Abstract

We investigate the interaction of an open (N + 1)-level extended V-type atomic system (i.e. a closed (N + 2)-level atomic system) with N coherent laser fields and one incoherent pumping field through both analytical and numerical calculations. Our results show that the system can exhibit multiple resonant gain suppressions via perfect quantum destructive interference, which is usually believed to be absent in closed three-level V system and its extended versions involving more atomic levels, with at most N – 1 transparency windows associated with very steep anomalous dispersions occurring in the system. The superluminal group velocity of the probe-laser pulse with at most N – 1 negative values can also be generated and controlled with little gain or absorption.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. W. Boyd and D. J. Gauthier, “Controlling the velocity of light pulses,” Science 326, 1074–1077 (2009).
    [CrossRef] [PubMed]
  2. A. M. Akulshin and R. J. McLean, “Fast light in atomic media,” J. Opt. 12, 104001 (2010).
    [CrossRef]
  3. J. Mork, F. Ohman, M. Van Der Poel, Y. Chen, P. Lunnemann, and K. Yvind, “Slow and fast light: Controlling the speed of light using semiconductor waveguides,” Laser Photon. Rev. 3, 30–44 (2009).
    [CrossRef]
  4. J. Mork, P. Lunnemann, W. Xue, Y. Chen, P. Kaer, and T. R. Nielsen, “Slow and fast light in semiconductor waveguides,” Semicond. Sci. Technol. 25, 083002 (2010).
    [CrossRef]
  5. L. Thevenaz, “Slow and fast light in optical fibres,” Nat. Photonics 2, 474–481 (2008).
    [CrossRef]
  6. S. Chu and S. Wang, “Linear pulse propagation in an absorbing medium,” Phys. Rev. Lett. 48, 738–741 (1982).
    [CrossRef]
  7. M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Superluminal and slow light propagation in a room-temperature solid,” Science 301, 200–202 (2003).
    [CrossRef] [PubMed]
  8. M. Gonzalez-Herraez, K.-Y. Song, and L. Thevenaz, “Optically controlled slow and fast light in optical fibers using stimulated Brillouin scattering,” Appl. Phys. Lett. 87, 081113 (2005).
    [CrossRef]
  9. K. Y. Song, K. S. Abedin, and K. Hotate, “Gain-assisted superluminal propagation in tellurite glass fiber based on stimulated Brillouin scattering,” Opt. Express 16, 225–230 (2008).
    [CrossRef] [PubMed]
  10. L. J. Wang, A. Kuzmich, and A. Dogariu, “Gain-assisted superluminal light propagation,” Nature 406, 277–279 (2000).
    [CrossRef] [PubMed]
  11. C. Zhu and G. Huang, “High-order nonlinear Schrodinger equation and weak-light superluminal solitons in active Raman gain media with two control fields,” Opt. Express 19, 1963–1974 (2011).
    [CrossRef] [PubMed]
  12. F. Arrieta-Yanez, O. G. Calderon, and S. Melle, “Slow and fast light based on coherent population oscillations in erbium-doped fibres,” J. Opt. 12, 104002 (2010).
    [CrossRef]
  13. C.-L. Cui, J.-K. Jia, J.-W. Gao, Y. Xue, G. Wang, and J.-H. Wu, “Ultraslow and superluminal light propagation in a four-level atomic system,” Phys. Rev. A 76, 033815 (2007).
    [CrossRef]
  14. A. M. Akulshin, S. Barreiro, and A. Lezama, “Steep anomalous dispersion in coherently prepared Rb vapor,” Phys. Rev. Lett. 83, 4277–4280 (1999).
    [CrossRef]
  15. K. Kim, H. S. Moon, C. Lee, S. K. Kim, and J. B. Kim, “Observation of arbitrary group velocities of light from superluminal to subluminal on a single atomic transition line,” Phys. Rev. A 68, 013810 (2003).
    [CrossRef]
  16. C.-L. C., J.-K. Jia, Y. Zhang, Y. Xue, H.-L. Xu, and J.-H. Wu, “Resonant gain suppression and quantum destructive interference in a three-level open V system,” J. Phys. B: At. Mol. Opt. Phys. 44, 215504 (2011).
    [CrossRef]
  17. L. Brillouin, Wave Propagation and Group Velocity (Academic, New York, 1960).
  18. C. G. B. Garrett and D. E. McCumber, “Propagation of a Gaussian light pulse through an anomalous dispersion medium,” Phys. Rev. A 1, 305–313 (1970).
    [CrossRef]
  19. M. D. Crisp, “Concept of group velocity in resonant pulse propagation,” Phys. Rev. A 4, 2104–2108 (1971).
    [CrossRef]
  20. E. Paspalakis and P. L. Knight, “Electromagnetically induced transparency and controlled group velocity in a multilevel system,” Phys. Rev. A 66, 015802 (2002).
    [CrossRef]
  21. T. F. Gallagher, Rydberg Atoms (Cambridge University PressCambridge, England, 1984).
  22. D. Tong, S. M. Farooqi, J. Stanojevic, S. Krishnan, Y. P. Zhang, R. Cote, E. E. Eyler, and P. L. Gould, “Local blockade of Rydberg excitation in an ultracold gas,” Phys. Rev. Lett. 93, 063001 (2004).
    [CrossRef] [PubMed]
  23. D. Yan, J.-W. Gao, Q.-Q. Bao, H. Yang, H. Wang, and J.-H. Wu, “Electromagnetically induced transparency in a five-level Λ system dominated by two-photon resonant transitions,” Phys. Rev. A 83, 033830 (2011).
    [CrossRef]
  24. M. Mahmoudi, M. Sahrai, and H. Tajalli, “Subluminal and superluminal light propagation via interference of incoherent pumpfields,” Phys. Lett. A 357, 66–71 (2006).
    [CrossRef]
  25. M. Fleischhauer, C. H. Keitel, M. O. Scully, and C. Su, “Lasing without inversion and enhancement of the index of refraction via interference of incoherent pump processes,” Opt. Commun. 87, 109–114 (1992).
    [CrossRef]
  26. D. Bullock, J. Evers, and C. H. Keitel, “Modifying spontaneous emission via interferences from incoherent pump fields,” Phys. Lett. A 307, 8–12 (2003).
    [CrossRef]
  27. A. V. Taichenachev, A. M. Tumaikin, and V. I. Yudin, “Electromagnetically induced absorption in a four-state system,” Phys. Rev. A 61, 011802 (1999).
    [CrossRef]

2011 (3)

C. Zhu and G. Huang, “High-order nonlinear Schrodinger equation and weak-light superluminal solitons in active Raman gain media with two control fields,” Opt. Express 19, 1963–1974 (2011).
[CrossRef] [PubMed]

C.-L. C., J.-K. Jia, Y. Zhang, Y. Xue, H.-L. Xu, and J.-H. Wu, “Resonant gain suppression and quantum destructive interference in a three-level open V system,” J. Phys. B: At. Mol. Opt. Phys. 44, 215504 (2011).
[CrossRef]

D. Yan, J.-W. Gao, Q.-Q. Bao, H. Yang, H. Wang, and J.-H. Wu, “Electromagnetically induced transparency in a five-level Λ system dominated by two-photon resonant transitions,” Phys. Rev. A 83, 033830 (2011).
[CrossRef]

2010 (3)

F. Arrieta-Yanez, O. G. Calderon, and S. Melle, “Slow and fast light based on coherent population oscillations in erbium-doped fibres,” J. Opt. 12, 104002 (2010).
[CrossRef]

A. M. Akulshin and R. J. McLean, “Fast light in atomic media,” J. Opt. 12, 104001 (2010).
[CrossRef]

J. Mork, P. Lunnemann, W. Xue, Y. Chen, P. Kaer, and T. R. Nielsen, “Slow and fast light in semiconductor waveguides,” Semicond. Sci. Technol. 25, 083002 (2010).
[CrossRef]

2009 (2)

J. Mork, F. Ohman, M. Van Der Poel, Y. Chen, P. Lunnemann, and K. Yvind, “Slow and fast light: Controlling the speed of light using semiconductor waveguides,” Laser Photon. Rev. 3, 30–44 (2009).
[CrossRef]

R. W. Boyd and D. J. Gauthier, “Controlling the velocity of light pulses,” Science 326, 1074–1077 (2009).
[CrossRef] [PubMed]

2008 (2)

2007 (1)

C.-L. Cui, J.-K. Jia, J.-W. Gao, Y. Xue, G. Wang, and J.-H. Wu, “Ultraslow and superluminal light propagation in a four-level atomic system,” Phys. Rev. A 76, 033815 (2007).
[CrossRef]

2006 (1)

M. Mahmoudi, M. Sahrai, and H. Tajalli, “Subluminal and superluminal light propagation via interference of incoherent pumpfields,” Phys. Lett. A 357, 66–71 (2006).
[CrossRef]

2005 (1)

M. Gonzalez-Herraez, K.-Y. Song, and L. Thevenaz, “Optically controlled slow and fast light in optical fibers using stimulated Brillouin scattering,” Appl. Phys. Lett. 87, 081113 (2005).
[CrossRef]

2004 (1)

D. Tong, S. M. Farooqi, J. Stanojevic, S. Krishnan, Y. P. Zhang, R. Cote, E. E. Eyler, and P. L. Gould, “Local blockade of Rydberg excitation in an ultracold gas,” Phys. Rev. Lett. 93, 063001 (2004).
[CrossRef] [PubMed]

2003 (3)

D. Bullock, J. Evers, and C. H. Keitel, “Modifying spontaneous emission via interferences from incoherent pump fields,” Phys. Lett. A 307, 8–12 (2003).
[CrossRef]

K. Kim, H. S. Moon, C. Lee, S. K. Kim, and J. B. Kim, “Observation of arbitrary group velocities of light from superluminal to subluminal on a single atomic transition line,” Phys. Rev. A 68, 013810 (2003).
[CrossRef]

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Superluminal and slow light propagation in a room-temperature solid,” Science 301, 200–202 (2003).
[CrossRef] [PubMed]

2002 (1)

E. Paspalakis and P. L. Knight, “Electromagnetically induced transparency and controlled group velocity in a multilevel system,” Phys. Rev. A 66, 015802 (2002).
[CrossRef]

2000 (1)

L. J. Wang, A. Kuzmich, and A. Dogariu, “Gain-assisted superluminal light propagation,” Nature 406, 277–279 (2000).
[CrossRef] [PubMed]

1999 (2)

A. M. Akulshin, S. Barreiro, and A. Lezama, “Steep anomalous dispersion in coherently prepared Rb vapor,” Phys. Rev. Lett. 83, 4277–4280 (1999).
[CrossRef]

A. V. Taichenachev, A. M. Tumaikin, and V. I. Yudin, “Electromagnetically induced absorption in a four-state system,” Phys. Rev. A 61, 011802 (1999).
[CrossRef]

1992 (1)

M. Fleischhauer, C. H. Keitel, M. O. Scully, and C. Su, “Lasing without inversion and enhancement of the index of refraction via interference of incoherent pump processes,” Opt. Commun. 87, 109–114 (1992).
[CrossRef]

1982 (1)

S. Chu and S. Wang, “Linear pulse propagation in an absorbing medium,” Phys. Rev. Lett. 48, 738–741 (1982).
[CrossRef]

1971 (1)

M. D. Crisp, “Concept of group velocity in resonant pulse propagation,” Phys. Rev. A 4, 2104–2108 (1971).
[CrossRef]

1970 (1)

C. G. B. Garrett and D. E. McCumber, “Propagation of a Gaussian light pulse through an anomalous dispersion medium,” Phys. Rev. A 1, 305–313 (1970).
[CrossRef]

Abedin, K. S.

