Abstract

Quantum dots (QDs) are semiconductor nanocrystals with peculiar optoelectronic properties. Their wide application in light-emitting diodes, solar cells, and the medical and defense fields makes them a potential candidate in the area of photonics and biophotonics. In this feature issue of Optical Materials Express, together with Optics Express we focus on different aspects of semiconducting nanocrystals research, especially on the advances in the synthesis, physical properties, and application of QDs.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Trindade, P. O'Brien, and N. L. Pickett, “Nanocrystalline semiconductors: synthesis, properties, and perspectives,” Chem. Mater.13(11), 3843–3858 (2001).
    [CrossRef]
  2. A. J. Nozik, M. C. Beard, J. M. Luther, M. Law, R. J. Ellingson, and J. C. Johnson, “Semiconductor quantum dots and quantum dot arrays and applications of multiple exciton generation to third-generation photovoltaic solar cells,” Chem. Rev.110(11), 6873–6890 (2010).
    [CrossRef] [PubMed]
  3. A. J. Nozik, “Nanoscience and nanostructures for photovoltaics and solar fuels,” Nano Lett.10(8), 2735–2741 (2010).
    [CrossRef] [PubMed]
  4. A. J. Nozik, “Multiple exciton generation in semiconductor quantum dots,” Chem. Phys. Lett.457(1–3), 3–11 (2008).
    [CrossRef]
  5. Y. Li and G. A. Somorjai, “Nanoscale advances in catalysis and energy applications,” Nano Lett.10(7), 2289–2295 (2010).
    [CrossRef] [PubMed]
  6. P. Prabhakaran, W. J. Kim, K.-S. Lee, and P. N. Prasad, “Quantum dots (QDs) for photonic applications,” Opt. Mater. Express2(5), 578–593 (2012).
    [CrossRef]
  7. J. Lim, W. K. Bae, J. Kwak, S. Lee, C. Lee, and K. Char, “Perspective on synthesis, device structures, and printing processes for quantum dot displays,” Opt. Mater. Express2(5), 594–628 (2012).
    [CrossRef]
  8. R. Intartaglia, K. Bagga, M. Scotto, A. Diaspro, and F. Brandi, “Luminescent silicon nanoparticles prepared by ultra short pulsed laser ablation in liquid for imaging applications,” Opt. Mater. Express2(5), 510–518 (2012).
    [CrossRef]
  9. Y. P. Jeon, S. J. Park, and T. W. Kim, “Electical and optical properties of blue organic light-emitting devices fabricated utilizing color conversion CdSe and CdSe/ZnS quantum dots embedded in a poly (N-vinyl carbazole) hole transport layer,” Opt. Mater. Express2(5), 663–670 (2012).
    [CrossRef]
  10. A. K. Singh, K. G. Gryczynski, and A. Neogi, “Origin of room temperature broadband light emission and carrier dynamics in Ag ion-implanted Silicon nanocrystals,” Opt. Mater. Express2(5), 501–509 (2012).
    [CrossRef]
  11. K. K. Jang, P. Prabhakaran, D. Chandran, J. J. Park, and K. S. Lee, “Solution processable and photopatternable blue, green and red quantum dots suitable for full color displays devices,” Opt. Mater. Express2(5), 519–525 (2012).
    [CrossRef]
  12. I. Moreels, D. Kruschke, P. Glas, and J. W. Tomm, “The dielectric function of PbS quantum dots in a glass matrix,” Opt. Mater. Express2(5), 496–500 (2012).
    [CrossRef]
  13. N. Laurand, B. Guilhabert, J. McKendry, A. E. Kelly, B. Rae, D. Massoubre, Z. Gong, E. Gu, R. Henderson, and M. D. Dawson, “Colloidal quantum dot nanocomposites for visible wavelength conversion of modulated optical signals,” Opt. Mater. Express2(3), 250–260 (2012).
    [CrossRef]
  14. K.-Y. Kuo, S.-W. Hsu, P.-R. Huang, W.-L. Chuang, C.-C. Liu, and P.-T. Lee, “Optical properties and sub-bandgap formation of nano-crystalline Si quantum dots embedded ZnO thin film,” Opt. Express20(10), 10470–10475 (2012).
    [CrossRef]
  15. I. Sandall, J. S. Ng, J. P. R. David, C. H. Tan, T. Wang, and H. Liu, “1300 nm wavelength InAs quantum dot photodetector grown on silicon,” Opt. Express20(10), 10446–10452 (2012).
    [CrossRef]
  16. C. A. Foell, E. Schelew, H. Qiao, K. A. Abel, S. Hughes, F. C. J. M. van Veggel, and J. F. Young, “Saturation behaviour of colloidal PbSe quantum dot exciton emission coupled into silicon photonic circuits,” Opt. Express20(10), 10453–10469 (2012).
    [CrossRef]
  17. H.-S. Ling, S.-Y. Wang, W.-C. Hsu, and C.-P. Lee, “Voltage-tunable dual-band quantum dot infrared photodetectors for temperature sensing,” Opt. Express20(10), 10484–10489 (2012).
    [CrossRef]
  18. D. H. Kim, Y. H. Lee, D. U. Lee, T. W. Kim, S. Kim, and S. W. Kim, “Significant enhancement of the power conversion efficiency for organic photovoltaic cells due to a P3HT pillar layer containing ZnSe quantum dots,” Opt. Express20(10), 10476–10483 (2012).
    [CrossRef]

