Abstract

We experimentally and numerically investigated the impact of input pump pulse duration on the near-infrared bandwidth of supercontinuum generation in a photonic crystal fiber. We continuously stretched the temporal duration of the input pump laser (centered at 1030 nm) pulses from 500 fs up to 10 ps, while keeping fixed the pump peak power. We observed that the long-wavelength edge of the supercontinuum spectrum is increased by 200 nm as the pump pulse duration grows from 500 fs to 10 ps. We provide a quantitative fit of the experimental results by means of numerical simulations. Moreover, we have explained the observed spectral broadening enhancement induced by pump pulse energy by developing an approximate yet fully analytical model for soliton energy exchange through a series of collisions in the presence of stimulated Raman scattering.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
    [CrossRef]
  2. J. K. Ranka, R. S. Windeler, and A. J. Stentz, “Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm,” Opt. Lett. 25, 25–27 (2000).
    [CrossRef]
  3. S. Coen, A. H. L. Chau, R. Leonhardt, J. D. Harvey, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, “White-light supercontinuum generation with 60-ps pump pulses in a photonic crystal fiber,” Opt. Lett. 26, 1356–1358 (2001).
    [CrossRef]
  4. E. Räikkönen, G. Genty, O. Kimmelma, M. Kaivola, K. P. Hansen, and S. C. Buchter, “Supercontinuum generation by nanosecond dual-wavelength pumping in microstructured optical fibers,” Opt. Express 14, 7914–7923 (2006).
    [CrossRef] [PubMed]
  5. A. Mussot and A. Kudlinski, “19.5 W CW-pumped supercontinuum source from 0.65 to 1.38 μm,” Electron. Lett. 45, 29–30 (2009).
    [CrossRef]
  6. E. E. Serebryannikov and A. M. Zheltikov, “Supercontinuum generation through cascaded four-wave mixing in photonic-crystal fibers: when picoseconds do it better,” Opt. Commun. 274, 433–440 (2007).
    [CrossRef]
  7. A. Mussot, M. Beaugeois, M. Bouazaoui, and Th. Sylvestre, “Tailoring CW supercontinuum generation in microstructured fibers with two-zero dispersion wavelengths,” Opt. Express. 15, 11553–11563 (2007).
    [CrossRef] [PubMed]
  8. M. Erkintalo, G. Genty, and J. M. Dudley, “On the statistical interpretation of optical rogue waves,” Eur. Phys. J. Special Topics 185, 135–144 (2010).
    [CrossRef]
  9. M. N. Islam, G. Sucha, I. Bar-Joseph, M. Wegener, J. P. Gordon, and D. S. Chemla, “‘Femtosecond distributed soliton spectrum in fibers,” J. Opt. Soc. Am. B 6, 1149–1158 (1989).
    [CrossRef]
  10. M. H. Frosz, O. Bang, and A. Bjarklev, “Soliton collision and Raman gain regimes in continuous-wave pumped supercontinuum generation,” Opt. Express 14, 9391–9407 (2006).
    [CrossRef] [PubMed]
  11. F. Luan, D. V. Skryabin, A. V. Yulin, and J. C. Knight, “Energy exchange between colliding solitons in photonic crystal fibers,” Opt. Express 14, 9844–9853 (2006).
    [CrossRef] [PubMed]
  12. Q. M. Nguyen and A. Peleg, “Resolving the Raman-induced cross frequency shift in fast optical soliton collisions,” J. Opt. Soc. Am. B 27, 1985–1990 (2010).
    [CrossRef]
  13. S. Kumar, “Influence of Raman effects in wavelength-division multiplexed soliton systems,” Opt. Lett. 23, 1450–1452 (1998).
    [CrossRef]
  14. J. P. Gordon, “Theory of the soliton self-frequency shift,” Opt. Lett. 11, 662–664 (1986).
    [CrossRef] [PubMed]
  15. J. Herrmann and A. Nazarkin, “Soliton self-frequency shift for pulses with a duration less than the period of molecular oscillations,” Opt. Lett. 19, 2065–2067 (1994).
    [CrossRef] [PubMed]
  16. A. C. Judge, O. Bang, B. J. Eggleton, B. T. Kuhlmey, E. C. Mägi, R. Pant, and C. Martijn de Sterke, “Optimization of the soliton self-frequency shift in a tapered photonic crystal fiber,” J. Opt. Soc. Am. B 26, 2064–2071 (2009).
    [CrossRef]
  17. N. N. Akhmediev, V. M. Eleonskii, and N. E. Kulagin, “Generation of periodic trains of picosecond pulses in an optical fiber: Exact solutions,” Sov. Phys. JETP 62, 894–992 (1985).
  18. N. N. Akhmediev and V. I. Korneev, “Modulation instability and periodic solutions of nonlinear Schrödinger equation,” Teor. Mat. Fiz. 69, 189–194 (1986).
  19. J. C. Travers, “Blue extension of optical fibre supercontinuum generation,” J. Opt. 12, 113001 (2011).
    [CrossRef]