Akulshin, A. M.

A. M. Akulshin and R. J. McLean, “Fast light in atomic media,” J. Opt. 12, 104001 (2010).
[CrossRef]

A. M. Akulshin, S. Barreiro, and A. Lezama, “Steep anomalous dispersion in coherently prepared Rb vapor,” Phys. Rev. Lett. 83, 4277–4280 (1999).
[CrossRef]

Arrieta-Yanez, F.

F. Arrieta-Yanez, O. G. Calderon, and S. Melle, “Slow and fast light based on coherent population oscillations in erbium-doped fibres,” J. Opt. 12, 104002 (2010).
[CrossRef]

Bao, Q.-Q.

D. Yan, J.-W. Gao, Q.-Q. Bao, H. Yang, H. Wang, and J.-H. Wu, “Electromagnetically induced transparency in a five-level Λ system dominated by two-photon resonant transitions,” Phys. Rev. A 83, 033830 (2011).
[CrossRef]

Barreiro, S.

A. M. Akulshin, S. Barreiro, and A. Lezama, “Steep anomalous dispersion in coherently prepared Rb vapor,” Phys. Rev. Lett. 83, 4277–4280 (1999).
[CrossRef]

Bigelow, M. S.

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Superluminal and slow light propagation in a room-temperature solid,” Science 301, 200–202 (2003).
[CrossRef] [PubMed]

Boyd, R. W.

R. W. Boyd and D. J. Gauthier, “Controlling the velocity of light pulses,” Science 326, 1074–1077 (2009).
[CrossRef] [PubMed]

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Superluminal and slow light propagation in a room-temperature solid,” Science 301, 200–202 (2003).
[CrossRef] [PubMed]

Brillouin, L.

L. Brillouin, Wave Propagation and Group Velocity (Academic, New York, 1960).

Bullock, D.

D. Bullock, J. Evers, and C. H. Keitel, “Modifying spontaneous emission via interferences from incoherent pump fields,” Phys. Lett. A 307, 8–12 (2003).
[CrossRef]

C., C.-L.

C.-L. C., J.-K. Jia, Y. Zhang, Y. Xue, H.-L. Xu, and J.-H. Wu, “Resonant gain suppression and quantum destructive interference in a three-level open V system,” J. Phys. B: At. Mol. Opt. Phys. 44, 215504 (2011).
[CrossRef]

Calderon, O. G.

F. Arrieta-Yanez, O. G. Calderon, and S. Melle, “Slow and fast light based on coherent population oscillations in erbium-doped fibres,” J. Opt. 12, 104002 (2010).
[CrossRef]

Chen, Y.

J. Mork, P. Lunnemann, W. Xue, Y. Chen, P. Kaer, and T. R. Nielsen, “Slow and fast light in semiconductor waveguides,” Semicond. Sci. Technol. 25, 083002 (2010).
[CrossRef]

J. Mork, F. Ohman, M. Van Der Poel, Y. Chen, P. Lunnemann, and K. Yvind, “Slow and fast light: Controlling the speed of light using semiconductor waveguides,” Laser Photon. Rev. 3, 30–44 (2009).
[CrossRef]

Chu, S.

S. Chu and S. Wang, “Linear pulse propagation in an absorbing medium,” Phys. Rev. Lett. 48, 738–741 (1982).
[CrossRef]

Cote, R.

D. Tong, S. M. Farooqi, J. Stanojevic, S. Krishnan, Y. P. Zhang, R. Cote, E. E. Eyler, and P. L. Gould, “Local blockade of Rydberg excitation in an ultracold gas,” Phys. Rev. Lett. 93, 063001 (2004).
[CrossRef] [PubMed]

Crisp, M. D.

M. D. Crisp, “Concept of group velocity in resonant pulse propagation,” Phys. Rev. A 4, 2104–2108 (1971).
[CrossRef]

Cui, C.-L.

C.-L. Cui, J.-K. Jia, J.-W. Gao, Y. Xue, G. Wang, and J.-H. Wu, “Ultraslow and superluminal light propagation in a four-level atomic system,” Phys. Rev. A 76, 033815 (2007).
[CrossRef]

Dogariu, A.

L. J. Wang, A. Kuzmich, and A. Dogariu, “Gain-assisted superluminal light propagation,” Nature 406, 277–279 (2000).
[CrossRef] [PubMed]

Evers, J.

D. Bullock, J. Evers, and C. H. Keitel, “Modifying spontaneous emission via interferences from incoherent pump fields,” Phys. Lett. A 307, 8–12 (2003).
[CrossRef]

Eyler, E. E.

D. Tong, S. M. Farooqi, J. Stanojevic, S. Krishnan, Y. P. Zhang, R. Cote, E. E. Eyler, and P. L. Gould, “Local blockade of Rydberg excitation in an ultracold gas,” Phys. Rev. Lett. 93, 063001 (2004).
[CrossRef] [PubMed]

Farooqi, S. M.