2012

N. Laurand, B. Guilhabert, J. McKendry, A. E. Kelly, B. Rae, D. Massoubre, Z. Gong, E. Gu, R. Henderson, and M. D. Dawson, “Colloidal quantum dot nanocomposites for visible wavelength conversion of modulated optical signals,” Opt. Mater. Express2(3), 250–260 (2012).
[CrossRef]

I. Moreels, D. Kruschke, P. Glas, and J. W. Tomm, “The dielectric function of PbS quantum dots in a glass matrix,” Opt. Mater. Express2(5), 496–500 (2012).
[CrossRef]

A. K. Singh, K. G. Gryczynski, and A. Neogi, “Origin of room temperature broadband light emission and carrier dynamics in Ag ion-implanted Silicon nanocrystals,” Opt. Mater. Express2(5), 501–509 (2012).
[CrossRef]

R. Intartaglia, K. Bagga, M. Scotto, A. Diaspro, and F. Brandi, “Luminescent silicon nanoparticles prepared by ultra short pulsed laser ablation in liquid for imaging applications,” Opt. Mater. Express2(5), 510–518 (2012).
[CrossRef]

K. K. Jang, P. Prabhakaran, D. Chandran, J. J. Park, and K. S. Lee, “Solution processable and photopatternable blue, green and red quantum dots suitable for full color displays devices,” Opt. Mater. Express2(5), 519–525 (2012).
[CrossRef]

P. Prabhakaran, W. J. Kim, K.-S. Lee, and P. N. Prasad, “Quantum dots (QDs) for photonic applications,” Opt. Mater. Express2(5), 578–593 (2012).
[CrossRef]

J. Lim, W. K. Bae, J. Kwak, S. Lee, C. Lee, and K. Char, “Perspective on synthesis, device structures, and printing processes for quantum dot displays,” Opt. Mater. Express2(5), 594–628 (2012).
[CrossRef]

Y. P. Jeon, S. J. Park, and T. W. Kim, “Electical and optical properties of blue organic light-emitting devices fabricated utilizing color conversion CdSe and CdSe/ZnS quantum dots embedded in a poly (N-vinyl carbazole) hole transport layer,” Opt. Mater. Express2(5), 663–670 (2012).
[CrossRef]

I. Sandall, J. S. Ng, J. P. R. David, C. H. Tan, T. Wang, and H. Liu, “1300 nm wavelength InAs quantum dot photodetector grown on silicon,” Opt. Express20(10), 10446–10452 (2012).
[CrossRef]

C. A. Foell, E. Schelew, H. Qiao, K. A. Abel, S. Hughes, F. C. J. M. van Veggel, and J. F. Young, “Saturation behaviour of colloidal PbSe quantum dot exciton emission coupled into silicon photonic circuits,” Opt. Express20(10), 10453–10469 (2012).
[CrossRef]

K.-Y. Kuo, S.-W. Hsu, P.-R. Huang, W.-L. Chuang, C.-C. Liu, and P.-T. Lee, “Optical properties and sub-bandgap formation of nano-crystalline Si quantum dots embedded ZnO thin film,” Opt. Express20(10), 10470–10475 (2012).
[CrossRef]

D. H. Kim, Y. H. Lee, D. U. Lee, T. W. Kim, S. Kim, and S. W. Kim, “Significant enhancement of the power conversion efficiency for organic photovoltaic cells due to a P3HT pillar layer containing ZnSe quantum dots,” Opt. Express20(10), 10476–10483 (2012).
[CrossRef]

H.-S. Ling, S.-Y. Wang, W.-C. Hsu, and C.-P. Lee, “Voltage-tunable dual-band quantum dot infrared photodetectors for temperature sensing,” Opt. Express20(10), 10484–10489 (2012).
[CrossRef]

2010

A. J. Nozik, M. C. Beard, J. M. Luther, M. Law, R. J. Ellingson, and J. C. Johnson, “Semiconductor quantum dots and quantum dot arrays and applications of multiple exciton generation to third-generation photovoltaic solar cells,” Chem. Rev.110(11), 6873–6890 (2010).
[CrossRef] [PubMed]

