rottwitt, M. J. Guy, A. Boskovic, D. U. Noske, J. R. Taylor, and R. Kashyap, “Interaction of uniform phase picosecond pulses with chirped and unchirped photosensitive fiber Bragg gratings,” Electron. Lett. 30(12), 995- (1994).
[CrossRef]

Ko, C. Y.

Kuo, P.

Lægsgaard, J.

Lauzon, J.

Lee, J. H.

Lee, S. B.

Lee, W.

Li,

Li, S. Y.

Li, Z.

Z. Li, V. K. S. Hsiao, Z. Chen, J. Y. Tang, F. L. Zhao, and H. Z. Wang, “Optically tunable fiber Bragg grating,” IEEE Photon. Technol. Lett. 22(15), 1123–1125 (2010).
[CrossRef]

V. K. S. Hsiao, Z. Li, Z. Chen, P. C. Peng, and J. Y. Tang, “optically controllable side-polished fiber attenuator with photoresponsive liquid crystal overlay,” Opt. Express 17(22), 19988–19994 (2009).
[CrossRef]

Liao, T. Q.

Liu, D.

Liu, H. B.

H. B. Liu, H. Y. Liu, G. D. Peng, and T. W. Whitbread, “Tunalbe dispersion using linearly chirped polymer optical fiber Bragg gratings with fixed center wavelength,” IEEE Photon. Technol. Lett. 17(2), 411–413 (2005).
[CrossRef]

Liu, H. Y.

H. B. Liu, H. Y. Liu, G. D. Peng, and T. W. Whitbread, “Tunalbe dispersion using linearly chirped polymer optical fiber Bragg gratings with fixed center wavelength,” IEEE Photon. Technol. Lett. 17(2), 411–413 (2005).
[CrossRef]

Liu, L. H.

Liu, Y. J.

Luo, D.

Martin, J.

Mikkelsen, B.

Milner, V.

Minelly, J. D.

C. D. Hussey and J. D. Minelly, “Optical fibre polishing with a motor-driven polishing wheel,” Electron. Lett. 24(13), 805–807 (1988).
[CrossRef]

Myslivets, S. A.

Nakagawa, N.

A. Yamaguchi, N. Nakagawa, K. Igarashi, T. Sekikawa, H. Nishioka, H. Asanuma, and M. Yamashita, “Photoisomerization dynamics study on cis-azobenzene derivative using ultraviolet-to-visible tunable femtosecond pulses,” Appl. Surf. Sci. 255(24), 9864–9868 (2009).
[CrossRef]

Ng, J.

Ngo, N. Q.

Nielsen, T. N.

Nishioka, H.

A. Yamaguchi, N. Nakagawa, K. Igarashi, T. Sekikawa, H. Nishioka, H. Asanuma, and M. Yamashita, “Photoisomerization dynamics study on cis-azobenzene derivative using ultraviolet-to-visible tunable femtosecond pulses,” Appl. Surf. Sci. 255(24), 9864–9868 (2009).
[CrossRef]

Noske, D. U.

K. Rottwitt, M. J. Guy, A. Boskovic, D. U. Noske, J. R. Taylor, and R. Kashyap, “Interaction of uniform phase picosecond pulses with chirped and unchirped photosensitive fiber Bragg gratings,” Electron. Lett. 30(12), 995- (1994).
[CrossRef]

Ortega, B.

J. L. Cruz, A. Diez, M. V. Andres, A. Segura, B. Ortega, and L. Dong, “Fiber Bragg grating tuned and chirped using magnetic fields,” Electron. Lett. 33(3), 235–236 (1997).
[CrossRef]

Ouellette, F.

Parshin, A. M.

Peng, G. D.

H. B. Liu, H. Y. Liu, G. D. Peng, and T. W. Whitbread, “Tunalbe dispersion using linearly chirped polymer optical fiber Bragg gratings with fixed center wavelength,” IEEE Photon. Technol. Lett. 17(2), 411–413 (2005).
[CrossRef]

Peng, P. C.

Pisco, M.

M. Pisco, S. Campopiano, A. Cutolo, and A. Cusano, “Continuously variable optical delay line based on a chirped fiber Bragg grating,” IEEE Photon. Technol. Lett. 18(24), 2551–2553 (2006).
[CrossRef]

V. Italia, M. Pisco, S. Campopiano, A. Cusano, and A. Cutolo, “Chirped fiber Bragg gratings for electrically tunable time delay lines,” IEEE J. Sel. Top. Quantum Electron. 11(2), 408–416 (2005).
[CrossRef]

Reekie, L.

Ren, X. M.

