Abstract

An ultra-stable, high-power cw Nd:YAG laser system, developed for the ground-based gravitational wave detector Advanced LIGO (Laser Interferometer Gravitational-Wave Observatory), was comprehensively characterized. Laser power, frequency, beam pointing and beam quality were simultaneously stabilized using different active and passive schemes. The output beam, the performance of the stabilization, and the cross-coupling between different stabilization feedback control loops were characterized and found to fulfill most design requirements. The employed stabilization schemes and the achieved performance are of relevance to many high-precision optical experiments.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Rowan and J. Hough, “Gravitational wave detection by interferometry (ground and space),” Living Rev. Relativity 3, 1–3 (2000).
  2. P. R. Saulson, Fundamentals of Interferometric Gravitational Wave Detectors (World Scientific, 1994).
    [CrossRef]
  3. G. M. Harry, “Advanced LIGO: the next generation of gravitational wave detectors,” Class. Quantum Grav. 27, 084006 (2010).
    [CrossRef]
  4. B. Willke, “Stabilized lasers for advanced gravitational wave detectors,” Laser Photon. Rev. 4, 780–794 (2010).
    [CrossRef]
  5. P. Kwee, “Laser characterization and stabilization for precision interferometry,” Ph.D. thesis, Universität Hannover (2010).
  6. K. Somiya, Y. Chen, S. Kawamura, and N. Mio, “Frequency noise and intensity noise of next-generation gravitational-wave detectors with RF/DC readout schemes,” Phys. Rev. D 73, 122005 (2006).
    [CrossRef]
  7. B. Willke, P. King, R. Savage, and P. Fritschel, “Pre-stabilized laser design requirements,” internal technical report T050036-v4, LIGO Scientific Collaboration (2009).
  8. L. Winkelmann, O. Puncken, R. Kluzik, C. Veltkamp, P. Kwee, J. Poeld, C. Bogan, B. Willke, M. Frede, J. Neumann, P. Wessels, and D. Kracht, “Injection-locked single-frequency laser with an output power of 220 W,” Appl. Phys. B 102, 529–538 (2011).
    [CrossRef]
  9. T. J. Kane and R. L. Byer, “Monolithic, unidirectional single-mode Nd:YAG ring laser,” Opt. Lett. 10, 65–67 (1985).
    [CrossRef] [PubMed]
  10. I. Freitag, A. Tünnermann, and H. Welling, “Power scaling of diode-pumped monolithic Nd:YAG lasers to output powers of several watts,” Opt. Commun. 115, 511–515 (1995).
    [CrossRef]
  11. M. Frede, B. Schulz, R. Wilhelm, P. Kwee, F. Seifert, B. Willke, and D. Kracht, “Fundamental mode, single-frequency laser amplifier for gravitational wave detectors,” Opt. Express 15, 459–465 (2007).
    [CrossRef] [PubMed]
  12. A. D. Farinas, E. K. Gustafson, and R. L. Byer, “Frequency and intensity noise in an injection-locked, solid-state laser,” J. Opt. Soc. Am. B 12, 328–334 (1995).
    [CrossRef]
  13. R. Bork, M. Aronsson, D. Barker, J. Batch, J. Heefner, A. Ivanov, R. McCarthy, V. Sandberg, and K. Thorne, “New control and data acquisition system in the Advanced LIGO project,” Proc. of Industrial Control And Large Experimental Physics Control System (ICALEPSC) conference (2011).
  14. “Experimental physics and industrial control system,” http://www.aps.anl.gov/epics/ .
  15. P. Kwee and B. Willke, “Automatic laser beam characterization of monolithic Nd:YAG nonplanar ring lasers,” Appl. Opt. 47, 6022–6032 (2008).
    [CrossRef] [PubMed]
  16. P. Kwee, F. Seifert, B. Willke, and K. Danzmann, “Laser beam quality and pointing measurement with an optical resonator,” Rev. Sci. Instrum. 78, 073103 (2007).
    [CrossRef] [PubMed]
  17. A. Rüdiger, R. Schilling, L. Schnupp, W. Winkler, H. Billing, and K. Maischberger, “A mode selector to suppress fluctuations in laser beam geometry,” Opt. Acta 28, 641–658 (1981).
    [CrossRef]
  18. B. Willke, N. Uehara, E. K. Gustafson, R. L. Byer, P. J. King, S. U. Seel, and R. L. Savage, “Spatial and temporal filtering of a 10-W Nd:YAG laser with a Fabry-Perot ring-cavity premode cleaner,” Opt. Lett. 23, 1704–1706 (1998).
    [CrossRef]
  19. J. H. Pöld, “Stabilization of the Advanced LIGO 200 W laser,” Diploma thesis, Leibniz Universität Hannover (2009).
  20. E. D. Black, “An introduction to Pound-Drever-Hall laser frequency stabilization,” Am. J. Phys. 69, 79–87 (2001).
    [CrossRef]
  21. R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
    [CrossRef]
  22. A. Bullington, B. Lantz, M. Fejer, and R. Byer, “Modal frequency degeneracy in thermally loaded optical resonators,” Appl. Opt. 47, 2840–2851 (2008).
    [CrossRef] [PubMed]
  23. G. Mueller, “Beam jitter coupling in Advanced LIGO,” Opt. Express 13, 7118–7132 (2005).
    [CrossRef] [PubMed]
  24. V. Delaubert, N. Treps, M. Lassen, C. C. Harb, C. Fabre, P. K. Lam, and H.-A. Bachor, “TEM10 homodyne detection as an optimal small-displacement and tilt-measurement scheme,” Phys. Rev. A 74, 053823 (2006).
    [CrossRef]
  25. P. Kwee, B. Willke, and K. Danzmann, “Laser power noise detection at the quantum-noise limit of 32 A photocurrent,” Opt. Lett. 36, 3563–3565 (2011).
    [CrossRef] [PubMed]
  26. A. Araya, N. Mio, K. Tsubono, K. Suehiro, S. Telada, M. Ohashi, and M. Fujimoto, “Optical mode cleaner with suspended mirrors,” Appl. Opt. 36, 1446–1453 (1997).
    [CrossRef] [PubMed]
  27. P. Kwee, B. Willke, and K. Danzmann, “Shot-noise-limited laser power stabilization with a high-power photodiode array,” Opt. Lett. 34, 2912–2914 (2009).
    [CrossRef] [PubMed]
  28. B. Lantz, P. Fritschel, H. Rong, E. Daw, and G. González, “Quantum-limited optical phase detection at the 10−10 rad level,” J. Opt. Soc. Am. A 19, 91–100 (2002).
    [CrossRef]

