Abstract

We experimentally investigated the influence of amplified spontaneous emission within the Brillouin gain bandwidth on the Brillouin scattering of a single-frequency signal. The experiments were performed for the case of artificial ASE injected in backward direction into a passive fiber, as well as in forward direction of a low-power fiber amplifier. A significant influence could be observed, when the ASE was counter-propagating to the signal. Injecting 160.6 nW of ASE within the Brillouin gain bandwidth led to a decrease of about 3 dB of the SBS-threshold of an approximately 335 m long passive fiber from about 80 mW to less than 40 mW. At a fixed signal power of 81 mW the backscattered power and the power in the Brillouin scattered Stokes maximum increased by a factor of 19.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. Shibata, Y. Azuma, T. Horiguchi, and M. Tateda, “Identification of longitudinal acoustic modes guided in the core region of a single-mode optical fiber by Brillouin gain spectra measurements,” Opt. Lett. 13, 595–597 (1988).
    [CrossRef] [PubMed]
  2. K. Shiraki, M. Ohashi, and M. Tateda, “SBS Threshold of a fiber with a Brillouin frequency shift distribution,” J. Lightwave Technol. 14, 50–57 (1996).
    [CrossRef]
  3. A. Boh Ruffin, M.-J. Li, A. Kobyakov, and F. Annunziata, “Brillouin gain analysis for fibers with different refractive indices,” Opt. Lett. 30, 3123–3125 (2005).
    [CrossRef] [PubMed]
  4. N. Shibata, R. G. Waarts, and R. P. Braun, “Brillouin-gain spectra for single-mode fibers having pure-silica, GeO2, and P2O5-doped cores,” Opt. Lett. 12, 269–271 (1987).
    [CrossRef] [PubMed]
  5. T. Horiguchi, T. Kurashima, and M. Tateda, “Tensile strain dependence of Brillouin frequency shift in silica optical fiber,” IEEE Photon. Technol. Lett. 1, 107–108 (1989).
    [CrossRef]
  6. T. Kurashima, T. Horiguchi, and M. Tateda, “Thermal effects of Brillouin gain spectra in single-mode fibers,” IEEE Photon. Technol. Lett. 2, 718–720 (1990).
    [CrossRef]
  7. D. Machewirth, V. Khitrov, U. Manyam, K. Tankala, A. Carter, J. Abramczyk, J. Farroni, D. Guertin, and N. Jacobson, “Large-mode-area double-clad fibers for pulsed and CW lasers and amplifiers,” Proc. SPIE 5335, 140–150 (2004).
    [CrossRef]
  8. G. Canat, A. Durécu, Y. Jaouën, S. Bordais, and R. Lebref, “Fiber composition influence on spontaneous Brillouin scattering properties in double-clad fiber amplifiers,” in Conference on Lasers and Electro-Optics, Technical Digest (CD) (Optical Society of America, 2006), paper CTuQ4.
  9. Y. Jeong, J. Nilsson, J. K. Sahu, D. N. Payne, L. M. B. Hickey, and P. W. Turner, “Power scaling of single-frequency ytterbium-doped master-oscillator power amplifier sources up to 500 W,” IEEE J. Sel. Top. Quantum Electron. 13, 546–551 (2007).
    [CrossRef]
  10. C. Zhu, I. Hu, X. Ma, and A. Galvanauskas, “Single-frequency and single-transverse-mode Yb-doped CCC fiber MOPA with robust polarization SBS-free 511 W output,” in Advanced Solid-State Photonics, OSA Technical Digest (CD) (Optical Society of America, 2011), paper AMC5.
  11. C. Robin and I. Dajani, “Acoustically segmented photonic crystal fiber for single-frequency high-power laser applications,” Opt. Lett. 36, 2641–2643 (2011).
    [CrossRef] [PubMed]
  12. C. Robin, I. Dajani, C. Zeringue, B. Ward, and A. Lanari, “Gain-tailored SBS suppressing photonic crystal fibers for high power applications,” Proc. SPIE 8237, 82371D (2012).
    [CrossRef]
  13. C. N. Pannell, P. St. Russell, and T. P. Newson, “Stimulated Brillouin scattering in optical fibers: the effects of optical amplification,” J. Opt. Soc. Am. B 10, 684–690 (1993).
    [CrossRef]
  14. M. Hildebrandt, S. Büsche, P. Weßels, M. Frede, and D. Kracht, “Brillouin scattering spectra in high-power single-frequency ytterbium doped fiber amplifiers,” Opt. Express 20, 15970–15979 (2008).
    [CrossRef]
  15. G. Liu and D. Liu, “Numerical analysis of stimulated Brillouin scattering in high-power double-clad fiber lasers,” Optik 120, 24–28 (2009).
    [CrossRef]
  16. A. Kobyakov, M. Sauer, and D. Chowdhury, “Stimulated Brillouin scattering in optical fibers,” Adv. Opt. Photon. 2, 1–59 (2010).
    [CrossRef]
  17. M. Niklès, L. Thévenaz, and P. A. Robert, “Brillouin gain spectrum characterization in single-mode optical fibers,” J. Lightwave Technol. 15, 1842–1851 (1997).
    [CrossRef]
  18. A. Tegtmeier Pedersen, L. Grüner-Nielsen, and K. Rottwitt, “Measurement and modeling of low-wavelength losses in silica fibers and their impact at communication wavelength,” J. Lightwave Technol. 27, 1296–1300 (2009).
    [CrossRef]