X. Zhang, Y. H. Xia, Y. Q. Huang, and X. M. Ren, “Analysis of shift in Bragg wavelength of fiber Bragg gratings with finite cladding radius,” Acta Photonica Sinica 32, 222–224 (2003).

Rogers, J. A.

B. J. Eggleton, A. Ahuja, P. S. Westbrook, J. A. Rogers, P. Kuo, T. N. Nielsen, and B. Mikkelsen, “Integrated tunable fiber gratings for dispersion management in high-bit rate systems,” J. Lightwave Technol. 18(11), 1418–1432 (2000).
[CrossRef]

B. J. Eggleton, J. A. Rogers, P. S. Westbrook, and T. A. Strasser, “Electrically tunable power efficient dispersion compensating fiber Bragg grating,” IEEE Photon. Technol. Lett. 11(7), 854–856 (1999).
[CrossRef]

Rottwitt, K.

K. Rottwitt, M. J. Guy, A. Boskovic, D. U. Noske, J. R. Taylor, and R. Kashyap, “Interaction of uniform phase picosecond pulses with chirped and unchirped photosensitive fiber Bragg gratings,” Electron. Lett. 30(12), 995- (1994).
[CrossRef]

Sanford, R. L.

Segura, A.

J. L. Cruz, A. Diez, M. V. Andres, A. Segura, B. Ortega, and L. Dong, “Fiber Bragg grating tuned and chirped using magnetic fields,” Electron. Lett. 33(3), 235–236 (1997).
[CrossRef]

Sekikawa, T.

A. Yamaguchi, N. Nakagawa, K. Igarashi, T. Sekikawa, H. Nishioka, H. Asanuma, and M. Yamashita, “Photoisomerization dynamics study on cis-azobenzene derivative using ultraviolet-to-visible tunable femtosecond pulses,” Appl. Surf. Sci. 255(24), 9864–9868 (2009).
[CrossRef]

Serak, S. V.

U. A. Hrozhyk, S. V. Serak, N. V. Tabiryan, and T. J. Bunning, “Photoinduced isotropic state of cholesteric liquid crystals: novel dynamic photonic materials,” Adv. Mater. (Deerfield Beach Fla.) 19(20), 3244–3247 (2007).
[CrossRef]

Shabanov, V. F.

Shibaev, P. V.

Shiono, T.

A. Shishido, O. Tsutsumi, A. Kanazawa, T. Shiono, T. Ikeda, and N. Tamai, “Rapid optical switching by means of photoinduced change in refractive index of azobenzene liquid crystal detected by reflection-mode analysis,” J. Am. Chem. Soc. 119(33), 7791–7796 (1997).
[CrossRef]

Shishido, A.

A. Shishido, O. Tsutsumi, A. Kanazawa, T. Shiono, T. Ikeda, and N. Tamai, “Rapid optical switching by means of photoinduced change in refractive index of azobenzene liquid crystal detected by reflection-mode analysis,” J. Am. Chem. Soc. 119(33), 7791–7796 (1997).
[CrossRef]

Shum, P.

Strasser, T. A.

B. J. Eggleton, J. A. Rogers, P. S. Westbrook, and T. A. Strasser, “Electrically tunable power efficient dispersion compensating fiber Bragg grating,” IEEE Photon. Technol. Lett. 11(7), 854–856 (1999).
[CrossRef]

Sugden, K.

K. C. Byron, T. Bricheno, I. Bennion, and K. Sugden, “Fabrication of chirped Bragg gratings in photosenstive fiber,” Electron. Lett. 29(18), 1659–1660 (1993).
[CrossRef]

Sun, X. W.

Tabiryan, N. V.

U. A. Hrozhyk, S. V. Serak, N. V. Tabiryan, and T. J. Bunning, “Photoinduced isotropic state of cholesteric liquid crystals: novel dynamic photonic materials,” Adv. Mater. (Deerfield Beach Fla.) 19(20), 3244–3247 (2007).
[CrossRef]

Tamai, N.

A. Shishido, O. Tsutsumi, A. Kanazawa, T. Shiono, T. Ikeda, and N. Tamai, “Rapid optical switching by means of photoinduced change in refractive index of azobenzene liquid crystal detected by reflection-mode analysis,” J. Am. Chem. Soc. 119(33), 7791–7796 (1997).
[CrossRef]

Tang, J. Y.

Z. Li, V. K. S. Hsiao, Z. Chen, J. Y. Tang, F. L. Zhao, and H. Z. Wang, “Optically tunable fiber Bragg grating,” IEEE Photon. Technol. Lett. 22(15), 1123–1125 (2010).
[CrossRef]

V. K. S. Hsiao, Z. Li, Z. Chen, P. C. Peng, and J. Y. Tang, “optically controllable side-polished fiber attenuator with photoresponsive liquid crystal overlay,” Opt. Express 17(22), 19988–19994 (2009).
[CrossRef]

Taylor, J. R.