A. J. Nozik, “Nanoscience and nanostructures for photovoltaics and solar fuels,” Nano Lett.10(8), 2735–2741 (2010).
[CrossRef] [PubMed]

Y. Li and G. A. Somorjai, “Nanoscale advances in catalysis and energy applications,” Nano Lett.10(7), 2289–2295 (2010).
[CrossRef] [PubMed]

2008

A. J. Nozik, “Multiple exciton generation in semiconductor quantum dots,” Chem. Phys. Lett.457(1–3), 3–11 (2008).
[CrossRef]

2001

T. Trindade, P. O'Brien, and N. L. Pickett, “Nanocrystalline semiconductors: synthesis, properties, and perspectives,” Chem. Mater.13(11), 3843–3858 (2001).
[CrossRef]

Abel, K. A.

Bae, W. K.

Bagga, K.

Beard, M. C.

A. J. Nozik, M. C. Beard, J. M. Luther, M. Law, R. J. Ellingson, and J. C. Johnson, “Semiconductor quantum dots and quantum dot arrays and applications of multiple exciton generation to third-generation photovoltaic solar cells,” Chem. Rev.110(11), 6873–6890 (2010).
[CrossRef] [PubMed]

Brandi, F.

Chandran, D.

Char, K.

Chuang, W.-L.

David, J. P. R.

Dawson, M. D.

Diaspro, A.

Ellingson, R. J.

A. J. Nozik, M. C. Beard, J. M. Luther, M. Law, R. J. Ellingson, and J. C. Johnson, “Semiconductor quantum dots and quantum dot arrays and applications of multiple exciton generation to third-generation photovoltaic solar cells,” Chem. Rev.110(11), 6873–6890 (2010).
[CrossRef] [PubMed]

Foell, C. A.

Glas, P.

Gong, Z.

Gryczynski, K. G.

Gu, E.

Guilhabert, B.

Henderson, R.

Hsu, S.-W.

Hsu, W.-C.

Huang, P.-R.

Hughes, S.

Intartaglia, R.

Jang, K. K.

Jeon, Y. P.

Johnson, J. C.

A. J. Nozik, M. C. Beard, J. M. Luther, M. Law, R. J. Ellingson, and J. C. Johnson, “Semiconductor quantum dots and quantum dot arrays and applications of multiple exciton generation to third-generation photovoltaic solar cells,” Chem. Rev.110(11), 6873–6890 (2010).
[CrossRef] [PubMed]

Kelly, A. E.

Kim, D. H.

Kim, S.

Kim, S. W.

Kim, T. W.

Kim, W. J.

Kruschke, D.

Kuo, K.-Y.

Kwak, J.

Laurand, N.

Law, M.

A. J. Nozik, M. C. Beard, J. M. Luther, M. Law, R. J. Ellingson, and J. C. Johnson, “Semiconductor quantum dots and quantum dot arrays and applications of multiple exciton generation to third-generation photovoltaic solar cells,” Chem. Rev.110(11), 6873–6890 (2010).
[CrossRef] [PubMed]

Lee, C.

Lee, C.-P.

Lee, D. U.

Lee, K. S.

Lee, K.-S.

Lee, P.-T.

Lee, S.

Lee, Y. H.

Li, Y.

Y. Li and G. A. Somorjai, “Nanoscale advances in catalysis and energy applications,” Nano Lett.10(7), 2289–2295 (2010).
[CrossRef] [PubMed]

Lim, J.

Ling, H.-S.

Liu, C.-C.

Liu, H.

Luther, J. M.

A. J. Nozik, M. C. Beard, J. M. Luther, M. Law, R. J. Ellingson, and J. C. Johnson, “Semiconductor quantum dots and quantum dot arrays and applications of multiple exciton generation to third-generation photovoltaic solar cells,” Chem. Rev.110(11), 6873–6890 (2010).
[CrossRef] [PubMed]

Massoubre, D.

McKendry, J.

Moreels, I.

Neogi, A.

Ng, J. S.

Nozik, A. J.

A. J. Nozik, M. C. Beard, J. M. Luther, M. Law, R. J. Ellingson, and J. C. Johnson, “Semiconductor quantum dots and quantum dot arrays and applications of multiple exciton generation to third-generation photovoltaic solar cells,” Chem. Rev.110(11), 6873–6890 (2010).
[CrossRef] [PubMed]

A. J. Nozik, “Nanoscience and nanostructures for photovoltaics and solar fuels,” Nano Lett.10(8), 2735–2741 (2010).
[CrossRef] [PubMed]

A. J. Nozik, “Multiple exciton generation in semiconductor quantum dots,” Chem. Phys. Lett.457(1–3), 3–11 (2008).
[CrossRef]

O'Brien, P.