2012 (1)

C. Robin, I. Dajani, C. Zeringue, B. Ward, and A. Lanari, “Gain-tailored SBS suppressing photonic crystal fibers for high power applications,” Proc. SPIE 8237, 82371D (2012).
[CrossRef]

2011 (1)

2010 (1)

2009 (2)

2008 (1)

M. Hildebrandt, S. Büsche, P. Weßels, M. Frede, and D. Kracht, “Brillouin scattering spectra in high-power single-frequency ytterbium doped fiber amplifiers,” Opt. Express 20, 15970–15979 (2008).
[CrossRef]

2007 (1)

Y. Jeong, J. Nilsson, J. K. Sahu, D. N. Payne, L. M. B. Hickey, and P. W. Turner, “Power scaling of single-frequency ytterbium-doped master-oscillator power amplifier sources up to 500 W,” IEEE J. Sel. Top. Quantum Electron. 13, 546–551 (2007).
[CrossRef]

2005 (1)

2004 (1)

D. Machewirth, V. Khitrov, U. Manyam, K. Tankala, A. Carter, J. Abramczyk, J. Farroni, D. Guertin, and N. Jacobson, “Large-mode-area double-clad fibers for pulsed and CW lasers and amplifiers,” Proc. SPIE 5335, 140–150 (2004).
[CrossRef]

1997 (1)

M. Niklès, L. Thévenaz, and P. A. Robert, “Brillouin gain spectrum characterization in single-mode optical fibers,” J. Lightwave Technol. 15, 1842–1851 (1997).
[CrossRef]

1996 (1)

K. Shiraki, M. Ohashi, and M. Tateda, “SBS Threshold of a fiber with a Brillouin frequency shift distribution,” J. Lightwave Technol. 14, 50–57 (1996).
[CrossRef]

1993 (1)

1990 (1)

T. Kurashima, T. Horiguchi, and M. Tateda, “Thermal effects of Brillouin gain spectra in single-mode fibers,” IEEE Photon. Technol. Lett. 2, 718–720 (1990).
[CrossRef]

1989 (1)

T. Horiguchi, T. Kurashima, and M. Tateda, “Tensile strain dependence of Brillouin frequency shift in silica optical fiber,” IEEE Photon. Technol. Lett. 1, 107–108 (1989).
[CrossRef]

1988 (1)

1987 (1)

Abramczyk, J.

D. Machewirth, V. Khitrov, U. Manyam, K. Tankala, A. Carter, J. Abramczyk, J. Farroni, D. Guertin, and N. Jacobson, “Large-mode-area double-clad fibers for pulsed and CW lasers and amplifiers,” Proc. SPIE 5335, 140–150 (2004).
[CrossRef]

Annunziata, F.

Azuma, Y.

Boh Ruffin, A.

Bordais, S.