K. Rottwitt, M. J. Guy, A. Boskovic, D. U. Noske, J. R. Taylor, and R. Kashyap, “Interaction of uniform phase picosecond pulses with chirped and unchirped photosensitive fiber Bragg gratings,” Electron. Lett. 30(12), 995- (1994).
[CrossRef]

Thibault, S.

Tjin, S. C.

Tseng, S. M.

Tsutsumi, O.

A. Shishido, O. Tsutsumi, A. Kanazawa, T. Shiono, T. Ikeda, and N. Tamai, “Rapid optical switching by means of photoinduced change in refractive index of azobenzene liquid crystal detected by reflection-mode analysis,” J. Am. Chem. Soc. 119(33), 7791–7796 (1997).
[CrossRef]

Wang, D. X.

Y. Y. Zhang, D. X. Wang, E. G. Dai, D. M. Wu, and A. S. Xu, “Electrically tunable dispersion compensator based on nonlinearly chirped fiber Bragg grating,” Microw. Opt. Technol. Lett. 37(4), 288–292 (2003).
[CrossRef]

Wang, H. Z.

Z. Li, V. K. S. Hsiao, Z. Chen, J. Y. Tang, F. L. Zhao, and H. Z. Wang, “Optically tunable fiber Bragg grating,” IEEE Photon. Technol. Lett. 22(15), 1123–1125 (2010).
[CrossRef]

Westbrook, P. S.

B. J. Eggleton, A. Ahuja, P. S. Westbrook, J. A. Rogers, P. Kuo, T. N. Nielsen, and B. Mikkelsen, “Integrated tunable fiber gratings for dispersion management in high-bit rate systems,” J. Lightwave Technol. 18(11), 1418–1432 (2000).
[CrossRef]

B. J. Eggleton, J. A. Rogers, P. S. Westbrook, and T. A. Strasser, “Electrically tunable power efficient dispersion compensating fiber Bragg grating,” IEEE Photon. Technol. Lett. 11(7), 854–856 (1999).
[CrossRef]

Whitbread, T. W.

H. B. Liu, H. Y. Liu, G. D. Peng, and T. W. Whitbread, “Tunalbe dispersion using linearly chirped polymer optical fiber Bragg gratings with fixed center wavelength,” IEEE Photon. Technol. Lett. 17(2), 411–413 (2005).
[CrossRef]

Wu, D. M.

Y. Y. Zhang, D. X. Wang, E. G. Dai, D. M. Wu, and A. S. Xu, “Electrically tunable dispersion compensator based on nonlinearly chirped fiber Bragg grating,” Microw. Opt. Technol. Lett. 37(4), 288–292 (2003).
[CrossRef]

Wu, S. T.

Xia, Y. H.

X. Zhang, Y. H. Xia, Y. Q. Huang, and X. M. Ren, “Analysis of shift in Bragg wavelength of fiber Bragg gratings with finite cladding radius,” Acta Photonica Sinica 32, 222–224 (2003).

Xu, A. S.

Y. Y. Zhang, D. X. Wang, E. G. Dai, D. M. Wu, and A. S. Xu, “Electrically tunable dispersion compensator based on nonlinearly chirped fiber Bragg grating,” Microw. Opt. Technol. Lett. 37(4), 288–292 (2003).
[CrossRef]

Yamaguchi, A.

A. Yamaguchi, N. Nakagawa, K. Igarashi, T. Sekikawa, H. Nishioka, H. Asanuma, and M. Yamashita, “Photoisomerization dynamics study on cis-azobenzene derivative using ultraviolet-to-visible tunable femtosecond pulses,” Appl. Surf. Sci. 255(24), 9864–9868 (2009).
[CrossRef]

Yamashita, M.

A. Yamaguchi, N. Nakagawa, K. Igarashi, T. Sekikawa, H. Nishioka, H. Asanuma, and M. Yamashita, “Photoisomerization dynamics study on cis-azobenzene derivative using ultraviolet-to-visible tunable femtosecond pulses,” Appl. Surf. Sci. 255(24), 9864–9868 (2009).
[CrossRef]

Zhang, J.

Zhang, X.

X. Zhang, Y. H. Xia, Y. Q. Huang, and X. M. Ren, “Analysis of shift in Bragg wavelength of fiber Bragg gratings with finite cladding radius,” Acta Photonica Sinica 32, 222–224 (2003).