2011 (1)

J. C. Travers, “Blue extension of optical fibre supercontinuum generation,” J. Opt. 12, 113001 (2011).
[CrossRef]

2010 (2)

M. Erkintalo, G. Genty, and J. M. Dudley, “On the statistical interpretation of optical rogue waves,” Eur. Phys. J. Special Topics 185, 135–144 (2010).
[CrossRef]

Q. M. Nguyen and A. Peleg, “Resolving the Raman-induced cross frequency shift in fast optical soliton collisions,” J. Opt. Soc. Am. B 27, 1985–1990 (2010).
[CrossRef]

2009 (2)

2007 (2)

E. E. Serebryannikov and A. M. Zheltikov, “Supercontinuum generation through cascaded four-wave mixing in photonic-crystal fibers: when picoseconds do it better,” Opt. Commun. 274, 433–440 (2007).
[CrossRef]

A. Mussot, M. Beaugeois, M. Bouazaoui, and Th. Sylvestre, “Tailoring CW supercontinuum generation in microstructured fibers with two-zero dispersion wavelengths,” Opt. Express. 15, 11553–11563 (2007).
[CrossRef] [PubMed]

2006 (4)

2001 (1)

2000 (1)

1998 (1)

1994 (1)

1989 (1)

1986 (2)

N. N. Akhmediev and V. I. Korneev, “Modulation instability and periodic solutions of nonlinear Schrödinger equation,” Teor. Mat. Fiz. 69, 189–194 (1986).

J. P. Gordon, “Theory of the soliton self-frequency shift,” Opt. Lett. 11, 662–664 (1986).
[CrossRef] [PubMed]

1985 (1)

N. N. Akhmediev, V. M. Eleonskii, and N. E. Kulagin, “Generation of periodic trains of picosecond pulses in an optical fiber: Exact solutions,” Sov. Phys. JETP 62, 894–992 (1985).

Akhmediev, N. N.

N. N. Akhmediev and V. I. Korneev, “Modulation instability and periodic solutions of nonlinear Schrödinger equation,” Teor. Mat. Fiz. 69, 189–194 (1986).

N. N. Akhmediev, V. M. Eleonskii, and N. E. Kulagin, “Generation of periodic trains of picosecond pulses in an optical fiber: Exact solutions,” Sov. Phys. JETP 62, 894–992 (1985).

Bang, O.

Bar-Joseph, I.

Beaugeois, M.

A. Mussot, M. Beaugeois, M. Bouazaoui, and Th. Sylvestre, “Tailoring CW supercontinuum generation in microstructured fibers with two-zero dispersion wavelengths,” Opt. Express. 15, 11553–11563 (2007).
[CrossRef] [PubMed]

Bjarklev, A.

Bouazaoui, M.

A. Mussot, M. Beaugeois, M. Bouazaoui, and Th. Sylvestre, “Tailoring CW supercontinuum generation in microstructured fibers with two-zero dispersion wavelengths,” Opt. Express. 15, 11553–11563 (2007).
[CrossRef] [PubMed]

Buchter, S. C.

Chau, A. H. L.

Chemla, D. S.

Coen, S.

Dudley, J. M.

M. Erkintalo, G. Genty, and J. M. Dudley, “On the statistical interpretation of optical rogue waves,” Eur. Phys. J. Special Topics 185, 135–144 (2010).
[CrossRef]

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[CrossRef]

Eggleton, B. J.