G. Canat, A. Durécu, Y. Jaouën, S. Bordais, and R. Lebref, “Fiber composition influence on spontaneous Brillouin scattering properties in double-clad fiber amplifiers,” in Conference on Lasers and Electro-Optics, Technical Digest (CD) (Optical Society of America, 2006), paper CTuQ4.

Braun, R. P.

Büsche, S.

M. Hildebrandt, S. Büsche, P. Weßels, M. Frede, and D. Kracht, “Brillouin scattering spectra in high-power single-frequency ytterbium doped fiber amplifiers,” Opt. Express 20, 15970–15979 (2008).
[CrossRef]

Canat, G.

G. Canat, A. Durécu, Y. Jaouën, S. Bordais, and R. Lebref, “Fiber composition influence on spontaneous Brillouin scattering properties in double-clad fiber amplifiers,” in Conference on Lasers and Electro-Optics, Technical Digest (CD) (Optical Society of America, 2006), paper CTuQ4.

Carter, A.

D. Machewirth, V. Khitrov, U. Manyam, K. Tankala, A. Carter, J. Abramczyk, J. Farroni, D. Guertin, and N. Jacobson, “Large-mode-area double-clad fibers for pulsed and CW lasers and amplifiers,” Proc. SPIE 5335, 140–150 (2004).
[CrossRef]

Chowdhury, D.

Dajani, I.

C. Robin, I. Dajani, C. Zeringue, B. Ward, and A. Lanari, “Gain-tailored SBS suppressing photonic crystal fibers for high power applications,” Proc. SPIE 8237, 82371D (2012).
[CrossRef]

C. Robin and I. Dajani, “Acoustically segmented photonic crystal fiber for single-frequency high-power laser applications,” Opt. Lett. 36, 2641–2643 (2011).
[CrossRef] [PubMed]

Durécu, A.

G. Canat, A. Durécu, Y. Jaouën, S. Bordais, and R. Lebref, “Fiber composition influence on spontaneous Brillouin scattering properties in double-clad fiber amplifiers,” in Conference on Lasers and Electro-Optics, Technical Digest (CD) (Optical Society of America, 2006), paper CTuQ4.

Farroni, J.

D. Machewirth, V. Khitrov, U. Manyam, K. Tankala, A. Carter, J. Abramczyk, J. Farroni, D. Guertin, and N. Jacobson, “Large-mode-area double-clad fibers for pulsed and CW lasers and amplifiers,” Proc. SPIE 5335, 140–150 (2004).
[CrossRef]

Frede, M.

M. Hildebrandt, S. Büsche, P. Weßels, M. Frede, and D. Kracht, “Brillouin scattering spectra in high-power single-frequency ytterbium doped fiber amplifiers,” Opt. Express 20, 15970–15979 (2008).
[CrossRef]

Galvanauskas, A.

C. Zhu, I. Hu, X. Ma, and A. Galvanauskas, “Single-frequency and single-transverse-mode Yb-doped CCC fiber MOPA with robust polarization SBS-free 511 W output,” in Advanced Solid-State Photonics, OSA Technical Digest (CD) (Optical Society of America, 2011), paper AMC5.

Grüner-Nielsen, L.

Guertin, D.

D. Machewirth, V. Khitrov, U. Manyam, K. Tankala, A. Carter, J. Abramczyk, J. Farroni, D. Guertin, and N. Jacobson, “Large-mode-area double-clad fibers for pulsed and CW lasers and amplifiers,” Proc. SPIE 5335, 140–150 (2004).
[CrossRef]

Hickey, L. M. B.

Y. Jeong, J. Nilsson, J. K. Sahu, D. N. Payne, L. M. B. Hickey, and P. W. Turner, “Power scaling of single-frequency ytterbium-doped master-oscillator power amplifier sources up to 500 W,” IEEE J. Sel. Top. Quantum Electron. 13, 546–551 (2007).
[CrossRef]

Hildebrandt, M.

M. Hildebrandt, S. Büsche, P. Weßels, M. Frede, and D. Kracht, “Brillouin scattering spectra in high-power single-frequency ytterbium doped fiber amplifiers,” Opt. Express 20, 15970–15979 (2008).
[CrossRef]

Horiguchi, T.

T. Kurashima, T. Horiguchi, and M. Tateda, “Thermal effects of Brillouin gain spectra in single-mode fibers,” IEEE Photon. Technol. Lett. 2, 718–720 (1990).
[CrossRef]

T. Horiguchi, T. Kurashima, and M. Tateda, “Tensile strain dependence of Brillouin frequency shift in silica optical fiber,” IEEE Photon. Technol. Lett. 1, 107–108 (1989).
[CrossRef]

N. Shibata, Y. Azuma, T. Horiguchi, and M. Tateda, “Identification of longitudinal acoustic modes guided in the core region of a single-mode optical fiber by Brillouin gain spectra measurements,” Opt. Lett. 13, 595–597 (1988).
[CrossRef] [PubMed]

Hu, I.

C. Zhu, I. Hu, X. Ma, and A. Galvanauskas, “Single-frequency and single-transverse-mode Yb-doped CCC fiber MOPA with robust polarization SBS-free 511 W output,” in Advanced Solid-State Photonics, OSA Technical Digest (CD) (Optical Society of America, 2011), paper AMC5.

Jacobson, N.

D. Machewirth, V. Khitrov, U. Manyam, K. Tankala, A. Carter, J. Abramczyk, J. Farroni, D. Guertin, and N. Jacobson, “Large-mode-area double-clad fibers for pulsed and CW lasers and amplifiers,” Proc. SPIE 5335, 140–150 (2004).
[CrossRef]

Jaouën, Y.

G. Canat, A. Durécu, Y. Jaouën, S. Bordais, and R. Lebref, “Fiber composition influence on spontaneous Brillouin scattering properties in double-clad fiber amplifiers,” in Conference on Lasers and Electro-Optics, Technical Digest (CD) (Optical Society of America, 2006), paper CTuQ4.

Jeong, Y.

Y. Jeong, J. Nilsson, J. K. Sahu, D. N. Payne, L. M. B. Hickey, and P. W. Turner, “Power scaling of single-frequency ytterbium-doped master-oscillator power amplifier sources up to 500 W,” IEEE J. Sel. Top. Quantum Electron. 13, 546–551 (2007).
[CrossRef]

Khitrov, V.

D. Machewirth, V. Khitrov, U. Manyam, K. Tankala, A. Carter, J. Abramczyk, J. Farroni, D. Guertin, and N. Jacobson, “Large-mode-area double-clad fibers for pulsed and CW lasers and amplifiers,” Proc. SPIE 5335, 140–150 (2004).
[CrossRef]

Kobyakov, A.

Kracht, D.

M. Hildebrandt, S. Büsche, P. Weßels, M. Frede, and D. Kracht, “Brillouin scattering spectra in high-power single-frequency ytterbium doped fiber amplifiers,” Opt. Express 20, 15970–15979 (2008).
[CrossRef]

Kurashima, T.

T. Kurashima, T. Horiguchi, and M. Tateda, “Thermal effects of Brillouin gain spectra in single-mode fibers,” IEEE Photon. Technol. Lett. 2, 718–720 (1990).
[CrossRef]

T. Horiguchi, T. Kurashima, and M. Tateda, “Tensile strain dependence of Brillouin frequency shift in silica optical fiber,” IEEE Photon. Technol. Lett. 1, 107–108 (1989).
[CrossRef]

Lanari, A.

C. Robin, I. Dajani, C. Zeringue, B. Ward, and A. Lanari, “Gain-tailored SBS suppressing photonic crystal fibers for high power applications,” Proc. SPIE 8237, 82371D (2012).
[CrossRef]

Lebref, R.

G. Canat, A. Durécu, Y. Jaouën, S. Bordais, and R. Lebref, “Fiber composition influence on spontaneous Brillouin scattering properties in double-clad fiber amplifiers,” in Conference on Lasers and Electro-Optics, Technical Digest (CD) (Optical Society of America, 2006), paper CTuQ4.

Li, M.-J.

Liu, D.