Zhang, Y. Y.

Y. Y. Zhang, D. X. Wang, E. G. Dai, D. M. Wu, and A. S. Xu, “Electrically tunable dispersion compensator based on nonlinearly chirped fiber Bragg grating,” Microw. Opt. Technol. Lett. 37(4), 288–292 (2003).
[CrossRef]

Zhao, C.

Zhao, F. L.

Z. Li, V. K. S. Hsiao, Z. Chen, J. Y. Tang, F. L. Zhao, and H. Z. Wang, “Optically tunable fiber Bragg grating,” IEEE Photon. Technol. Lett. 22(15), 1123–1125 (2010).
[CrossRef]

Zhao, Q. D.

Zhou, J.

Zhou, Y.

Zyryanov, V. Y.

Acta Photonica Sinica (1)

X. Zhang, Y. H. Xia, Y. Q. Huang, and X. M. Ren, “Analysis of shift in Bragg wavelength of fiber Bragg gratings with finite cladding radius,” Acta Photonica Sinica 32, 222–224 (2003).

Adv. Mater. (Deerfield Beach Fla.) (1)

U. A. Hrozhyk, S. V. Serak, N. V. Tabiryan, and T. J. Bunning, “Photoinduced isotropic state of cholesteric liquid crystals: novel dynamic photonic materials,” Adv. Mater. (Deerfield Beach Fla.) 19(20), 3244–3247 (2007).
[CrossRef]

Appl. Opt. (2)

Appl. Surf. Sci. (1)

A. Yamaguchi, N. Nakagawa, K. Igarashi, T. Sekikawa, H. Nishioka, H. Asanuma, and M. Yamashita, “Photoisomerization dynamics study on cis-azobenzene derivative using ultraviolet-to-visible tunable femtosecond pulses,” Appl. Surf. Sci. 255(24), 9864–9868 (2009).
[CrossRef]

Electron. Lett. (4)

K. C. Byron, T. Bricheno, I. Bennion, and K. Sugden, “Fabrication of chirped Bragg gratings in photosenstive fiber,” Electron. Lett. 29(18), 1659–1660 (1993).
[CrossRef]

C. D. Hussey and J. D. Minelly, “Optical fibre polishing with a motor-driven polishing wheel,” Electron. Lett. 24(13), 805–807 (1988).
[CrossRef]

K. Rottwitt, M. J. Guy, A. Boskovic, D. U. Noske, J. R. Taylor, and R. Kashyap, “Interaction of uniform phase picosecond pulses with chirped and unchirped photosensitive fiber Bragg gratings,” Electron. Lett. 30(12), 995- (1994).
[CrossRef]

J. L. Cruz, A. Diez, M. V. Andres, A. Segura, B. Ortega, and L. Dong, “Fiber Bragg grating tuned and chirped using magnetic fields,” Electron. Lett. 33(3), 235–236 (1997).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

V. Italia, M. Pisco, S. Campopiano, A. Cusano, and A. Cutolo, “Chirped fiber Bragg gratings for electrically tunable time delay lines,” IEEE J. Sel. Top. Quantum Electron. 11(2), 408–416 (2005).
[CrossRef]

IEEE Photon. Technol. Lett. (4)

M. Pisco, S. Campopiano, A. Cutolo, and A. Cusano, “Continuously variable optical delay line based on a chirped fiber Bragg grating,” IEEE Photon. Technol. Lett. 18(24), 2551–2553 (2006).
[CrossRef]

B. J. Eggleton, J. A. Rogers, P. S. Westbrook, and T. A. Strasser, “Electrically tunable power efficient dispersion compensating fiber Bragg grating,” IEEE Photon. Technol. Lett. 11(7), 854–856 (1999).
[CrossRef]

H. B. Liu, H. Y. Liu, G. D. Peng, and T. W. Whitbread, “Tunalbe dispersion using linearly chirped polymer optical fiber Bragg gratings with fixed center wavelength,” IEEE Photon. Technol. Lett. 17(2), 411–413 (2005).
[CrossRef]

Z. Li, V. K. S. Hsiao, Z. Chen, J. Y. Tang, F. L. Zhao, and H. Z. Wang, “Optically tunable fiber Bragg grating,” IEEE Photon. Technol. Lett. 22(15), 1123–1125 (2010).
[CrossRef]

J. Am. Chem. Soc. (1)

A. Shishido, O. Tsutsumi, A. Kanazawa, T. Shiono, T. Ikeda, and N. Tamai, “Rapid optical switching by means of photoinduced change in refractive index of azobenzene liquid crystal detected by reflection-mode analysis,” J. Am. Chem. Soc. 119(33), 7791–7796 (1997).
[CrossRef]