T. Trindade, P. O'Brien, and N. L. Pickett, “Nanocrystalline semiconductors: synthesis, properties, and perspectives,” Chem. Mater.13(11), 3843–3858 (2001).
[CrossRef]

Park, J. J.

Park, S. J.

Pickett, N. L.

T. Trindade, P. O'Brien, and N. L. Pickett, “Nanocrystalline semiconductors: synthesis, properties, and perspectives,” Chem. Mater.13(11), 3843–3858 (2001).
[CrossRef]

Prabhakaran, P.

Prasad, P. N.

Qiao, H.

Rae, B.

Sandall, I.

Schelew, E.

Scotto, M.

Singh, A. K.

Somorjai, G. A.

Y. Li and G. A. Somorjai, “Nanoscale advances in catalysis and energy applications,” Nano Lett.10(7), 2289–2295 (2010).
[CrossRef] [PubMed]

Tan, C. H.

Tomm, J. W.

Trindade, T.

T. Trindade, P. O'Brien, and N. L. Pickett, “Nanocrystalline semiconductors: synthesis, properties, and perspectives,” Chem. Mater.13(11), 3843–3858 (2001).
[CrossRef]

van Veggel, F. C. J. M.

Wang, S.-Y.

Wang, T.

Young, J. F.

Chem. Mater.

T. Trindade, P. O'Brien, and N. L. Pickett, “Nanocrystalline semiconductors: synthesis, properties, and perspectives,” Chem. Mater.13(11), 3843–3858 (2001).
[CrossRef]

Chem. Phys. Lett.

A. J. Nozik, “Multiple exciton generation in semiconductor quantum dots,” Chem. Phys. Lett.457(1–3), 3–11 (2008).
[CrossRef]

Chem. Rev.

A. J. Nozik, M. C. Beard, J. M. Luther, M. Law, R. J. Ellingson, and J. C. Johnson, “Semiconductor quantum dots and quantum dot arrays and applications of multiple exciton generation to third-generation photovoltaic solar cells,” Chem. Rev.110(11), 6873–6890 (2010).
[CrossRef] [PubMed]

Nano Lett.

A. J. Nozik, “Nanoscience and nanostructures for photovoltaics and solar fuels,” Nano Lett.10(8), 2735–2741 (2010).
[CrossRef] [PubMed]

Y. Li and G. A. Somorjai, “Nanoscale advances in catalysis and energy applications,” Nano Lett.10(7), 2289–2295 (2010).
[CrossRef] [PubMed]

Opt. Express

Opt. Mater. Express

N. Laurand, B. Guilhabert, J. McKendry, A. E. Kelly, B. Rae, D. Massoubre, Z. Gong, E. Gu, R. Henderson, and M. D. Dawson, “Colloidal quantum dot nanocomposites for visible wavelength conversion of modulated optical signals,” Opt. Mater. Express2(3), 250–260 (2012).
[CrossRef]

I. Moreels, D. Kruschke, P. Glas, and J. W. Tomm, “The dielectric function of PbS quantum dots in a glass matrix,” Opt. Mater. Express2(5), 496–500 (2012).
[CrossRef]

A. K. Singh, K. G. Gryczynski, and A. Neogi, “Origin of room temperature broadband light emission and carrier dynamics in Ag ion-implanted Silicon nanocrystals,” Opt. Mater. Express2(5), 501–509 (2012).
[CrossRef]

R. Intartaglia, K. Bagga, M. Scotto, A. Diaspro, and F. Brandi, “Luminescent silicon nanoparticles prepared by ultra short pulsed laser ablation in liquid for imaging applications,” Opt. Mater. Express2(5), 510–518 (2012).
[CrossRef]

K. K. Jang, P. Prabhakaran, D. Chandran, J. J. Park, and K. S. Lee, “Solution processable and photopatternable blue, green and red quantum dots suitable for full color displays devices,” Opt. Mater. Express2(5), 519–525 (2012).
[CrossRef]

P. Prabhakaran, W. J. Kim, K.-S. Lee, and P. N. Prasad, “Quantum dots (QDs) for photonic applications,” Opt. Mater. Express2(5), 578–593 (2012).
[CrossRef]

J. Lim, W. K. Bae, J. Kwak, S. Lee, C. Lee, and K. Char, “Perspective on synthesis, device structures, and printing processes for quantum dot displays,” Opt. Mater. Express2(5), 594–628 (2012).
[CrossRef]

Y. P. Jeon, S. J. Park, and T. W. Kim, “Electical and optical properties of blue organic light-emitting devices fabricated utilizing color conversion CdSe and CdSe/ZnS quantum dots embedded in a poly (N-vinyl carbazole) hole transport layer,” Opt. Mater. Express2(5), 663–670 (2012).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics