Abstract

We introduce multiple series of uncoupled and coupled surface nanoscale axial photonics (SNAP) microresonators along the 30 micron diameter germanium-doped photosensitive silica optical fiber and demonstrate their permanent trimming and temporary tuning with a CO2 laser and a wire heater. Hydrogen loading allows us to increase the introduced variation of the effective fiber radius by an order of magnitude compared to the unloaded case, i.e., to around 5 nm. It is demonstrated that the CO2 laser annealing of the fabricated microresonator chain can be used to modify the fiber radius variation. Depending on the CO2 laser beam power, the microresonator effective radius variation can be increased in depth up to the factor of two or completely erased. In addition, we demonstrate temporary tuning of a microresonator chain with a wire heater.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Sumetsky, “Localization of light in an optical fiber with nanoscale radius variation,” in CLEO/Europe and EQEC 2011 Conference Digest, postdeadline paper PDA_8.
  2. M. Sumetsky and J. M. Fini, “Surface nanoscale axial photonics,” Opt. Express 19(27), 26470–26485 (2011).
    [CrossRef] [PubMed]
  3. M. Sumetsky, D. J. DiGiovanni, Y. Dulashko, J. M. Fini, X. Liu, E. M. Monberg, and T. F. Taunay, “Surface nanoscale axial photonics: robust fabrication of high-quality-factor microresonators,” Opt. Lett. 36(24), 4824–4826 (2011).
    [CrossRef] [PubMed]
  4. M. Sumetsky, K. Abedin, D. J. Digiovanni, Y. Dulashko, J. M. Fini, and E. Monberg, “Coupled high Q-factor surface nanoscale axial photonics (SNAP) microresonators,” Opt. Lett. 37(6), 990–992 (2012).
    [CrossRef] [PubMed]
  5. M. Wilson, “Optical fiber microcavities reach angstrom-scale presicion,” Phys. Today 65(2), 14–16 (2012).
    [CrossRef]
  6. Y. Vlasov, W. M. J. Green, and F. Xia, “High-throughput silicon nanophotonic wavelength-insensitive switch for on-chip optical networks,” Nat. Photonics 2(4), 242–246 (2008).
    [CrossRef]
  7. W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. DeVos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
    [CrossRef]
  8. A. Melloni, A. Canciamilla, C. Ferrari, F. Morichetti, L. O’Faolain, T. F. Krauss, R. De La Rue, A. Samarelli, and M. Sorel, “Tunable delay lines in silicon photonics: coupled resonators and photonic crystals, a comparison,” IEEE Photon. J. 2(2), 181–194 (2010).
    [CrossRef]
  9. M. Notomi, “Manipulating light with strongly modulated photonic crystals,” Rep. Prog. Phys. 73(9), 096501 (2010).
    [CrossRef]
  10. F. Luan, E. Magi, T. Gong, I. Kabakova, and B. J. Eggleton, “Photoinduced whispering gallery mode microcavity resonator in a chalcogenide microfiber,” Opt. Lett. 36(24), 4761–4763 (2011).
    [CrossRef] [PubMed]
  11. J. Hu, M. Torregiani, F. Morichetti, N. Carlie, A. Agarwal, K. Richardson, L. C. Kimerling, and A. Melloni, “Resonant cavity-enhanced photosensitivity in As2S3 chalcogenide glass at 1550 nm telecommunication wavelength,” Opt. Lett. 35(6), 874–876 (2010).
    [CrossRef] [PubMed]
  12. R. Kashyap, Fiber Bragg Gratings, 2nd ed. (Academic Press, 2009).
  13. H. G. Limberger, P.-Y. Fonjallaz, R. P. Salathé, and F. Cochet, “Compaction‐ and photoelastic‐induced index changes in fiber Bragg gratings,” Appl. Phys. Lett. 68(22), 3069–3071 (1996).
    [CrossRef]
  14. M. Douay, W. X. Xie, T. Taunay, P. Bernage, P. Niay, P. Cordier, B. Poumellec, L. Dong, J. F. Bayon, H. Poignant, and E. Delevaque, “Densification involved in the UV-based photosensitivity of silica glasses and optical fibers,” J. Lightwave Technol. 15(8), 1329–1342 (1997).
    [CrossRef]
  15. K. Dossou, S. LaRochelle, and M. Fontaine, “Numerical analysis of the contribution of the transverse asymmetry in the photo-induced index change profile to the birefringence of optical fiber,” J. Lightwave Technol. 20(8), 1463–1470 (2002).
    [CrossRef]
  16. T. A. Birks, J. C. Knight, and T. E. Dimmick, “High-resolution measurement of the fiber diameter variations using whispering gallery modes and no optical alignment,” IEEE Photon. Technol. Lett. 12(2), 182–183 (2000).
    [CrossRef]
  17. M. Sumetsky and Y. Dulashko, “Radius variation of optical fibers with angstrom accuracy,” Opt. Lett. 35(23), 4006–4008 (2010).
    [CrossRef] [PubMed]
  18. A. D. Yablon, M. F. Yan, P. Wisk, F. V. DiMarcello, J. W. Fleming, W. A. Reed, E. M. Monberg, D. J. DiGiovanni, J. Jasapara, and M. E. Lines, “Refractive index perturbations in optical fibers resulting from frozen-in viscoelasticity,” Appl. Phys. Lett. 84(1), 19–21 (2004).
    [CrossRef]
  19. J. W. Fleming, “Sub glass transition relaxation in optical fibers,” in Optical Fiber Communication Conference, Technical Digest (CD) (Optical Society of America, 2004), paper TuB2.
  20. M. Sumetsky, P. I. Reyes, P. S. Westbrook, N. M. Litchinitser, B. J. Eggleton, Y. Li, R. Deshmukh, and C. Soccolich, “Group-delay ripple correction in chirped fiber Bragg gratings,” Opt. Lett. 28(10), 777–779 (2003).
    [CrossRef] [PubMed]
  21. R. Amatya, C. W. Holzwarth, H. I. Smith, and R. J. Ram, “Precision tunable silicon compatible microring Filters,” IEEE Photon. Technol. Lett. 20(20), 1739–1741 (2008).
    [CrossRef]

2012 (3)

M. Sumetsky, K. Abedin, D. J. Digiovanni, Y. Dulashko, J. M. Fini, and E. Monberg, “Coupled high Q-factor surface nanoscale axial photonics (SNAP) microresonators,” Opt. Lett. 37(6), 990–992 (2012).
[CrossRef] [PubMed]

M. Wilson, “Optical fiber microcavities reach angstrom-scale presicion,” Phys. Today 65(2), 14–16 (2012).
[CrossRef]

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. DeVos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[CrossRef]

2011 (3)

2010 (4)

J. Hu, M. Torregiani, F. Morichetti, N. Carlie, A. Agarwal, K. Richardson, L. C. Kimerling, and A. Melloni, “Resonant cavity-enhanced photosensitivity in As2S3 chalcogenide glass at 1550 nm telecommunication wavelength,” Opt. Lett. 35(6), 874–876 (2010).
[CrossRef] [PubMed]

A. Melloni, A. Canciamilla, C. Ferrari, F. Morichetti, L. O’Faolain, T. F. Krauss, R. De La Rue, A. Samarelli, and M. Sorel, “Tunable delay lines in silicon photonics: coupled resonators and photonic crystals, a comparison,” IEEE Photon. J. 2(2), 181–194 (2010).
[CrossRef]

M. Notomi, “Manipulating light with strongly modulated photonic crystals,” Rep. Prog. Phys. 73(9), 096501 (2010).
[CrossRef]

M. Sumetsky and Y. Dulashko, “Radius variation of optical fibers with angstrom accuracy,” Opt. Lett. 35(23), 4006–4008 (2010).
[CrossRef] [PubMed]

2008 (2)

R. Amatya, C. W. Holzwarth, H. I. Smith, and R. J. Ram, “Precision tunable silicon compatible microring Filters,” IEEE Photon. Technol. Lett. 20(20), 1739–1741 (2008).
[CrossRef]

Y. Vlasov, W. M. J. Green, and F. Xia, “High-throughput silicon nanophotonic wavelength-insensitive switch for on-chip optical networks,” Nat. Photonics 2(4), 242–246 (2008).
[CrossRef]

2004 (1)

A. D. Yablon, M. F. Yan, P. Wisk, F. V. DiMarcello, J. W. Fleming, W. A. Reed, E. M. Monberg, D. J. DiGiovanni, J. Jasapara, and M. E. Lines, “Refractive index perturbations in optical fibers resulting from frozen-in viscoelasticity,” Appl. Phys. Lett. 84(1), 19–21 (2004).
[CrossRef]

2003 (1)

2002 (1)

2000 (1)

T. A. Birks, J. C. Knight, and T. E. Dimmick, “High-resolution measurement of the fiber diameter variations using whispering gallery modes and no optical alignment,” IEEE Photon. Technol. Lett. 12(2), 182–183 (2000).
[CrossRef]

1997 (1)

M. Douay, W. X. Xie, T. Taunay, P. Bernage, P. Niay, P. Cordier, B. Poumellec, L. Dong, J. F. Bayon, H. Poignant, and E. Delevaque, “Densification involved in the UV-based photosensitivity of silica glasses and optical fibers,” J. Lightwave Technol. 15(8), 1329–1342 (1997).
[CrossRef]

1996 (1)

H. G. Limberger, P.-Y. Fonjallaz, R. P. Salathé, and F. Cochet, “Compaction‐ and photoelastic‐induced index changes in fiber Bragg gratings,” Appl. Phys. Lett. 68(22), 3069–3071 (1996).
[CrossRef]

Abedin, K.

Agarwal, A.

Amatya, R.

R. Amatya, C. W. Holzwarth, H. I. Smith, and R. J. Ram, “Precision tunable silicon compatible microring Filters,” IEEE Photon. Technol. Lett. 20(20), 1739–1741 (2008).
[CrossRef]

Baets, R.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. DeVos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[CrossRef]

Bayon, J. F.

M. Douay, W. X. Xie, T. Taunay, P. Bernage, P. Niay, P. Cordier, B. Poumellec, L. Dong, J. F. Bayon, H. Poignant, and E. Delevaque, “Densification involved in the UV-based photosensitivity of silica glasses and optical fibers,” J. Lightwave Technol. 15(8), 1329–1342 (1997).
[CrossRef]

Bernage, P.

M. Douay, W. X. Xie, T. Taunay, P. Bernage, P. Niay, P. Cordier, B. Poumellec, L. Dong, J. F. Bayon, H. Poignant, and E. Delevaque, “Densification involved in the UV-based photosensitivity of silica glasses and optical fibers,” J. Lightwave Technol. 15(8), 1329–1342 (1997).
[CrossRef]

Bienstman, P.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. DeVos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[CrossRef]

Birks, T. A.

T. A. Birks, J. C. Knight, and T. E. Dimmick, “High-resolution measurement of the fiber diameter variations using whispering gallery modes and no optical alignment,” IEEE Photon. Technol. Lett. 12(2), 182–183 (2000).
[CrossRef]

Bogaerts, W.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. DeVos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[CrossRef]

Canciamilla, A.

A. Melloni, A. Canciamilla, C. Ferrari, F. Morichetti, L. O’Faolain, T. F. Krauss, R. De La Rue, A. Samarelli, and M. Sorel, “Tunable delay lines in silicon photonics: coupled resonators and photonic crystals, a comparison,” IEEE Photon. J. 2(2), 181–194 (2010).
[CrossRef]

Carlie, N.

Claes, T.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. DeVos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[CrossRef]

Cochet, F.

H. G. Limberger, P.-Y. Fonjallaz, R. P. Salathé, and F. Cochet, “Compaction‐ and photoelastic‐induced index changes in fiber Bragg gratings,” Appl. Phys. Lett. 68(22), 3069–3071 (1996).
[CrossRef]

Cordier, P.

M. Douay, W. X. Xie, T. Taunay, P. Bernage, P. Niay, P. Cordier, B. Poumellec, L. Dong, J. F. Bayon, H. Poignant, and E. Delevaque, “Densification involved in the UV-based photosensitivity of silica glasses and optical fibers,” J. Lightwave Technol. 15(8), 1329–1342 (1997).
[CrossRef]

De Heyn, P.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. DeVos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[CrossRef]

De La Rue, R.

A. Melloni, A. Canciamilla, C. Ferrari, F. Morichetti, L. O’Faolain, T. F. Krauss, R. De La Rue, A. Samarelli, and M. Sorel, “Tunable delay lines in silicon photonics: coupled resonators and photonic crystals, a comparison,” IEEE Photon. J. 2(2), 181–194 (2010).
[CrossRef]

Delevaque, E.

M. Douay, W. X. Xie, T. Taunay, P. Bernage, P. Niay, P. Cordier, B. Poumellec, L. Dong, J. F. Bayon, H. Poignant, and E. Delevaque, “Densification involved in the UV-based photosensitivity of silica glasses and optical fibers,” J. Lightwave Technol. 15(8), 1329–1342 (1997).
[CrossRef]

Deshmukh, R.

DeVos, K.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. DeVos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[CrossRef]

Digiovanni, D. J.

DiMarcello, F. V.

A. D. Yablon, M. F. Yan, P. Wisk, F. V. DiMarcello, J. W. Fleming, W. A. Reed, E. M. Monberg, D. J. DiGiovanni, J. Jasapara, and M. E. Lines, “Refractive index perturbations in optical fibers resulting from frozen-in viscoelasticity,” Appl. Phys. Lett. 84(1), 19–21 (2004).
[CrossRef]

Dimmick, T. E.

T. A. Birks, J. C. Knight, and T. E. Dimmick, “High-resolution measurement of the fiber diameter variations using whispering gallery modes and no optical alignment,” IEEE Photon. Technol. Lett. 12(2), 182–183 (2000).
[CrossRef]

Dong, L.

M. Douay, W. X. Xie, T. Taunay, P. Bernage, P. Niay, P. Cordier, B. Poumellec, L. Dong, J. F. Bayon, H. Poignant, and E. Delevaque, “Densification involved in the UV-based photosensitivity of silica glasses and optical fibers,” J. Lightwave Technol. 15(8), 1329–1342 (1997).
[CrossRef]

Dossou, K.

Douay, M.

M. Douay, W. X. Xie, T. Taunay, P. Bernage, P. Niay, P. Cordier, B. Poumellec, L. Dong, J. F. Bayon, H. Poignant, and E. Delevaque, “Densification involved in the UV-based photosensitivity of silica glasses and optical fibers,” J. Lightwave Technol. 15(8), 1329–1342 (1997).
[CrossRef]

Dulashko, Y.

Dumon, P.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. DeVos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[CrossRef]

Eggleton, B. J.

Ferrari, C.

A. Melloni, A. Canciamilla, C. Ferrari, F. Morichetti, L. O’Faolain, T. F. Krauss, R. De La Rue, A. Samarelli, and M. Sorel, “Tunable delay lines in silicon photonics: coupled resonators and photonic crystals, a comparison,” IEEE Photon. J. 2(2), 181–194 (2010).
[CrossRef]

Fini, J. M.

Fleming, J. W.

A. D. Yablon, M. F. Yan, P. Wisk, F. V. DiMarcello, J. W. Fleming, W. A. Reed, E. M. Monberg, D. J. DiGiovanni, J. Jasapara, and M. E. Lines, “Refractive index perturbations in optical fibers resulting from frozen-in viscoelasticity,” Appl. Phys. Lett. 84(1), 19–21 (2004).
[CrossRef]

Fonjallaz, P.-Y.

H. G. Limberger, P.-Y. Fonjallaz, R. P. Salathé, and F. Cochet, “Compaction‐ and photoelastic‐induced index changes in fiber Bragg gratings,” Appl. Phys. Lett. 68(22), 3069–3071 (1996).
[CrossRef]

Fontaine, M.

Gong, T.

Green, W. M. J.

Y. Vlasov, W. M. J. Green, and F. Xia, “High-throughput silicon nanophotonic wavelength-insensitive switch for on-chip optical networks,” Nat. Photonics 2(4), 242–246 (2008).
[CrossRef]

Holzwarth, C. W.

R. Amatya, C. W. Holzwarth, H. I. Smith, and R. J. Ram, “Precision tunable silicon compatible microring Filters,” IEEE Photon. Technol. Lett. 20(20), 1739–1741 (2008).
[CrossRef]

Hu, J.

Jasapara, J.

A. D. Yablon, M. F. Yan, P. Wisk, F. V. DiMarcello, J. W. Fleming, W. A. Reed, E. M. Monberg, D. J. DiGiovanni, J. Jasapara, and M. E. Lines, “Refractive index perturbations in optical fibers resulting from frozen-in viscoelasticity,” Appl. Phys. Lett. 84(1), 19–21 (2004).
[CrossRef]

Kabakova, I.

Kimerling, L. C.

Knight, J. C.

T. A. Birks, J. C. Knight, and T. E. Dimmick, “High-resolution measurement of the fiber diameter variations using whispering gallery modes and no optical alignment,” IEEE Photon. Technol. Lett. 12(2), 182–183 (2000).
[CrossRef]

Krauss, T. F.

A. Melloni, A. Canciamilla, C. Ferrari, F. Morichetti, L. O’Faolain, T. F. Krauss, R. De La Rue, A. Samarelli, and M. Sorel, “Tunable delay lines in silicon photonics: coupled resonators and photonic crystals, a comparison,” IEEE Photon. J. 2(2), 181–194 (2010).
[CrossRef]

LaRochelle, S.

Li, Y.

Limberger, H. G.

H. G. Limberger, P.-Y. Fonjallaz, R. P. Salathé, and F. Cochet, “Compaction‐ and photoelastic‐induced index changes in fiber Bragg gratings,” Appl. Phys. Lett. 68(22), 3069–3071 (1996).
[CrossRef]

Lines, M. E.

A. D. Yablon, M. F. Yan, P. Wisk, F. V. DiMarcello, J. W. Fleming, W. A. Reed, E. M. Monberg, D. J. DiGiovanni, J. Jasapara, and M. E. Lines, “Refractive index perturbations in optical fibers resulting from frozen-in viscoelasticity,” Appl. Phys. Lett. 84(1), 19–21 (2004).
[CrossRef]

Litchinitser, N. M.

Liu, X.

Luan, F.

Magi, E.

Melloni, A.

J. Hu, M. Torregiani, F. Morichetti, N. Carlie, A. Agarwal, K. Richardson, L. C. Kimerling, and A. Melloni, “Resonant cavity-enhanced photosensitivity in As2S3 chalcogenide glass at 1550 nm telecommunication wavelength,” Opt. Lett. 35(6), 874–876 (2010).
[CrossRef] [PubMed]

A. Melloni, A. Canciamilla, C. Ferrari, F. Morichetti, L. O’Faolain, T. F. Krauss, R. De La Rue, A. Samarelli, and M. Sorel, “Tunable delay lines in silicon photonics: coupled resonators and photonic crystals, a comparison,” IEEE Photon. J. 2(2), 181–194 (2010).
[CrossRef]

Monberg, E.

Monberg, E. M.

M. Sumetsky, D. J. DiGiovanni, Y. Dulashko, J. M. Fini, X. Liu, E. M. Monberg, and T. F. Taunay, “Surface nanoscale axial photonics: robust fabrication of high-quality-factor microresonators,” Opt. Lett. 36(24), 4824–4826 (2011).
[CrossRef] [PubMed]

A. D. Yablon, M. F. Yan, P. Wisk, F. V. DiMarcello, J. W. Fleming, W. A. Reed, E. M. Monberg, D. J. DiGiovanni, J. Jasapara, and M. E. Lines, “Refractive index perturbations in optical fibers resulting from frozen-in viscoelasticity,” Appl. Phys. Lett. 84(1), 19–21 (2004).
[CrossRef]

Morichetti, F.

A. Melloni, A. Canciamilla, C. Ferrari, F. Morichetti, L. O’Faolain, T. F. Krauss, R. De La Rue, A. Samarelli, and M. Sorel, “Tunable delay lines in silicon photonics: coupled resonators and photonic crystals, a comparison,” IEEE Photon. J. 2(2), 181–194 (2010).
[CrossRef]

J. Hu, M. Torregiani, F. Morichetti, N. Carlie, A. Agarwal, K. Richardson, L. C. Kimerling, and A. Melloni, “Resonant cavity-enhanced photosensitivity in As2S3 chalcogenide glass at 1550 nm telecommunication wavelength,” Opt. Lett. 35(6), 874–876 (2010).
[CrossRef] [PubMed]

Niay, P.

M. Douay, W. X. Xie, T. Taunay, P. Bernage, P. Niay, P. Cordier, B. Poumellec, L. Dong, J. F. Bayon, H. Poignant, and E. Delevaque, “Densification involved in the UV-based photosensitivity of silica glasses and optical fibers,” J. Lightwave Technol. 15(8), 1329–1342 (1997).
[CrossRef]

Notomi, M.

M. Notomi, “Manipulating light with strongly modulated photonic crystals,” Rep. Prog. Phys. 73(9), 096501 (2010).
[CrossRef]

O’Faolain, L.

A. Melloni, A. Canciamilla, C. Ferrari, F. Morichetti, L. O’Faolain, T. F. Krauss, R. De La Rue, A. Samarelli, and M. Sorel, “Tunable delay lines in silicon photonics: coupled resonators and photonic crystals, a comparison,” IEEE Photon. J. 2(2), 181–194 (2010).
[CrossRef]

Poignant, H.

M. Douay, W. X. Xie, T. Taunay, P. Bernage, P. Niay, P. Cordier, B. Poumellec, L. Dong, J. F. Bayon, H. Poignant, and E. Delevaque, “Densification involved in the UV-based photosensitivity of silica glasses and optical fibers,” J. Lightwave Technol. 15(8), 1329–1342 (1997).
[CrossRef]

Poumellec, B.

M. Douay, W. X. Xie, T. Taunay, P. Bernage, P. Niay, P. Cordier, B. Poumellec, L. Dong, J. F. Bayon, H. Poignant, and E. Delevaque, “Densification involved in the UV-based photosensitivity of silica glasses and optical fibers,” J. Lightwave Technol. 15(8), 1329–1342 (1997).
[CrossRef]

Ram, R. J.

R. Amatya, C. W. Holzwarth, H. I. Smith, and R. J. Ram, “Precision tunable silicon compatible microring Filters,” IEEE Photon. Technol. Lett. 20(20), 1739–1741 (2008).
[CrossRef]

Reed, W. A.

A. D. Yablon, M. F. Yan, P. Wisk, F. V. DiMarcello, J. W. Fleming, W. A. Reed, E. M. Monberg, D. J. DiGiovanni, J. Jasapara, and M. E. Lines, “Refractive index perturbations in optical fibers resulting from frozen-in viscoelasticity,” Appl. Phys. Lett. 84(1), 19–21 (2004).
[CrossRef]

Reyes, P. I.

Richardson, K.

Salathé, R. P.

H. G. Limberger, P.-Y. Fonjallaz, R. P. Salathé, and F. Cochet, “Compaction‐ and photoelastic‐induced index changes in fiber Bragg gratings,” Appl. Phys. Lett. 68(22), 3069–3071 (1996).
[CrossRef]

Samarelli, A.

A. Melloni, A. Canciamilla, C. Ferrari, F. Morichetti, L. O’Faolain, T. F. Krauss, R. De La Rue, A. Samarelli, and M. Sorel, “Tunable delay lines in silicon photonics: coupled resonators and photonic crystals, a comparison,” IEEE Photon. J. 2(2), 181–194 (2010).
[CrossRef]

Selvaraja, S. K.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. DeVos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[CrossRef]

Smith, H. I.

R. Amatya, C. W. Holzwarth, H. I. Smith, and R. J. Ram, “Precision tunable silicon compatible microring Filters,” IEEE Photon. Technol. Lett. 20(20), 1739–1741 (2008).
[CrossRef]

Soccolich, C.

Sorel, M.

A. Melloni, A. Canciamilla, C. Ferrari, F. Morichetti, L. O’Faolain, T. F. Krauss, R. De La Rue, A. Samarelli, and M. Sorel, “Tunable delay lines in silicon photonics: coupled resonators and photonic crystals, a comparison,” IEEE Photon. J. 2(2), 181–194 (2010).
[CrossRef]

Sumetsky, M.

Taunay, T.

M. Douay, W. X. Xie, T. Taunay, P. Bernage, P. Niay, P. Cordier, B. Poumellec, L. Dong, J. F. Bayon, H. Poignant, and E. Delevaque, “Densification involved in the UV-based photosensitivity of silica glasses and optical fibers,” J. Lightwave Technol. 15(8), 1329–1342 (1997).
[CrossRef]

Taunay, T. F.

Torregiani, M.

Van Thourhout, D.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. DeVos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[CrossRef]

Van Vaerenbergh, T.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. DeVos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[CrossRef]

Vlasov, Y.

Y. Vlasov, W. M. J. Green, and F. Xia, “High-throughput silicon nanophotonic wavelength-insensitive switch for on-chip optical networks,” Nat. Photonics 2(4), 242–246 (2008).
[CrossRef]

Westbrook, P. S.

Wilson, M.

M. Wilson, “Optical fiber microcavities reach angstrom-scale presicion,” Phys. Today 65(2), 14–16 (2012).
[CrossRef]

Wisk, P.

A. D. Yablon, M. F. Yan, P. Wisk, F. V. DiMarcello, J. W. Fleming, W. A. Reed, E. M. Monberg, D. J. DiGiovanni, J. Jasapara, and M. E. Lines, “Refractive index perturbations in optical fibers resulting from frozen-in viscoelasticity,” Appl. Phys. Lett. 84(1), 19–21 (2004).
[CrossRef]

Xia, F.

Y. Vlasov, W. M. J. Green, and F. Xia, “High-throughput silicon nanophotonic wavelength-insensitive switch for on-chip optical networks,” Nat. Photonics 2(4), 242–246 (2008).
[CrossRef]

Xie, W. X.

M. Douay, W. X. Xie, T. Taunay, P. Bernage, P. Niay, P. Cordier, B. Poumellec, L. Dong, J. F. Bayon, H. Poignant, and E. Delevaque, “Densification involved in the UV-based photosensitivity of silica glasses and optical fibers,” J. Lightwave Technol. 15(8), 1329–1342 (1997).
[CrossRef]

Yablon, A. D.

A. D. Yablon, M. F. Yan, P. Wisk, F. V. DiMarcello, J. W. Fleming, W. A. Reed, E. M. Monberg, D. J. DiGiovanni, J. Jasapara, and M. E. Lines, “Refractive index perturbations in optical fibers resulting from frozen-in viscoelasticity,” Appl. Phys. Lett. 84(1), 19–21 (2004).
[CrossRef]

Yan, M. F.

A. D. Yablon, M. F. Yan, P. Wisk, F. V. DiMarcello, J. W. Fleming, W. A. Reed, E. M. Monberg, D. J. DiGiovanni, J. Jasapara, and M. E. Lines, “Refractive index perturbations in optical fibers resulting from frozen-in viscoelasticity,” Appl. Phys. Lett. 84(1), 19–21 (2004).
[CrossRef]

Appl. Phys. Lett. (2)

H. G. Limberger, P.-Y. Fonjallaz, R. P. Salathé, and F. Cochet, “Compaction‐ and photoelastic‐induced index changes in fiber Bragg gratings,” Appl. Phys. Lett. 68(22), 3069–3071 (1996).
[CrossRef]

A. D. Yablon, M. F. Yan, P. Wisk, F. V. DiMarcello, J. W. Fleming, W. A. Reed, E. M. Monberg, D. J. DiGiovanni, J. Jasapara, and M. E. Lines, “Refractive index perturbations in optical fibers resulting from frozen-in viscoelasticity,” Appl. Phys. Lett. 84(1), 19–21 (2004).
[CrossRef]

IEEE Photon. J. (1)

A. Melloni, A. Canciamilla, C. Ferrari, F. Morichetti, L. O’Faolain, T. F. Krauss, R. De La Rue, A. Samarelli, and M. Sorel, “Tunable delay lines in silicon photonics: coupled resonators and photonic crystals, a comparison,” IEEE Photon. J. 2(2), 181–194 (2010).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

T. A. Birks, J. C. Knight, and T. E. Dimmick, “High-resolution measurement of the fiber diameter variations using whispering gallery modes and no optical alignment,” IEEE Photon. Technol. Lett. 12(2), 182–183 (2000).
[CrossRef]

R. Amatya, C. W. Holzwarth, H. I. Smith, and R. J. Ram, “Precision tunable silicon compatible microring Filters,” IEEE Photon. Technol. Lett. 20(20), 1739–1741 (2008).
[CrossRef]

J. Lightwave Technol. (2)

M. Douay, W. X. Xie, T. Taunay, P. Bernage, P. Niay, P. Cordier, B. Poumellec, L. Dong, J. F. Bayon, H. Poignant, and E. Delevaque, “Densification involved in the UV-based photosensitivity of silica glasses and optical fibers,” J. Lightwave Technol. 15(8), 1329–1342 (1997).
[CrossRef]

K. Dossou, S. LaRochelle, and M. Fontaine, “Numerical analysis of the contribution of the transverse asymmetry in the photo-induced index change profile to the birefringence of optical fiber,” J. Lightwave Technol. 20(8), 1463–1470 (2002).
[CrossRef]

Laser Photonics Rev. (1)

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. DeVos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[CrossRef]

Nat. Photonics (1)

Y. Vlasov, W. M. J. Green, and F. Xia, “High-throughput silicon nanophotonic wavelength-insensitive switch for on-chip optical networks,” Nat. Photonics 2(4), 242–246 (2008).
[CrossRef]

Opt. Express (1)

Opt. Lett. (6)

Phys. Today (1)

M. Wilson, “Optical fiber microcavities reach angstrom-scale presicion,” Phys. Today 65(2), 14–16 (2012).
[CrossRef]

Rep. Prog. Phys. (1)

M. Notomi, “Manipulating light with strongly modulated photonic crystals,” Rep. Prog. Phys. 73(9), 096501 (2010).
[CrossRef]

Other (3)

M. Sumetsky, “Localization of light in an optical fiber with nanoscale radius variation,” in CLEO/Europe and EQEC 2011 Conference Digest, postdeadline paper PDA_8.

J. W. Fleming, “Sub glass transition relaxation in optical fibers,” in Optical Fiber Communication Conference, Technical Digest (CD) (Optical Society of America, 2004), paper TuB2.

R. Kashyap, Fiber Bragg Gratings, 2nd ed. (Academic Press, 2009).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Illustration of fabrication, post-processing and tuning of SNAP microresonator changes. (a) Fabrication of microresonators with a UV exposure through the amplitude mask; (b) Trimming of microresonator chains with a CO2 laser beam; (c) Tuning of microresonator chains with a wire heater.

Fig. 2
Fig. 2

Characterization of a SNAP fiber using the microfiber scanning method. The intensity of field distribution in microresonators and in the microfiber is illustrated in red.

Fig. 3
Fig. 3

(a) Characterization of a 1 mm long UV-inscribed microresonator chain; (b) Magnified part of Fig. 3(a) containing two microresonators; (c) Characterization of a 1 mm long unexposed fiber section adjacent to the section shown in Fig. 3(a); (d) Magnified part of Fig. 3(c); (e) Characterization of a 1 mm long UV-inscribed microresonator chain, which was fabricated with 30% smaller UV power at a more uniform fiber section than that shown in Fig. 3(a); (f) Magnified part of Fig. 3(e) with two microresonators.

Fig. 4
Fig. 4

(a) Characterization of a UV-inscribed microresonator chain, which was post-processed by a CO2 beam exposure; (b) Magnified part of Fig. 4(a) containing two microresonators in the region of vanishing CO2 beam power; (c) Magnified part of Fig. 4(a) in the region where the tension release was saturated.

Fig. 5
Fig. 5

(a) Characterization of a UV-inscribed microresonator chain, which was temporary tuned by a wire heater; (b) Magnified part of Fig. 5(a) containing two microresonators in the unheated region; (c) Magnified part of Fig. 5(a) in the heated region.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Δreff(z)=Δr(z)+Δn(z)r0/n0,
Δreff=(1n0dndT+1r0drdT)r0ΔT.

Metrics