J. Lightwave Technol. (2)

J. Mater. Chem. (1)

T. Ikeda, “Photomodulation of liquid crystal orientations for photonic applications,” J. Mater. Chem. 13(9), 2037–2057 (2003).
[CrossRef]

Microw. Opt. Technol. Lett. (1)

Y. Y. Zhang, D. X. Wang, E. G. Dai, D. M. Wu, and A. S. Xu, “Electrically tunable dispersion compensator based on nonlinearly chirped fiber Bragg grating,” Microw. Opt. Technol. Lett. 37(4), 288–292 (2003).
[CrossRef]

Opt. Express (8)

Y. H. Huang, Y. Zhou, C. Doyle, and S. T. Wu, “Tuning the photonic band gap in cholesteric liquid crystal by temperature-dependent dopant solubility,” Opt. Express 14(3), 1236–1242 (2006).
[CrossRef]

V. Y. Zyryanov, S. A. Myslivets, V. A. Gunyakov, A. M. Parshin, V. G. Arkhipkin, V. F. Shabanov, and W. Lee, “Magnetic-field tunable defect modes in a photonic-crystal/liquid –crystal cell,” Opt. Express 18(2), 1283–1288 (2010).
[CrossRef]

H. T. Dai, Y. J. Liu, X. W. Sun, and D. Luo, “A negative-positive tunable liquid-crystal microlens array by printing,” Opt. Express 17(6), 4317–4323 (2009).
[CrossRef]

T. T. Alkeskjold, J. Lægsgaard, a. Bjarklev, D. S. Hermann, J. Anawati, J. Broeng, Li, and S. T. Wu, “All-optical modulation in dye-doped nematic liquid crystal photonic bandgap fibers,” Opt. Express 12(24), 5857–5871 (2004).
[CrossRef]

P. V. Shibaev, R. L. Sanford, D. Chiappetta, V. Milner, A. Genack, and A. Bobrovsky, “Light controllable tuning and switching of lasing in chiral liquid crystals,” Opt. Express 13(7), 2358–2363 (2005).
[CrossRef]

X. Y. Dong, P. Shum, N. Q. Ngo, C. C. Chan, J. Ng, and C. Zhao, “Largely tunable CFBG-based dispersion compensator with fixed center wavelength,” Opt. Express 11(22), 2970–2974 (2003).
[CrossRef]

V. K. S. Hsiao and C. Y. Ko, “Light-controllable photoresponsive liquid-crystal photonic crystal fiber,” Opt. Express 16, 12670–12676 (2008).

V. K. S. Hsiao, Z. Li, Z. Chen, P. C. Peng, and J. Y. Tang, “optically controllable side-polished fiber attenuator with photoresponsive liquid crystal overlay,” Opt. Express 17(22), 19988–19994 (2009).
[CrossRef]

Opt. Lett. (4)

Phys. Rev. Lett. (1)

D. W. Berreman, “Solid surface shape and the alignment of an adjacent nematic liquid crystal,” Phys. Rev. Lett. 28(26), 1683–1688 (1972).
[CrossRef]

Other (1)

Z. Chen and L. Liu, “Wavelength tuning of fiber Bragg grating based on fiber side polishing,” Proc. SPIE (Advanced Sensor Technologies and Applications) 7157, 71570J/1–71570J/6 (2009).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Schematic of a SPFBG whose DRC varies with position along the length of the grating ; (b) the scanning electronics microscope image of the end part of the side-polished area; (c) the microscope image (Nikon Eclipse 80i × 100) of the middle part of the FBG.

Fig. 2
Fig. 2

Experimental setup for characterizing the optically tuning of the CFBG.

Fig. 3
Fig. 3

Reflection spectrum of the FBG before (red dashed) and after (black) UV light irradiation.

Fig. 4
Fig. 4

(a) The relation between Bragg wavelength shift of SPFBG and surrounding material RI with different residual cladding thickness (the circle dot line: 1.5µm and the triangle dot line: 0.2µm); (b) The relation between total chirp value and nout in a designed CFBG.

Fig. 5
Fig. 5

Schematic of the photoresponsive LC-overlaid CFBG and the mechanism of photoinduced tune of chirped reflection spectrum. (a) An initial nematic phase generated in the polished area and (b) nematic-isotropic phase transition under the irradiation of UV light.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

λΒ(z)=λΒ(0)+ΔλΒf(z)
λΒ(z)=λΒ(0)+ΔλΒz/L
ΔλΒ=λΒ(L)λΒ(0)
ΔλB=λB(1.5um)λB(1.5um)

Metrics