G. Liu and D. Liu, “Numerical analysis of stimulated Brillouin scattering in high-power double-clad fiber lasers,” Optik 120, 24–28 (2009).
[CrossRef]

Liu, G.

G. Liu and D. Liu, “Numerical analysis of stimulated Brillouin scattering in high-power double-clad fiber lasers,” Optik 120, 24–28 (2009).
[CrossRef]

Ma, X.

C. Zhu, I. Hu, X. Ma, and A. Galvanauskas, “Single-frequency and single-transverse-mode Yb-doped CCC fiber MOPA with robust polarization SBS-free 511 W output,” in Advanced Solid-State Photonics, OSA Technical Digest (CD) (Optical Society of America, 2011), paper AMC5.

Machewirth, D.

D. Machewirth, V. Khitrov, U. Manyam, K. Tankala, A. Carter, J. Abramczyk, J. Farroni, D. Guertin, and N. Jacobson, “Large-mode-area double-clad fibers for pulsed and CW lasers and amplifiers,” Proc. SPIE 5335, 140–150 (2004).
[CrossRef]

Manyam, U.

D. Machewirth, V. Khitrov, U. Manyam, K. Tankala, A. Carter, J. Abramczyk, J. Farroni, D. Guertin, and N. Jacobson, “Large-mode-area double-clad fibers for pulsed and CW lasers and amplifiers,” Proc. SPIE 5335, 140–150 (2004).
[CrossRef]

Newson, T. P.

Niklès, M.

M. Niklès, L. Thévenaz, and P. A. Robert, “Brillouin gain spectrum characterization in single-mode optical fibers,” J. Lightwave Technol. 15, 1842–1851 (1997).
[CrossRef]

Nilsson, J.

Y. Jeong, J. Nilsson, J. K. Sahu, D. N. Payne, L. M. B. Hickey, and P. W. Turner, “Power scaling of single-frequency ytterbium-doped master-oscillator power amplifier sources up to 500 W,” IEEE J. Sel. Top. Quantum Electron. 13, 546–551 (2007).
[CrossRef]

Ohashi, M.

K. Shiraki, M. Ohashi, and M. Tateda, “SBS Threshold of a fiber with a Brillouin frequency shift distribution,” J. Lightwave Technol. 14, 50–57 (1996).
[CrossRef]

Pannell, C. N.

Payne, D. N.

Y. Jeong, J. Nilsson, J. K. Sahu, D. N. Payne, L. M. B. Hickey, and P. W. Turner, “Power scaling of single-frequency ytterbium-doped master-oscillator power amplifier sources up to 500 W,” IEEE J. Sel. Top. Quantum Electron. 13, 546–551 (2007).
[CrossRef]

Robert, P. A.

M. Niklès, L. Thévenaz, and P. A. Robert, “Brillouin gain spectrum characterization in single-mode optical fibers,” J. Lightwave Technol. 15, 1842–1851 (1997).
[CrossRef]

Robin, C.

C. Robin, I. Dajani, C. Zeringue, B. Ward, and A. Lanari, “Gain-tailored SBS suppressing photonic crystal fibers for high power applications,” Proc. SPIE 8237, 82371D (2012).
[CrossRef]

C. Robin and I. Dajani, “Acoustically segmented photonic crystal fiber for single-frequency high-power laser applications,” Opt. Lett. 36, 2641–2643 (2011).
[CrossRef] [PubMed]

Rottwitt, K.

Russell, P. St.

Sahu, J. K.

Y. Jeong, J. Nilsson, J. K. Sahu, D. N. Payne, L. M. B. Hickey, and P. W. Turner, “Power scaling of single-frequency ytterbium-doped master-oscillator power amplifier sources up to 500 W,” IEEE J. Sel. Top. Quantum Electron. 13, 546–551 (2007).
[CrossRef]

Sauer, M.

Shibata, N.

Shiraki, K.

K. Shiraki, M. Ohashi, and M. Tateda, “SBS Threshold of a fiber with a Brillouin frequency shift distribution,” J. Lightwave Technol. 14, 50–57 (1996).
[CrossRef]

Tankala, K.

D. Machewirth, V. Khitrov, U. Manyam, K. Tankala, A. Carter, J. Abramczyk, J. Farroni, D. Guertin, and N. Jacobson, “Large-mode-area double-clad fibers for pulsed and CW lasers and amplifiers,” Proc. SPIE 5335, 140–150 (2004).
[CrossRef]

Tateda, M.

K. Shiraki, M. Ohashi, and M. Tateda, “SBS Threshold of a fiber with a Brillouin frequency shift distribution,” J. Lightwave Technol. 14, 50–57 (1996).
[CrossRef]

T. Kurashima, T. Horiguchi, and M. Tateda, “Thermal effects of Brillouin gain spectra in single-mode fibers,” IEEE Photon. Technol. Lett. 2, 718–720 (1990).
[CrossRef]

T. Horiguchi, T. Kurashima, and M. Tateda, “Tensile strain dependence of Brillouin frequency shift in silica optical fiber,” IEEE Photon. Technol. Lett. 1, 107–108 (1989).
[CrossRef]

N. Shibata, Y. Azuma, T. Horiguchi, and M. Tateda, “Identification of longitudinal acoustic modes guided in the core region of a single-mode optical fiber by Brillouin gain spectra measurements,” Opt. Lett. 13, 595–597 (1988).
[CrossRef] [PubMed]

Tegtmeier Pedersen, A.

Thévenaz, L.

M. Niklès, L. Thévenaz, and P. A. Robert, “Brillouin gain spectrum characterization in single-mode optical fibers,” J. Lightwave Technol. 15, 1842–1851 (1997).
[CrossRef]

Turner, P. W.

Y. Jeong, J. Nilsson, J. K. Sahu, D. N. Payne, L. M. B. Hickey, and P. W. Turner, “Power scaling of single-frequency ytterbium-doped master-oscillator power amplifier sources up to 500 W,” IEEE J. Sel. Top. Quantum Electron. 13, 546–551 (2007).
[CrossRef]

Waarts, R. G.

Ward, B.

C. Robin, I. Dajani, C. Zeringue, B. Ward, and A. Lanari, “Gain-tailored SBS suppressing photonic crystal fibers for high power applications,” Proc. SPIE 8237, 82371D (2012).
[CrossRef]

Weßels, P.

M. Hildebrandt, S. Büsche, P. Weßels, M. Frede, and D. Kracht, “Brillouin scattering spectra in high-power single-frequency ytterbium doped fiber amplifiers,” Opt. Express 20, 15970–15979 (2008).
[CrossRef]

Zeringue, C.

C. Robin, I. Dajani, C. Zeringue, B. Ward, and A. Lanari, “Gain-tailored SBS suppressing photonic crystal fibers for high power applications,” Proc. SPIE 8237, 82371D (2012).
[CrossRef]

Zhu, C.

C. Zhu, I. Hu, X. Ma, and A. Galvanauskas, “Single-frequency and single-transverse-mode Yb-doped CCC fiber MOPA with robust polarization SBS-free 511 W output,” in Advanced Solid-State Photonics, OSA Technical Digest (CD) (Optical Society of America, 2011), paper AMC5.

Adv. Opt. Photon. (1)

IEEE J. Sel. Top. Quantum Electron. (1)

Y. Jeong, J. Nilsson, J. K. Sahu, D. N. Payne, L. M. B. Hickey, and P. W. Turner, “Power scaling of single-frequency ytterbium-doped master-oscillator power amplifier sources up to 500 W,” IEEE J. Sel. Top. Quantum Electron. 13, 546–551 (2007).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

T. Horiguchi, T. Kurashima, and M. Tateda, “Tensile strain dependence of Brillouin frequency shift in silica optical fiber,” IEEE Photon. Technol. Lett. 1, 107–108 (1989).
[CrossRef]

T. Kurashima, T. Horiguchi, and M. Tateda, “Thermal effects of Brillouin gain spectra in single-mode fibers,” IEEE Photon. Technol. Lett. 2, 718–720 (1990).
[CrossRef]

J. Lightwave Technol. (3)

K. Shiraki, M. Ohashi, and M. Tateda, “SBS Threshold of a fiber with a Brillouin frequency shift distribution,” J. Lightwave Technol. 14, 50–57 (1996).
[CrossRef]