D. Tong, S. M. Farooqi, J. Stanojevic, S. Krishnan, Y. P. Zhang, R. Cote, E. E. Eyler, and P. L. Gould, “Local blockade of Rydberg excitation in an ultracold gas,” Phys. Rev. Lett. 93, 063001 (2004).
[CrossRef] [PubMed]

Fleischhauer, M.

M. Fleischhauer, C. H. Keitel, M. O. Scully, and C. Su, “Lasing without inversion and enhancement of the index of refraction via interference of incoherent pump processes,” Opt. Commun. 87, 109–114 (1992).
[CrossRef]

Gallagher, T. F.

T. F. Gallagher, Rydberg Atoms (Cambridge University PressCambridge, England, 1984).

Gao, J.-W.

D. Yan, J.-W. Gao, Q.-Q. Bao, H. Yang, H. Wang, and J.-H. Wu, “Electromagnetically induced transparency in a five-level Λ system dominated by two-photon resonant transitions,” Phys. Rev. A 83, 033830 (2011).
[CrossRef]

C.-L. Cui, J.-K. Jia, J.-W. Gao, Y. Xue, G. Wang, and J.-H. Wu, “Ultraslow and superluminal light propagation in a four-level atomic system,” Phys. Rev. A 76, 033815 (2007).
[CrossRef]

Garrett, C. G. B.

C. G. B. Garrett and D. E. McCumber, “Propagation of a Gaussian light pulse through an anomalous dispersion medium,” Phys. Rev. A 1, 305–313 (1970).
[CrossRef]

Gauthier, D. J.

R. W. Boyd and D. J. Gauthier, “Controlling the velocity of light pulses,” Science 326, 1074–1077 (2009).
[CrossRef] [PubMed]

Gonzalez-Herraez, M.

M. Gonzalez-Herraez, K.-Y. Song, and L. Thevenaz, “Optically controlled slow and fast light in optical fibers using stimulated Brillouin scattering,” Appl. Phys. Lett. 87, 081113 (2005).
[CrossRef]

Gould, P. L.

D. Tong, S. M. Farooqi, J. Stanojevic, S. Krishnan, Y. P. Zhang, R. Cote, E. E. Eyler, and P. L. Gould, “Local blockade of Rydberg excitation in an ultracold gas,” Phys. Rev. Lett. 93, 063001 (2004).
[CrossRef] [PubMed]

Hotate, K.

Huang, G.

Jia, J.-K.

C.-L. C., J.-K. Jia, Y. Zhang, Y. Xue, H.-L. Xu, and J.-H. Wu, “Resonant gain suppression and quantum destructive interference in a three-level open V system,” J. Phys. B: At. Mol. Opt. Phys. 44, 215504 (2011).
[CrossRef]

C.-L. Cui, J.-K. Jia, J.-W. Gao, Y. Xue, G. Wang, and J.-H. Wu, “Ultraslow and superluminal light propagation in a four-level atomic system,” Phys. Rev. A 76, 033815 (2007).
[CrossRef]

Kaer, P.

J. Mork, P. Lunnemann, W. Xue, Y. Chen, P. Kaer, and T. R. Nielsen, “Slow and fast light in semiconductor waveguides,” Semicond. Sci. Technol. 25, 083002 (2010).
[CrossRef]

Keitel, C. H.

D. Bullock, J. Evers, and C. H. Keitel, “Modifying spontaneous emission via interferences from incoherent pump fields,” Phys. Lett. A 307, 8–12 (2003).
[CrossRef]

M. Fleischhauer, C. H. Keitel, M. O. Scully, and C. Su, “Lasing without inversion and enhancement of the index of refraction via interference of incoherent pump processes,” Opt. Commun. 87, 109–114 (1992).
[CrossRef]

Kim, J. B.

K. Kim, H. S. Moon, C. Lee, S. K. Kim, and J. B. Kim, “Observation of arbitrary group velocities of light from superluminal to subluminal on a single atomic transition line,” Phys. Rev. A 68, 013810 (2003).
[CrossRef]

Kim, K.

K. Kim, H. S. Moon, C. Lee, S. K. Kim, and J. B. Kim, “Observation of arbitrary group velocities of light from superluminal to subluminal on a single atomic transition line,” Phys. Rev. A 68, 013810 (2003).
[CrossRef]

Kim, S. K.

K. Kim, H. S. Moon, C. Lee, S. K. Kim, and J. B. Kim, “Observation of arbitrary group velocities of light from superluminal to subluminal on a single atomic transition line,” Phys. Rev. A 68, 013810 (2003).
[CrossRef]

Knight, P. L.

E. Paspalakis and P. L. Knight, “Electromagnetically induced transparency and controlled group velocity in a multilevel system,” Phys. Rev. A 66, 015802 (2002).
[CrossRef]

Krishnan, S.

D. Tong, S. M. Farooqi, J. Stanojevic, S. Krishnan, Y. P. Zhang, R. Cote, E. E. Eyler, and P. L. Gould, “Local blockade of Rydberg excitation in an ultracold gas,” Phys. Rev. Lett. 93, 063001 (2004).
[CrossRef] [PubMed]

Kuzmich, A.

L. J. Wang, A. Kuzmich, and A. Dogariu, “Gain-assisted superluminal light propagation,” Nature 406, 277–279 (2000).
[CrossRef] [PubMed]

Lee, C.

K. Kim, H. S. Moon, C. Lee, S. K. Kim, and J. B. Kim, “Observation of arbitrary group velocities of light from superluminal to subluminal on a single atomic transition line,” Phys. Rev. A 68, 013810 (2003).
[CrossRef]

Lepeshkin, N. N.

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Superluminal and slow light propagation in a room-temperature solid,” Science 301, 200–202 (2003).
[CrossRef] [PubMed]

Lezama, A.

A. M. Akulshin, S. Barreiro, and A. Lezama, “Steep anomalous dispersion in coherently prepared Rb vapor,” Phys. Rev. Lett. 83, 4277–4280 (1999).
[CrossRef]

Lunnemann, P.

J. Mork, P. Lunnemann, W. Xue, Y. Chen, P. Kaer, and T. R. Nielsen, “Slow and fast light in semiconductor waveguides,” Semicond. Sci. Technol. 25, 083002 (2010).
[CrossRef]

J. Mork, F. Ohman, M. Van Der Poel, Y. Chen, P. Lunnemann, and K. Yvind, “Slow and fast light: Controlling the speed of light using semiconductor waveguides,” Laser Photon. Rev. 3, 30–44 (2009).
[CrossRef]

Mahmoudi, M.

M. Mahmoudi, M. Sahrai, and H. Tajalli, “Subluminal and superluminal light propagation via interference of incoherent pumpfields,” Phys. Lett. A 357, 66–71 (2006).
[CrossRef]

McCumber, D. E.

C. G. B. Garrett and D. E. McCumber, “Propagation of a Gaussian light pulse through an anomalous dispersion medium,” Phys. Rev. A 1, 305–313 (1970).
[CrossRef]

McLean, R. J.

A. M. Akulshin and R. J. McLean, “Fast light in atomic media,” J. Opt. 12, 104001 (2010).
[CrossRef]

Melle, S.

F. Arrieta-Yanez, O. G. Calderon, and S. Melle, “Slow and fast light based on coherent population oscillations in erbium-doped fibres,” J. Opt. 12, 104002 (2010).
[CrossRef]

Moon, H. S.

K. Kim, H. S. Moon, C. Lee, S. K. Kim, and J. B. Kim, “Observation of arbitrary group velocities of light from superluminal to subluminal on a single atomic transition line,” Phys. Rev. A 68, 013810 (2003).
[CrossRef]

Mork, J.

J. Mork, P. Lunnemann, W. Xue, Y. Chen, P. Kaer, and T. R. Nielsen, “Slow and fast light in semiconductor waveguides,” Semicond. Sci. Technol. 25, 083002 (2010).
[CrossRef]

J. Mork, F. Ohman, M. Van Der Poel, Y. Chen, P. Lunnemann, and K. Yvind, “Slow and fast light: Controlling the speed of light using semiconductor waveguides,” Laser Photon. Rev. 3, 30–44 (2009).
[CrossRef]

Nielsen, T. R.

J. Mork, P. Lunnemann, W. Xue, Y. Chen, P. Kaer, and T. R. Nielsen, “Slow and fast light in semiconductor waveguides,” Semicond. Sci. Technol. 25, 083002 (2010).
[CrossRef]

Ohman, F.

J. Mork, F. Ohman, M. Van Der Poel, Y. Chen, P. Lunnemann, and K. Yvind, “Slow and fast light: Controlling the speed of light using semiconductor waveguides,” Laser Photon. Rev. 3, 30–44 (2009).
[CrossRef]

Paspalakis, E.

E. Paspalakis and P. L. Knight, “Electromagnetically induced transparency and controlled group velocity in a multilevel system,” Phys. Rev. A 66, 015802 (2002).
[CrossRef]

Sahrai, M.

M. Mahmoudi, M. Sahrai, and H. Tajalli, “Subluminal and superluminal light propagation via interference of incoherent pumpfields,” Phys. Lett. A 357, 66–71 (2006).
[CrossRef]

Scully, M. O.

M. Fleischhauer, C. H. Keitel, M. O. Scully, and C. Su, “Lasing without inversion and enhancement of the index of refraction via interference of incoherent pump processes,” Opt. Commun. 87, 109–114 (1992).
[CrossRef]

Song, K. Y.

Song, K.-Y.

M. Gonzalez-Herraez, K.-Y. Song, and L. Thevenaz, “Optically controlled slow and fast light in optical fibers using stimulated Brillouin scattering,” Appl. Phys. Lett. 87, 081113 (2005).
[CrossRef]

Stanojevic, J.

D. Tong, S. M. Farooqi, J. Stanojevic, S. Krishnan, Y. P. Zhang, R. Cote, E. E. Eyler, and P. L. Gould, “Local blockade of Rydberg excitation in an ultracold gas,” Phys. Rev. Lett. 93, 063001 (2004).
[CrossRef] [PubMed]

Su, C.

M. Fleischhauer, C. H. Keitel, M. O. Scully, and C. Su, “Lasing without inversion and enhancement of the index of refraction via interference of incoherent pump processes,” Opt. Commun. 87, 109–114 (1992).
[CrossRef]

Taichenachev, A. V.

A. V. Taichenachev, A. M. Tumaikin, and V. I. Yudin, “Electromagnetically induced absorption in a four-state system,” Phys. Rev. A 61, 011802 (1999).
[CrossRef]

Tajalli, H.

M. Mahmoudi, M. Sahrai, and H. Tajalli, “Subluminal and superluminal light propagation via interference of incoherent pumpfields,” Phys. Lett. A 357, 66–71 (2006).
[CrossRef]

Thevenaz, L.

L. Thevenaz, “Slow and fast light in optical fibres,” Nat. Photonics 2, 474–481 (2008).
[CrossRef]

M. Gonzalez-Herraez, K.-Y. Song, and L. Thevenaz, “Optically controlled slow and fast light in optical fibers using stimulated Brillouin scattering,” Appl. Phys. Lett. 87, 081113 (2005).
[CrossRef]

Tong, D.