Eleonskii, V. M.

N. N. Akhmediev, V. M. Eleonskii, and N. E. Kulagin, “Generation of periodic trains of picosecond pulses in an optical fiber: Exact solutions,” Sov. Phys. JETP 62, 894–992 (1985).

Erkintalo, M.

M. Erkintalo, G. Genty, and J. M. Dudley, “On the statistical interpretation of optical rogue waves,” Eur. Phys. J. Special Topics 185, 135–144 (2010).
[CrossRef]

Frosz, M. H.

Genty, G.

M. Erkintalo, G. Genty, and J. M. Dudley, “On the statistical interpretation of optical rogue waves,” Eur. Phys. J. Special Topics 185, 135–144 (2010).
[CrossRef]

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[CrossRef]

E. Räikkönen, G. Genty, O. Kimmelma, M. Kaivola, K. P. Hansen, and S. C. Buchter, “Supercontinuum generation by nanosecond dual-wavelength pumping in microstructured optical fibers,” Opt. Express 14, 7914–7923 (2006).
[CrossRef] [PubMed]

Gordon, J. P.

Hansen, K. P.

Harvey, J. D.

Herrmann, J.

Islam, M. N.

Judge, A. C.

Kaivola, M.

Kimmelma, O.

Knight, J. C.

Korneev, V. I.

N. N. Akhmediev and V. I. Korneev, “Modulation instability and periodic solutions of nonlinear Schrödinger equation,” Teor. Mat. Fiz. 69, 189–194 (1986).

Kudlinski, A.

A. Mussot and A. Kudlinski, “19.5 W CW-pumped supercontinuum source from 0.65 to 1.38 μm,” Electron. Lett. 45, 29–30 (2009).
[CrossRef]

Kuhlmey, B. T.

Kulagin, N. E.

N. N. Akhmediev, V. M. Eleonskii, and N. E. Kulagin, “Generation of periodic trains of picosecond pulses in an optical fiber: Exact solutions,” Sov. Phys. JETP 62, 894–992 (1985).

Kumar, S.

Leonhardt, R.

Luan, F.

Mägi, E. C.

Martijn de Sterke, C.

Mussot, A.

A. Mussot and A. Kudlinski, “19.5 W CW-pumped supercontinuum source from 0.65 to 1.38 μm,” Electron. Lett. 45, 29–30 (2009).
[CrossRef]

A. Mussot, M. Beaugeois, M. Bouazaoui, and Th. Sylvestre, “Tailoring CW supercontinuum generation in microstructured fibers with two-zero dispersion wavelengths,” Opt. Express. 15, 11553–11563 (2007).
[CrossRef] [PubMed]

Nazarkin, A.

Nguyen, Q. M.

Pant, R.

Peleg, A.

Räikkönen, E.

Ranka, J. K.

Russell, P. St. J.

Serebryannikov, E. E.

E. E. Serebryannikov and A. M. Zheltikov, “Supercontinuum generation through cascaded four-wave mixing in photonic-crystal fibers: when picoseconds do it better,” Opt. Commun. 274, 433–440 (2007).
[CrossRef]

Skryabin, D. V.

Stentz, A. J.

Sucha, G.

Sylvestre, Th.

A. Mussot, M. Beaugeois, M. Bouazaoui, and Th. Sylvestre, “Tailoring CW supercontinuum generation in microstructured fibers with two-zero dispersion wavelengths,” Opt. Express. 15, 11553–11563 (2007).
[CrossRef] [PubMed]

Travers, J. C.

J. C. Travers, “Blue extension of optical fibre supercontinuum generation,” J. Opt. 12, 113001 (2011).
[CrossRef]

Wadsworth, W. J.

Wegener, M.

Windeler, R. S.

Yulin, A. V.

Zheltikov, A. M.