2011 (2)

L. Winkelmann, O. Puncken, R. Kluzik, C. Veltkamp, P. Kwee, J. Poeld, C. Bogan, B. Willke, M. Frede, J. Neumann, P. Wessels, and D. Kracht, “Injection-locked single-frequency laser with an output power of 220 W,” Appl. Phys. B 102, 529–538 (2011).
[CrossRef]

P. Kwee, B. Willke, and K. Danzmann, “Laser power noise detection at the quantum-noise limit of 32 A photocurrent,” Opt. Lett. 36, 3563–3565 (2011).
[CrossRef] [PubMed]

2010 (2)

G. M. Harry, “Advanced LIGO: the next generation of gravitational wave detectors,” Class. Quantum Grav. 27, 084006 (2010).
[CrossRef]

B. Willke, “Stabilized lasers for advanced gravitational wave detectors,” Laser Photon. Rev. 4, 780–794 (2010).
[CrossRef]

2009 (1)

2008 (2)

2007 (2)

M. Frede, B. Schulz, R. Wilhelm, P. Kwee, F. Seifert, B. Willke, and D. Kracht, “Fundamental mode, single-frequency laser amplifier for gravitational wave detectors,” Opt. Express 15, 459–465 (2007).
[CrossRef] [PubMed]

P. Kwee, F. Seifert, B. Willke, and K. Danzmann, “Laser beam quality and pointing measurement with an optical resonator,” Rev. Sci. Instrum. 78, 073103 (2007).
[CrossRef] [PubMed]

2006 (2)

K. Somiya, Y. Chen, S. Kawamura, and N. Mio, “Frequency noise and intensity noise of next-generation gravitational-wave detectors with RF/DC readout schemes,” Phys. Rev. D 73, 122005 (2006).
[CrossRef]

V. Delaubert, N. Treps, M. Lassen, C. C. Harb, C. Fabre, P. K. Lam, and H.-A. Bachor, “TEM10 homodyne detection as an optimal small-displacement and tilt-measurement scheme,” Phys. Rev. A 74, 053823 (2006).
[CrossRef]

2005 (1)

2002 (1)

2001 (1)

E. D. Black, “An introduction to Pound-Drever-Hall laser frequency stabilization,” Am. J. Phys. 69, 79–87 (2001).
[CrossRef]

2000 (1)

S. Rowan and J. Hough, “Gravitational wave detection by interferometry (ground and space),” Living Rev. Relativity 3, 1–3 (2000).

1998 (1)

1997 (1)

1995 (2)

A. D. Farinas, E. K. Gustafson, and R. L. Byer, “Frequency and intensity noise in an injection-locked, solid-state laser,” J. Opt. Soc. Am. B 12, 328–334 (1995).
[CrossRef]

I. Freitag, A. Tünnermann, and H. Welling, “Power scaling of diode-pumped monolithic Nd:YAG lasers to output powers of several watts,” Opt. Commun. 115, 511–515 (1995).
[CrossRef]

1985 (1)

1983 (1)

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[CrossRef]

1981 (1)

A. Rüdiger, R. Schilling, L. Schnupp, W. Winkler, H. Billing, and K. Maischberger, “A mode selector to suppress fluctuations in laser beam geometry,” Opt. Acta 28, 641–658 (1981).
[CrossRef]

Araya, A.

Aronsson, M.

R. Bork, M. Aronsson, D. Barker, J. Batch, J. Heefner, A. Ivanov, R. McCarthy, V. Sandberg, and K. Thorne, “New control and data acquisition system in the Advanced LIGO project,” Proc. of Industrial Control And Large Experimental Physics Control System (ICALEPSC) conference (2011).

Bachor, H.-A.

V. Delaubert, N. Treps, M. Lassen, C. C. Harb, C. Fabre, P. K. Lam, and H.-A. Bachor, “TEM10 homodyne detection as an optimal small-displacement and tilt-measurement scheme,” Phys. Rev. A 74, 053823 (2006).
[CrossRef]

Barker, D.

R. Bork, M. Aronsson, D. Barker, J. Batch, J. Heefner, A. Ivanov, R. McCarthy, V. Sandberg, and K. Thorne, “New control and data acquisition system in the Advanced LIGO project,” Proc. of Industrial Control And Large Experimental Physics Control System (ICALEPSC) conference (2011).

Batch, J.

R. Bork, M. Aronsson, D. Barker, J. Batch, J. Heefner, A. Ivanov, R. McCarthy, V. Sandberg, and K. Thorne, “New control and data acquisition system in the Advanced LIGO project,” Proc. of Industrial Control And Large Experimental Physics Control System (ICALEPSC) conference (2011).

Billing, H.

A. Rüdiger, R. Schilling, L. Schnupp, W. Winkler, H. Billing, and K. Maischberger, “A mode selector to suppress fluctuations in laser beam geometry,” Opt. Acta 28, 641–658 (1981).
[CrossRef]

Black, E. D.

E. D. Black, “An introduction to Pound-Drever-Hall laser frequency stabilization,” Am. J. Phys. 69, 79–87 (2001).
[CrossRef]

Bogan, C.

L. Winkelmann, O. Puncken, R. Kluzik, C. Veltkamp, P. Kwee, J. Poeld, C. Bogan, B. Willke, M. Frede, J. Neumann, P. Wessels, and D. Kracht, “Injection-locked single-frequency laser with an output power of 220 W,” Appl. Phys. B 102, 529–538 (2011).
[CrossRef]

Bork, R.

R. Bork, M. Aronsson, D. Barker, J. Batch, J. Heefner, A. Ivanov, R. McCarthy, V. Sandberg, and K. Thorne, “New control and data acquisition system in the Advanced LIGO project,” Proc. of Industrial Control And Large Experimental Physics Control System (ICALEPSC) conference (2011).

Bullington, A.

Byer, R.

Byer, R. L.

Chen, Y.

K. Somiya, Y. Chen, S. Kawamura, and N. Mio, “Frequency noise and intensity noise of next-generation gravitational-wave detectors with RF/DC readout schemes,” Phys. Rev. D 73, 122005 (2006).
[CrossRef]

Danzmann, K.

Daw, E.

Delaubert, V.

V. Delaubert, N. Treps, M. Lassen, C. C. Harb, C. Fabre, P. K. Lam, and H.-A. Bachor, “TEM10 homodyne detection as an optimal small-displacement and tilt-measurement scheme,” Phys. Rev. A 74, 053823 (2006).
[CrossRef]

Drever, R. W. P.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[CrossRef]

Fabre, C.

V. Delaubert, N. Treps, M. Lassen, C. C. Harb, C. Fabre, P. K. Lam, and H.-A. Bachor, “TEM10 homodyne detection as an optimal small-displacement and tilt-measurement scheme,” Phys. Rev. A 74, 053823 (2006).
[CrossRef]

Farinas, A. D.

Fejer, M.

Ford, G. M.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[CrossRef]

Frede, M.

L. Winkelmann, O. Puncken, R. Kluzik, C. Veltkamp, P. Kwee, J. Poeld, C. Bogan, B. Willke, M. Frede, J. Neumann, P. Wessels, and D. Kracht, “Injection-locked single-frequency laser with an output power of 220 W,” Appl. Phys. B 102, 529–538 (2011).
[CrossRef]

M. Frede, B. Schulz, R. Wilhelm, P. Kwee, F. Seifert, B. Willke, and D. Kracht, “Fundamental mode, single-frequency laser amplifier for gravitational wave detectors,” Opt. Express 15, 459–465 (2007).
[CrossRef] [PubMed]

Freitag, I.

I. Freitag, A. Tünnermann, and H. Welling, “Power scaling of diode-pumped monolithic Nd:YAG lasers to output powers of several watts,” Opt. Commun. 115, 511–515 (1995).
[CrossRef]

Fritschel, P.

B. Lantz, P. Fritschel, H. Rong, E. Daw, and G. González, “Quantum-limited optical phase detection at the 10−10 rad level,” J. Opt. Soc. Am. A 19, 91–100 (2002).
[CrossRef]

B. Willke, P. King, R. Savage, and P. Fritschel, “Pre-stabilized laser design requirements,” internal technical report T050036-v4, LIGO Scientific Collaboration (2009).

Fujimoto, M.

González, G.

Gustafson, E. K.

Hall, J. L.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[CrossRef]

Harb, C. C.

V. Delaubert, N. Treps, M. Lassen, C. C. Harb, C. Fabre, P. K. Lam, and H.-A. Bachor, “TEM10 homodyne detection as an optimal small-displacement and tilt-measurement scheme,” Phys. Rev. A 74, 053823 (2006).
[CrossRef]

Harry, G. M.

G. M. Harry, “Advanced LIGO: the next generation of gravitational wave detectors,” Class. Quantum Grav. 27, 084006 (2010).
[CrossRef]

Heefner, J.

R. Bork, M. Aronsson, D. Barker, J. Batch, J. Heefner, A. Ivanov, R. McCarthy, V. Sandberg, and K. Thorne, “New control and data acquisition system in the Advanced LIGO project,” Proc. of Industrial Control And Large Experimental Physics Control System (ICALEPSC) conference (2011).

Hough, J.

S. Rowan and J. Hough, “Gravitational wave detection by interferometry (ground and space),” Living Rev. Relativity 3, 1–3 (2000).

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[CrossRef]

Ivanov, A.

R. Bork, M. Aronsson, D. Barker, J. Batch, J. Heefner, A. Ivanov, R. McCarthy, V. Sandberg, and K. Thorne, “New control and data acquisition system in the Advanced LIGO project,” Proc. of Industrial Control And Large Experimental Physics Control System (ICALEPSC) conference (2011).

Kane, T. J.

Kawamura, S.

K. Somiya, Y. Chen, S. Kawamura, and N. Mio, “Frequency noise and intensity noise of next-generation gravitational-wave detectors with RF/DC readout schemes,” Phys. Rev. D 73, 122005 (2006).
[CrossRef]

King, P.

B. Willke, P. King, R. Savage, and P. Fritschel, “Pre-stabilized laser design requirements,” internal technical report T050036-v4, LIGO Scientific Collaboration (2009).

King, P. J.

Kluzik, R.

L. Winkelmann, O. Puncken, R. Kluzik, C. Veltkamp, P. Kwee, J. Poeld, C. Bogan, B. Willke, M. Frede, J. Neumann, P. Wessels, and D. Kracht, “Injection-locked single-frequency laser with an output power of 220 W,” Appl. Phys. B 102, 529–538 (2011).
[CrossRef]

Kowalski, F. V.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[CrossRef]

Kracht, D.

L. Winkelmann, O. Puncken, R. Kluzik, C. Veltkamp, P. Kwee, J. Poeld, C. Bogan, B. Willke, M. Frede, J. Neumann, P. Wessels, and D. Kracht, “Injection-locked single-frequency laser with an output power of 220 W,” Appl. Phys. B 102, 529–538 (2011).
[CrossRef]

M. Frede, B. Schulz, R. Wilhelm, P. Kwee, F. Seifert, B. Willke, and D. Kracht, “Fundamental mode, single-frequency laser amplifier for gravitational wave detectors,” Opt. Express 15, 459–465 (2007).
[CrossRef] [PubMed]

Kwee, P.