D. Tong, S. M. Farooqi, J. Stanojevic, S. Krishnan, Y. P. Zhang, R. Cote, E. E. Eyler, and P. L. Gould, “Local blockade of Rydberg excitation in an ultracold gas,” Phys. Rev. Lett. 93, 063001 (2004).
[CrossRef] [PubMed]

Tumaikin, A. M.

A. V. Taichenachev, A. M. Tumaikin, and V. I. Yudin, “Electromagnetically induced absorption in a four-state system,” Phys. Rev. A 61, 011802 (1999).
[CrossRef]

Van Der Poel, M.

J. Mork, F. Ohman, M. Van Der Poel, Y. Chen, P. Lunnemann, and K. Yvind, “Slow and fast light: Controlling the speed of light using semiconductor waveguides,” Laser Photon. Rev. 3, 30–44 (2009).
[CrossRef]

Wang, G.

C.-L. Cui, J.-K. Jia, J.-W. Gao, Y. Xue, G. Wang, and J.-H. Wu, “Ultraslow and superluminal light propagation in a four-level atomic system,” Phys. Rev. A 76, 033815 (2007).
[CrossRef]

Wang, H.

D. Yan, J.-W. Gao, Q.-Q. Bao, H. Yang, H. Wang, and J.-H. Wu, “Electromagnetically induced transparency in a five-level Λ system dominated by two-photon resonant transitions,” Phys. Rev. A 83, 033830 (2011).
[CrossRef]

Wang, L. J.

L. J. Wang, A. Kuzmich, and A. Dogariu, “Gain-assisted superluminal light propagation,” Nature 406, 277–279 (2000).
[CrossRef] [PubMed]

Wang, S.

S. Chu and S. Wang, “Linear pulse propagation in an absorbing medium,” Phys. Rev. Lett. 48, 738–741 (1982).
[CrossRef]

Wu, J.-H.

D. Yan, J.-W. Gao, Q.-Q. Bao, H. Yang, H. Wang, and J.-H. Wu, “Electromagnetically induced transparency in a five-level Λ system dominated by two-photon resonant transitions,” Phys. Rev. A 83, 033830 (2011).
[CrossRef]

C.-L. C., J.-K. Jia, Y. Zhang, Y. Xue, H.-L. Xu, and J.-H. Wu, “Resonant gain suppression and quantum destructive interference in a three-level open V system,” J. Phys. B: At. Mol. Opt. Phys. 44, 215504 (2011).
[CrossRef]

C.-L. Cui, J.-K. Jia, J.-W. Gao, Y. Xue, G. Wang, and J.-H. Wu, “Ultraslow and superluminal light propagation in a four-level atomic system,” Phys. Rev. A 76, 033815 (2007).
[CrossRef]

Xu, H.-L.

C.-L. C., J.-K. Jia, Y. Zhang, Y. Xue, H.-L. Xu, and J.-H. Wu, “Resonant gain suppression and quantum destructive interference in a three-level open V system,” J. Phys. B: At. Mol. Opt. Phys. 44, 215504 (2011).
[CrossRef]

Xue, W.

J. Mork, P. Lunnemann, W. Xue, Y. Chen, P. Kaer, and T. R. Nielsen, “Slow and fast light in semiconductor waveguides,” Semicond. Sci. Technol. 25, 083002 (2010).
[CrossRef]

Xue, Y.

C.-L. C., J.-K. Jia, Y. Zhang, Y. Xue, H.-L. Xu, and J.-H. Wu, “Resonant gain suppression and quantum destructive interference in a three-level open V system,” J. Phys. B: At. Mol. Opt. Phys. 44, 215504 (2011).
[CrossRef]

C.-L. Cui, J.-K. Jia, J.-W. Gao, Y. Xue, G. Wang, and J.-H. Wu, “Ultraslow and superluminal light propagation in a four-level atomic system,” Phys. Rev. A 76, 033815 (2007).
[CrossRef]

Yan, D.

D. Yan, J.-W. Gao, Q.-Q. Bao, H. Yang, H. Wang, and J.-H. Wu, “Electromagnetically induced transparency in a five-level Λ system dominated by two-photon resonant transitions,” Phys. Rev. A 83, 033830 (2011).
[CrossRef]

Yang, H.

D. Yan, J.-W. Gao, Q.-Q. Bao, H. Yang, H. Wang, and J.-H. Wu, “Electromagnetically induced transparency in a five-level Λ system dominated by two-photon resonant transitions,” Phys. Rev. A 83, 033830 (2011).
[CrossRef]

Yudin, V. I.

A. V. Taichenachev, A. M. Tumaikin, and V. I. Yudin, “Electromagnetically induced absorption in a four-state system,” Phys. Rev. A 61, 011802 (1999).
[CrossRef]

Yvind, K.

J. Mork, F. Ohman, M. Van Der Poel, Y. Chen, P. Lunnemann, and K. Yvind, “Slow and fast light: Controlling the speed of light using semiconductor waveguides,” Laser Photon. Rev. 3, 30–44 (2009).
[CrossRef]

Zhang, Y.

C.-L. C., J.-K. Jia, Y. Zhang, Y. Xue, H.-L. Xu, and J.-H. Wu, “Resonant gain suppression and quantum destructive interference in a three-level open V system,” J. Phys. B: At. Mol. Opt. Phys. 44, 215504 (2011).
[CrossRef]

Zhang, Y. P.

D. Tong, S. M. Farooqi, J. Stanojevic, S. Krishnan, Y. P. Zhang, R. Cote, E. E. Eyler, and P. L. Gould, “Local blockade of Rydberg excitation in an ultracold gas,” Phys. Rev. Lett. 93, 063001 (2004).
[CrossRef] [PubMed]

Zhu, C.