E. E. Serebryannikov and A. M. Zheltikov, “Supercontinuum generation through cascaded four-wave mixing in photonic-crystal fibers: when picoseconds do it better,” Opt. Commun. 274, 433–440 (2007).
[CrossRef]

Electron. Lett. (1)

A. Mussot and A. Kudlinski, “19.5 W CW-pumped supercontinuum source from 0.65 to 1.38 μm,” Electron. Lett. 45, 29–30 (2009).
[CrossRef]

Eur. Phys. J. Special Topics (1)

M. Erkintalo, G. Genty, and J. M. Dudley, “On the statistical interpretation of optical rogue waves,” Eur. Phys. J. Special Topics 185, 135–144 (2010).
[CrossRef]

J. Opt. (1)

J. C. Travers, “Blue extension of optical fibre supercontinuum generation,” J. Opt. 12, 113001 (2011).
[CrossRef]

J. Opt. Soc. Am. B (3)

Opt. Commun. (1)

E. E. Serebryannikov and A. M. Zheltikov, “Supercontinuum generation through cascaded four-wave mixing in photonic-crystal fibers: when picoseconds do it better,” Opt. Commun. 274, 433–440 (2007).
[CrossRef]

Opt. Express (3)

Opt. Express. (1)

A. Mussot, M. Beaugeois, M. Bouazaoui, and Th. Sylvestre, “Tailoring CW supercontinuum generation in microstructured fibers with two-zero dispersion wavelengths,” Opt. Express. 15, 11553–11563 (2007).
[CrossRef] [PubMed]

Opt. Lett. (5)

Rev. Mod. Phys. (1)

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[CrossRef]

Sov. Phys. JETP (1)

N. N. Akhmediev, V. M. Eleonskii, and N. E. Kulagin, “Generation of periodic trains of picosecond pulses in an optical fiber: Exact solutions,” Sov. Phys. JETP 62, 894–992 (1985).

Teor. Mat. Fiz. (1)

N. N. Akhmediev and V. I. Korneev, “Modulation instability and periodic solutions of nonlinear Schrödinger equation,” Teor. Mat. Fiz. 69, 189–194 (1986).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Left. Experimental output SC spectra for different input pulse durations and constant input peak power of 3 kW. Right. Numerical simulation of the SC spectra, averaged over nine noise seeds. The dashed lines represent the ZDW and the laser central wavelength respectively.

Fig. 2
Fig. 2

Left. Red curve: Analytic prediction of gain enhancement valid for long pulses. Blue curve: our analytic prediction of Eqs. (7). Green curve: full numerical solution of the GNLSE. Group velocity dispersion is kept constant for the whole spectral bandwidth for simplicity. Inset: dispersion curve of the PCF used in the experiments and in all other numerical simulations. Right. 10 ps pump pulse break-up and soliton train formation from numerical solution of the GNLSE.

Fig. 3
Fig. 3

Left. Number of collisions vs. the total number of solitons in the bunch generated for various pump pulse durations. Right. histogram of the number of solitons upon carrier wavelength for a 10 ps pump pulse, from z=3.2 m to z=8 m. At the origin all the solitons have similar carrier wavelengths, so the histogram has a unique bar.

Fig. 4
Fig. 4

Left. Analytical prediction of (top frame) the center wavelength or (bottom frame) peak power of the rogue soliton vs distance from pulse break-up (pump pulse of 2 ps); Discontinuities occur at collisions. Right. Pump pulse duration dependence of long-wavelength SC edge. Analytical solution (violet); experimental spectrum (blue curve); numerical GNLSE solution (black dots: average value, error bar: deviation from mean value due to different noise seeds).

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

Az+α2An2in+1n!βnnAtn=iγ(1+iτSt)×(A(z,t)+(t)|A(z,tt)|2dt)
|u1|2zIm{2u1*u2+f(s)u1(ts)u2(ts)*exp(iΩs)ds}
C+|u1(t)|2|u2(t)|2dt=+u1(t)*u2(t)[+f(s)u1(ts)u2(ts)*exp(iΩs)ds]dt
|u1|2z=2Q|u1|2|u2|2,|u2|2z=2Q|u1|2|u2|2
C=+f(s)exp[14(1a12+1a22)]exp(iΩs)ds
{dP1dz=2QP1P2a2a12+a22exp(Ω2z2a12+a22)dP2dz=2QP1P2a1a12+a22exp(Ω2z2a12+a22)
P1,OUT=C1a2eψκ+a1eψ,P2,OUT=C1C1a1eψκ+a1eψ
ω0z=π8+dΩΩ3R(Ω/2πtc)sinh2(πΩ/2)

Metrics