L. Winkelmann, O. Puncken, R. Kluzik, C. Veltkamp, P. Kwee, J. Poeld, C. Bogan, B. Willke, M. Frede, J. Neumann, P. Wessels, and D. Kracht, “Injection-locked single-frequency laser with an output power of 220 W,” Appl. Phys. B 102, 529–538 (2011).
[CrossRef]

P. Kwee, B. Willke, and K. Danzmann, “Laser power noise detection at the quantum-noise limit of 32 A photocurrent,” Opt. Lett. 36, 3563–3565 (2011).
[CrossRef] [PubMed]

P. Kwee, B. Willke, and K. Danzmann, “Shot-noise-limited laser power stabilization with a high-power photodiode array,” Opt. Lett. 34, 2912–2914 (2009).
[CrossRef] [PubMed]

P. Kwee and B. Willke, “Automatic laser beam characterization of monolithic Nd:YAG nonplanar ring lasers,” Appl. Opt. 47, 6022–6032 (2008).
[CrossRef] [PubMed]

P. Kwee, F. Seifert, B. Willke, and K. Danzmann, “Laser beam quality and pointing measurement with an optical resonator,” Rev. Sci. Instrum. 78, 073103 (2007).
[CrossRef] [PubMed]

M. Frede, B. Schulz, R. Wilhelm, P. Kwee, F. Seifert, B. Willke, and D. Kracht, “Fundamental mode, single-frequency laser amplifier for gravitational wave detectors,” Opt. Express 15, 459–465 (2007).
[CrossRef] [PubMed]

P. Kwee, “Laser characterization and stabilization for precision interferometry,” Ph.D. thesis, Universität Hannover (2010).

Lam, P. K.

V. Delaubert, N. Treps, M. Lassen, C. C. Harb, C. Fabre, P. K. Lam, and H.-A. Bachor, “TEM10 homodyne detection as an optimal small-displacement and tilt-measurement scheme,” Phys. Rev. A 74, 053823 (2006).
[CrossRef]

Lantz, B.

Lassen, M.

V. Delaubert, N. Treps, M. Lassen, C. C. Harb, C. Fabre, P. K. Lam, and H.-A. Bachor, “TEM10 homodyne detection as an optimal small-displacement and tilt-measurement scheme,” Phys. Rev. A 74, 053823 (2006).
[CrossRef]

Maischberger, K.

A. Rüdiger, R. Schilling, L. Schnupp, W. Winkler, H. Billing, and K. Maischberger, “A mode selector to suppress fluctuations in laser beam geometry,” Opt. Acta 28, 641–658 (1981).
[CrossRef]

McCarthy, R.

R. Bork, M. Aronsson, D. Barker, J. Batch, J. Heefner, A. Ivanov, R. McCarthy, V. Sandberg, and K. Thorne, “New control and data acquisition system in the Advanced LIGO project,” Proc. of Industrial Control And Large Experimental Physics Control System (ICALEPSC) conference (2011).

Mio, N.

K. Somiya, Y. Chen, S. Kawamura, and N. Mio, “Frequency noise and intensity noise of next-generation gravitational-wave detectors with RF/DC readout schemes,” Phys. Rev. D 73, 122005 (2006).
[CrossRef]

A. Araya, N. Mio, K. Tsubono, K. Suehiro, S. Telada, M. Ohashi, and M. Fujimoto, “Optical mode cleaner with suspended mirrors,” Appl. Opt. 36, 1446–1453 (1997).
[CrossRef] [PubMed]

Mueller, G.

Munley, A. J.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[CrossRef]

Neumann, J.

L. Winkelmann, O. Puncken, R. Kluzik, C. Veltkamp, P. Kwee, J. Poeld, C. Bogan, B. Willke, M. Frede, J. Neumann, P. Wessels, and D. Kracht, “Injection-locked single-frequency laser with an output power of 220 W,” Appl. Phys. B 102, 529–538 (2011).
[CrossRef]

Ohashi, M.

Poeld, J.

L. Winkelmann, O. Puncken, R. Kluzik, C. Veltkamp, P. Kwee, J. Poeld, C. Bogan, B. Willke, M. Frede, J. Neumann, P. Wessels, and D. Kracht, “Injection-locked single-frequency laser with an output power of 220 W,” Appl. Phys. B 102, 529–538 (2011).
[CrossRef]

Pöld, J. H.

J. H. Pöld, “Stabilization of the Advanced LIGO 200 W laser,” Diploma thesis, Leibniz Universität Hannover (2009).

Puncken, O.

L. Winkelmann, O. Puncken, R. Kluzik, C. Veltkamp, P. Kwee, J. Poeld, C. Bogan, B. Willke, M. Frede, J. Neumann, P. Wessels, and D. Kracht, “Injection-locked single-frequency laser with an output power of 220 W,” Appl. Phys. B 102, 529–538 (2011).
[CrossRef]

Rong, H.

Rowan, S.

S. Rowan and J. Hough, “Gravitational wave detection by interferometry (ground and space),” Living Rev. Relativity 3, 1–3 (2000).

Rüdiger, A.

A. Rüdiger, R. Schilling, L. Schnupp, W. Winkler, H. Billing, and K. Maischberger, “A mode selector to suppress fluctuations in laser beam geometry,” Opt. Acta 28, 641–658 (1981).
[CrossRef]

Sandberg, V.

R. Bork, M. Aronsson, D. Barker, J. Batch, J. Heefner, A. Ivanov, R. McCarthy, V. Sandberg, and K. Thorne, “New control and data acquisition system in the Advanced LIGO project,” Proc. of Industrial Control And Large Experimental Physics Control System (ICALEPSC) conference (2011).

Saulson, P. R.

P. R. Saulson, Fundamentals of Interferometric Gravitational Wave Detectors (World Scientific, 1994).
[CrossRef]

Savage, R.

B. Willke, P. King, R. Savage, and P. Fritschel, “Pre-stabilized laser design requirements,” internal technical report T050036-v4, LIGO Scientific Collaboration (2009).

Savage, R. L.

Schilling, R.

A. Rüdiger, R. Schilling, L. Schnupp, W. Winkler, H. Billing, and K. Maischberger, “A mode selector to suppress fluctuations in laser beam geometry,” Opt. Acta 28, 641–658 (1981).
[CrossRef]

Schnupp, L.

A. Rüdiger, R. Schilling, L. Schnupp, W. Winkler, H. Billing, and K. Maischberger, “A mode selector to suppress fluctuations in laser beam geometry,” Opt. Acta 28, 641–658 (1981).
[CrossRef]

Schulz, B.

Seel, S. U.

Seifert, F.

P. Kwee, F. Seifert, B. Willke, and K. Danzmann, “Laser beam quality and pointing measurement with an optical resonator,” Rev. Sci. Instrum. 78, 073103 (2007).
[CrossRef] [PubMed]

M. Frede, B. Schulz, R. Wilhelm, P. Kwee, F. Seifert, B. Willke, and D. Kracht, “Fundamental mode, single-frequency laser amplifier for gravitational wave detectors,” Opt. Express 15, 459–465 (2007).
[CrossRef] [PubMed]

Somiya, K.

K. Somiya, Y. Chen, S. Kawamura, and N. Mio, “Frequency noise and intensity noise of next-generation gravitational-wave detectors with RF/DC readout schemes,” Phys. Rev. D 73, 122005 (2006).
[CrossRef]

Suehiro, K.

Telada, S.

Thorne, K.

R. Bork, M. Aronsson, D. Barker, J. Batch, J. Heefner, A. Ivanov, R. McCarthy, V. Sandberg, and K. Thorne, “New control and data acquisition system in the Advanced LIGO project,” Proc. of Industrial Control And Large Experimental Physics Control System (ICALEPSC) conference (2011).

Treps, N.

V. Delaubert, N. Treps, M. Lassen, C. C. Harb, C. Fabre, P. K. Lam, and H.-A. Bachor, “TEM10 homodyne detection as an optimal small-displacement and tilt-measurement scheme,” Phys. Rev. A 74, 053823 (2006).
[CrossRef]

Tsubono, K.

Tünnermann, A.

I. Freitag, A. Tünnermann, and H. Welling, “Power scaling of diode-pumped monolithic Nd:YAG lasers to output powers of several watts,” Opt. Commun. 115, 511–515 (1995).
[CrossRef]

Uehara, N.

Veltkamp, C.

L. Winkelmann, O. Puncken, R. Kluzik, C. Veltkamp, P. Kwee, J. Poeld, C. Bogan, B. Willke, M. Frede, J. Neumann, P. Wessels, and D. Kracht, “Injection-locked single-frequency laser with an output power of 220 W,” Appl. Phys. B 102, 529–538 (2011).
[CrossRef]

Ward, H.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[CrossRef]

Welling, H.

I. Freitag, A. Tünnermann, and H. Welling, “Power scaling of diode-pumped monolithic Nd:YAG lasers to output powers of several watts,” Opt. Commun. 115, 511–515 (1995).
[CrossRef]

Wessels, P.

L. Winkelmann, O. Puncken, R. Kluzik, C. Veltkamp, P. Kwee, J. Poeld, C. Bogan, B. Willke, M. Frede, J. Neumann, P. Wessels, and D. Kracht, “Injection-locked single-frequency laser with an output power of 220 W,” Appl. Phys. B 102, 529–538 (2011).
[CrossRef]

Wilhelm, R.

Willke, B.

L. Winkelmann, O. Puncken, R. Kluzik, C. Veltkamp, P. Kwee, J. Poeld, C. Bogan, B. Willke, M. Frede, J. Neumann, P. Wessels, and D. Kracht, “Injection-locked single-frequency laser with an output power of 220 W,” Appl. Phys. B 102, 529–538 (2011).
[CrossRef]

P. Kwee, B. Willke, and K. Danzmann, “Laser power noise detection at the quantum-noise limit of 32 A photocurrent,” Opt. Lett. 36, 3563–3565 (2011).
[CrossRef] [PubMed]

B. Willke, “Stabilized lasers for advanced gravitational wave detectors,” Laser Photon. Rev. 4, 780–794 (2010).
[CrossRef]

P. Kwee, B. Willke, and K. Danzmann, “Shot-noise-limited laser power stabilization with a high-power photodiode array,” Opt. Lett. 34, 2912–2914 (2009).
[CrossRef] [PubMed]

P. Kwee and B. Willke, “Automatic laser beam characterization of monolithic Nd:YAG nonplanar ring lasers,” Appl. Opt. 47, 6022–6032 (2008).
[CrossRef] [PubMed]

P. Kwee, F. Seifert, B. Willke, and K. Danzmann, “Laser beam quality and pointing measurement with an optical resonator,” Rev. Sci. Instrum. 78, 073103 (2007).
[CrossRef] [PubMed]

M. Frede, B. Schulz, R. Wilhelm, P. Kwee, F. Seifert, B. Willke, and D. Kracht, “Fundamental mode, single-frequency laser amplifier for gravitational wave detectors,” Opt. Express 15, 459–465 (2007).
[CrossRef] [PubMed]

B. Willke, N. Uehara, E. K. Gustafson, R. L. Byer, P. J. King, S. U. Seel, and R. L. Savage, “Spatial and temporal filtering of a 10-W Nd:YAG laser with a Fabry-Perot ring-cavity premode cleaner,” Opt. Lett. 23, 1704–1706 (1998).
[CrossRef]

B. Willke, P. King, R. Savage, and P. Fritschel, “Pre-stabilized laser design requirements,” internal technical report T050036-v4, LIGO Scientific Collaboration (2009).

Winkelmann, L.

L. Winkelmann, O. Puncken, R. Kluzik, C. Veltkamp, P. Kwee, J. Poeld, C. Bogan, B. Willke, M. Frede, J. Neumann, P. Wessels, and D. Kracht, “Injection-locked single-frequency laser with an output power of 220 W,” Appl. Phys. B 102, 529–538 (2011).
[CrossRef]

Winkler, W.

A. Rüdiger, R. Schilling, L. Schnupp, W. Winkler, H. Billing, and K. Maischberger, “A mode selector to suppress fluctuations in laser beam geometry,” Opt. Acta 28, 641–658 (1981).
[CrossRef]

Am. J. Phys. (1)

E. D. Black, “An introduction to Pound-Drever-Hall laser frequency stabilization,” Am. J. Phys. 69, 79–87 (2001).
[CrossRef]

Appl. Opt. (3)

Appl. Phys. B (2)

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[CrossRef]

L. Winkelmann, O. Puncken, R. Kluzik, C. Veltkamp, P. Kwee, J. Poeld, C. Bogan, B. Willke, M. Frede, J. Neumann, P. Wessels, and D. Kracht, “Injection-locked single-frequency laser with an output power of 220 W,” Appl. Phys. B 102, 529–538 (2011).
[CrossRef]

Class. Quantum Grav. (1)

G. M. Harry, “Advanced LIGO: the next generation of gravitational wave detectors,” Class. Quantum Grav. 27, 084006 (2010).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (1)

Laser Photon. Rev. (1)

B. Willke, “Stabilized lasers for advanced gravitational wave detectors,” Laser Photon. Rev. 4, 780–794 (2010).
[CrossRef]

Living Rev. Relativity (1)

S. Rowan and J. Hough, “Gravitational wave detection by interferometry (ground and space),” Living Rev. Relativity 3, 1–3 (2000).

Opt. Acta (1)

A. Rüdiger, R. Schilling, L. Schnupp, W. Winkler, H. Billing, and K. Maischberger, “A mode selector to suppress fluctuations in laser beam geometry,” Opt. Acta 28, 641–658 (1981).
[CrossRef]

Opt. Commun. (1)

I. Freitag, A. Tünnermann, and H. Welling, “Power scaling of diode-pumped monolithic Nd:YAG lasers to output powers of several watts,” Opt. Commun. 115, 511–515 (1995).
[CrossRef]

Opt. Express (2)

Opt. Lett. (4)

Phys. Rev. A (1)

V. Delaubert, N. Treps, M. Lassen, C. C. Harb, C. Fabre, P. K. Lam, and H.-A. Bachor, “TEM10 homodyne detection as an optimal small-displacement and tilt-measurement scheme,” Phys. Rev. A 74, 053823 (2006).
[CrossRef]

Phys. Rev. D (1)

K. Somiya, Y. Chen, S. Kawamura, and N. Mio, “Frequency noise and intensity noise of next-generation gravitational-wave detectors with RF/DC readout schemes,” Phys. Rev. D 73, 122005 (2006).
[CrossRef]

Rev. Sci. Instrum. (1)

P. Kwee, F. Seifert, B. Willke, and K. Danzmann, “Laser beam quality and pointing measurement with an optical resonator,” Rev. Sci. Instrum. 78, 073103 (2007).
[CrossRef] [PubMed]

Other (6)

B. Willke, P. King, R. Savage, and P. Fritschel, “Pre-stabilized laser design requirements,” internal technical report T050036-v4, LIGO Scientific Collaboration (2009).

R. Bork, M. Aronsson, D. Barker, J. Batch, J. Heefner, A. Ivanov, R. McCarthy, V. Sandberg, and K. Thorne, “New control and data acquisition system in the Advanced LIGO project,” Proc. of Industrial Control And Large Experimental Physics Control System (ICALEPSC) conference (2011).

“Experimental physics and industrial control system,” http://www.aps.anl.gov/epics/ .

J. H. Pöld, “Stabilization of the Advanced LIGO 200 W laser,” Diploma thesis, Leibniz Universität Hannover (2009).

P. R. Saulson, Fundamentals of Interferometric Gravitational Wave Detectors (World Scientific, 1994).
[CrossRef]

P. Kwee, “Laser characterization and stabilization for precision interferometry,” Ph.D. thesis, Universität Hannover (2010).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Pre-stabilized laser system of Advanced LIGO. The three-staged laser (NPRO, medium power amplifier, high power oscillator) and the stabilization scheme (pre-mode-cleaner, power and frequency stabilization) are shown. The input-mode-cleaner is not part of the PSL but closely related. NPRO, non-planar ring oscillator; EOM, electro-optic modulator; FI, Faraday isolator; AOM, acousto-optic modulator.

Fig. 2
Fig. 2

Detailed schematic of the power noise sensor setup for the first power stabilization loop. This setup corresponds to PD2 in the overview in Fig. 1. λ/2, waveplate; PBS, polarizing beam splitter; BD, glass filters used as beam dump; PD, single element photodetector; QPD, quadrant photodetector.

Fig. 3
Fig. 3

Cross coupling transfer functions (a...n) were measured between four different control loops. Measurements between the error signal (E), the control signal (C), and in the case of the power stabilization loop the out-of-loop signal (OOL) were performed. Upper bounds and approximate values of the in general frequency dependent transfer functions are given.

Fig. 4
Fig. 4

Modescan performed with a DBB upstream and downstream of the PMC. The PMC suppressed higher order transverse modes and increased the power fraction in the TEM00 mode from 97.2% to 99.5%. A CCD image of the TEM40 in transmission of the PMC is shown.

Fig. 5
Fig. 5

Beam pointing fluctuations measured with a DBB upstream and downstream of the PMC. All four degrees of freedom, shift and tilt in horizontal and vertical directions, were measured at both locations. The PMC reduced the pointing fluctuations below the design requirements. For reference, one measurement upstream of the PMC was projected downstream of the PMC using the expected pointing suppression factor of the PMC.

Fig. 6
Fig. 6

Relative power noise at radio frequencies measured upstream and downstream of the PMC. The filtering of the PMC reduced the power noise below the design requirements. Both measurements were limited by shot noise (solid lines) for frequencies above about 10 MHz. The peak at 35.5 MHz is caused by phase modulation sidebands required for injection and PMC locking.

Fig. 7
Fig. 7

Relative power noise in the detection band. The first power stabilization loop reduced the free running power fluctuations by several orders of magnitude. The out-of-loop measured power noise fulfills its requirements for frequencies above 60 Hz. The design requirements of the second loop are shown only for reference. A projection of the pointing noise showed that the out-of-loop measurement was not limited at low frequencies by this noise source.

Fig. 8
Fig. 8

Frequency noise measured downstream of the PMC with and without frequency stabilization. The measured in-loop frequency noise was consistent with the design requirements. To deduce an upper bound for the actual frequency noise an out-of-loop measurement with the DBB was performed with engaged frequency stabilization.

Metrics