Appl. Phys. Lett. (1)

M. Gonzalez-Herraez, K.-Y. Song, and L. Thevenaz, “Optically controlled slow and fast light in optical fibers using stimulated Brillouin scattering,” Appl. Phys. Lett. 87, 081113 (2005).
[CrossRef]

J. Opt. (2)

A. M. Akulshin and R. J. McLean, “Fast light in atomic media,” J. Opt. 12, 104001 (2010).
[CrossRef]

F. Arrieta-Yanez, O. G. Calderon, and S. Melle, “Slow and fast light based on coherent population oscillations in erbium-doped fibres,” J. Opt. 12, 104002 (2010).
[CrossRef]

J. Phys. B: At. Mol. Opt. Phys. (1)

C.-L. C., J.-K. Jia, Y. Zhang, Y. Xue, H.-L. Xu, and J.-H. Wu, “Resonant gain suppression and quantum destructive interference in a three-level open V system,” J. Phys. B: At. Mol. Opt. Phys. 44, 215504 (2011).
[CrossRef]

Laser Photon. Rev. (1)

J. Mork, F. Ohman, M. Van Der Poel, Y. Chen, P. Lunnemann, and K. Yvind, “Slow and fast light: Controlling the speed of light using semiconductor waveguides,” Laser Photon. Rev. 3, 30–44 (2009).
[CrossRef]

Nat. Photonics (1)

L. Thevenaz, “Slow and fast light in optical fibres,” Nat. Photonics 2, 474–481 (2008).
[CrossRef]

Nature (1)

L. J. Wang, A. Kuzmich, and A. Dogariu, “Gain-assisted superluminal light propagation,” Nature 406, 277–279 (2000).
[CrossRef] [PubMed]

Opt. Commun. (1)

M. Fleischhauer, C. H. Keitel, M. O. Scully, and C. Su, “Lasing without inversion and enhancement of the index of refraction via interference of incoherent pump processes,” Opt. Commun. 87, 109–114 (1992).
[CrossRef]

Opt. Express (2)

Phys. Lett. A (2)

D. Bullock, J. Evers, and C. H. Keitel, “Modifying spontaneous emission via interferences from incoherent pump fields,” Phys. Lett. A 307, 8–12 (2003).
[CrossRef]

M. Mahmoudi, M. Sahrai, and H. Tajalli, “Subluminal and superluminal light propagation via interference of incoherent pumpfields,” Phys. Lett. A 357, 66–71 (2006).
[CrossRef]

Phys. Rev. A (7)

A. V. Taichenachev, A. M. Tumaikin, and V. I. Yudin, “Electromagnetically induced absorption in a four-state system,” Phys. Rev. A 61, 011802 (1999).
[CrossRef]

D. Yan, J.-W. Gao, Q.-Q. Bao, H. Yang, H. Wang, and J.-H. Wu, “Electromagnetically induced transparency in a five-level Λ system dominated by two-photon resonant transitions,” Phys. Rev. A 83, 033830 (2011).
[CrossRef]

C.-L. Cui, J.-K. Jia, J.-W. Gao, Y. Xue, G. Wang, and J.-H. Wu, “Ultraslow and superluminal light propagation in a four-level atomic system,” Phys. Rev. A 76, 033815 (2007).
[CrossRef]

K. Kim, H. S. Moon, C. Lee, S. K. Kim, and J. B. Kim, “Observation of arbitrary group velocities of light from superluminal to subluminal on a single atomic transition line,” Phys. Rev. A 68, 013810 (2003).
[CrossRef]

C. G. B. Garrett and D. E. McCumber, “Propagation of a Gaussian light pulse through an anomalous dispersion medium,” Phys. Rev. A 1, 305–313 (1970).
[CrossRef]

M. D. Crisp, “Concept of group velocity in resonant pulse propagation,” Phys. Rev. A 4, 2104–2108 (1971).
[CrossRef]

E. Paspalakis and P. L. Knight, “Electromagnetically induced transparency and controlled group velocity in a multilevel system,” Phys. Rev. A 66, 015802 (2002).
[CrossRef]

Phys. Rev. Lett. (3)

A. M. Akulshin, S. Barreiro, and A. Lezama, “Steep anomalous dispersion in coherently prepared Rb vapor,” Phys. Rev. Lett. 83, 4277–4280 (1999).
[CrossRef]

S. Chu and S. Wang, “Linear pulse propagation in an absorbing medium,” Phys. Rev. Lett. 48, 738–741 (1982).
[CrossRef]

D. Tong, S. M. Farooqi, J. Stanojevic, S. Krishnan, Y. P. Zhang, R. Cote, E. E. Eyler, and P. L. Gould, “Local blockade of Rydberg excitation in an ultracold gas,” Phys. Rev. Lett. 93, 063001 (2004).
[CrossRef] [PubMed]

Science (2)

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Superluminal and slow light propagation in a room-temperature solid,” Science 301, 200–202 (2003).
[CrossRef] [PubMed]

R. W. Boyd and D. J. Gauthier, “Controlling the velocity of light pulses,” Science 326, 1074–1077 (2009).
[CrossRef] [PubMed]

Semicond. Sci. Technol. (1)

J. Mork, P. Lunnemann, W. Xue, Y. Chen, P. Kaer, and T. R. Nielsen, “Slow and fast light in semiconductor waveguides,” Semicond. Sci. Technol. 25, 083002 (2010).
[CrossRef]

Other (2)

T. F. Gallagher, Rydberg Atoms (Cambridge University PressCambridge, England, 1984).

L. Brillouin, Wave Propagation and Group Velocity (Academic, New York, 1960).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic diagram of a (N + 2)-level atomic system. Levels |0〉, |1〉, |2〉, ..., and |N〉 make up a (N + 1)-level open system in that level |g〉 is coherently decoupled from them.

Fig. 2
Fig. 2

Probe gain Im(χ) (black-solid) and dispersion Re(χ) (red-dashed) as a function of probe detuning Δp for an open four-level system (N = 3) with Λ = 0.01 MHz, Γ0 = 6.0 MHz, Γ1 = Γ2 = Γ3 = 0.01 MHz, Δ1 = −Δ2 = −2.0 MHz, N = 5.0 × 1010 cm−3, d10 = 1.0 × 10−30 C·m, and (a) Ω1 = Ω2 = 2.0 MHz, (b) Ω1 = 2.0 MHz, Ω2 = 4.0 MHz.

Fig. 3
Fig. 3

Dynamic evolution of atomic populations in the open four-level system (N = 3) with Ωp = 0.01 MHz and ρgg(0) = 1. Other parameters are the same as in Fig. 2. ρ11 (black-solid); ρ22 (red-dashed); ρ33 (green-dotted); ρ00 (blue-dash-dotted); ρgg (magentadash-dot-dotted).

Fig. 4
Fig. 4

Probe gain Im(χ) (black-solid) and dispersion Re(χ) (red-dashed) as a function of probe detuning Δp for an open four-level system (N = 3) with the same parameters as in Fig. 2(a) except (a) Ω1 = Ω2 = 5.0 MHz, (b) Δ1 = −Δ2 = −0.5 MHz and (c) Δ1 = −10.0 MHz.

Fig. 5
Fig. 5

Probe gain Im(χ) (black-solid) and dispersion Re(χ) (red-dashed) as a function of probe detuning Δp for an open five-level system (N = 4) with the same parameters as in Fig. 2 except Γ1 = Γ2 = Γ3 = Γ4 = 0.01 MHz, Δ1 = −3.0 MHz, Δ2 = 0.0, Δ3 = 3.0 MHz, and (a) Ω1 = Ω2 = Ω3 = 2.0 MHz, (b) Ω1 = 2.0 MHz, Ω2 = 3.0 MHz, Ω3 = 4.0 MHz.

Fig. 6
Fig. 6

Probe gain Im(χ) (black-solid) and dispersion Re(χ) (red-dashed) as a function of probe detuning Δp for an open six-level system (N = 5) with the same parameters as in Fig. 2 except Γ1 = Γ2 = Γ3 = Γ4 = Γ5 = 0.01 MHz, Δ1 = −3.0 MHz, Δ2 = −1.0 MHz, Δ3 = 1.0 MHz, Δ4 = 3.0 MHz, and (a) Ω1 = Ω2 = Ω3 = Ω4 = 2.0 MHz, (b) Ω1 = 2.0 MHz, Ω2 = 3.0 MHZ, Ω3 = 4.0 MHz, Ω4 = 5.0 MHz.

Fig. 7
Fig. 7

Magnitude squared of (a) the first and (b) the second pulse component envelopes at ξ = 0.0 (black-solid) and 60 mm (red-dashed) as a function of the time delay with Δ1 = −2.0 MHz, Δ2 = 2.0 MHz, Ω1 = 0.8 MHz, and Ω2 = 1.5 MHz. Other parameters are the same as in Fig. 2 except λp1λp2 = 480 nm.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

HI=h¯Δp|11|n=1N1h¯Δn|n+1n+1|h¯[Ωp|10|+n=1N1Ωn|n+10|+h.c.]
ρ˙11=(Γ1+Λ)ρ11+Λρgg+iΩpρ10*iΩp*ρ10ρ˙n+1,n+1=Γn+1ρn+1,n+1+iΩnρn+1,0*iΩn*ρn+1,0,n=1N1ρ˙00=Γ0ρ00+n=1NΓnρnmiΩpρ10*+iΩp*ρ10in=1N1(Ωnρn+1,0*Ωn*ρn+1,0)ρ˙1,n+1=[i(ΔpΔn)γ1,n+1]ρ1,n+1+iΩpρn+1,0*iΩn*ρ10,n=1N1
ρ˙m+1,n+1=[i(ΔmΔn)γm+1,n+1]ρm+1,n+1+iΩmρn+1,0*iΩn*ρm+1,0,mn,m,n=1N1ρ˙10=(iΔpγ10)ρ10n=1N1iΩnρ1,n+1iΩp(ρ11ρ00)ρ˙n+1,0=(iΔnγn+1,0)ρn+1,0imn,m=1N1(Ωpρn+1,1+Ωmρn+1,m+1)iΩn(ρn+1,n+1ρ00),n=1N1
χ(Δp)=N|d10|22h¯ε0ρ10(1)()Ωp=N|d10|22h¯ε0ρ11(0)()(Δp+iγ10)n=1N1Ωn2/(δn+iγ1,n+1)
χ(Δp)=N|d10|22h¯ε0ρ11(0)()(Δp+iγ10)n=1MΩn2/(ΔpΔ)n=M+1N1Ωn2/(ΔpΔn)
χ(Δp)=N|d10|22h¯ε0(ΔpΔ)ρ11(0)()(Δp+iγ10)(ΔpΔ)n=1N1Ωn2.
zf(z,t)+1ctf(z,t)=iωp2cχ(z,t)f(z,t)
αξf(ξ,τ)=iΓ04Ωp0ρ10(ξ,τ)
υg=c/[1+12Re(χ)+ωp2Re(χ)Δp]
υgc1Ω02/Ωn2
υgc1Ω02/n=1MΩn2
υgc1Ω02/n=1N1Ωn2

Metrics