M. Niklès, L. Thévenaz, and P. A. Robert, “Brillouin gain spectrum characterization in single-mode optical fibers,” J. Lightwave Technol. 15, 1842–1851 (1997).
[CrossRef]

A. Tegtmeier Pedersen, L. Grüner-Nielsen, and K. Rottwitt, “Measurement and modeling of low-wavelength losses in silica fibers and their impact at communication wavelength,” J. Lightwave Technol. 27, 1296–1300 (2009).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Express (1)

M. Hildebrandt, S. Büsche, P. Weßels, M. Frede, and D. Kracht, “Brillouin scattering spectra in high-power single-frequency ytterbium doped fiber amplifiers,” Opt. Express 20, 15970–15979 (2008).
[CrossRef]

Opt. Lett. (4)

Optik (1)

G. Liu and D. Liu, “Numerical analysis of stimulated Brillouin scattering in high-power double-clad fiber lasers,” Optik 120, 24–28 (2009).
[CrossRef]

Proc. SPIE (2)

C. Robin, I. Dajani, C. Zeringue, B. Ward, and A. Lanari, “Gain-tailored SBS suppressing photonic crystal fibers for high power applications,” Proc. SPIE 8237, 82371D (2012).
[CrossRef]

D. Machewirth, V. Khitrov, U. Manyam, K. Tankala, A. Carter, J. Abramczyk, J. Farroni, D. Guertin, and N. Jacobson, “Large-mode-area double-clad fibers for pulsed and CW lasers and amplifiers,” Proc. SPIE 5335, 140–150 (2004).
[CrossRef]

Other (2)

G. Canat, A. Durécu, Y. Jaouën, S. Bordais, and R. Lebref, “Fiber composition influence on spontaneous Brillouin scattering properties in double-clad fiber amplifiers,” in Conference on Lasers and Electro-Optics, Technical Digest (CD) (Optical Society of America, 2006), paper CTuQ4.

C. Zhu, I. Hu, X. Ma, and A. Galvanauskas, “Single-frequency and single-transverse-mode Yb-doped CCC fiber MOPA with robust polarization SBS-free 511 W output,” in Advanced Solid-State Photonics, OSA Technical Digest (CD) (Optical Society of America, 2011), paper AMC5.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

The setup used in our experiments with a passive fiber. The ASE was counter-propagating to the single-frequency signal.

Fig. 2
Fig. 2

(a): The optical spectra of the ASE injected into the fiber, measured at the 30 %port of the second tap-coupler, for four different power levels used in the experiments. (b): Backscattered power with respect to the signal power for different levels of ASE within the Brillouin gain bandwidth. ASE counter-propagating to the signal. The dashed line indicates where the backscattered power reaches 0.1 % of the signal power.

Fig. 3
Fig. 3

(a): Evolution of the backscattered optical spectra for the case of no additional ASE and (b): when 3.8 nW of ASE power within the Brillouin gain bandwidth were added counter-propagating to the signal with increasing signal power.

Fig. 4
Fig. 4

Stokes peak power with respect to the signal power for different powers of ASE in the Brillouin gain bandwidth. ASE counter-propagating to the signal.

Fig. 5
Fig. 5

Setup of fiber amplifier, seeded with an NPRO and co-propagating artificially added ASE.

Fig. 6
Fig. 6

The optical spectra of the amplifier seed for four different power levels of artificially added ASE. The single-frequency signal power was kept constant throughout the measurements. Resolution bandwidth: 0.5 nm.

Fig. 7
Fig. 7

(a): Backscattered power and (b): SBS-peak power with respect to the signal power for different ratios of single-frequency signal and artificially added forward ASE in the Brillouin gain bandwidth.

Fig. 8
Fig. 8

Calculated Brillouin power with respect to the amplified signal power when the term accounting for backward ASE was included in the numerical simulation (black squares) and excluded (red circles). The dashed blue line corresponds to a reflectivity of 0.01 %.

Tables (2)

Tables Icon

Table 1 The ratio of the single-frequency signal and the artificially added ASE in forward direction and corresponding power within the Brillouin gain bandwidth. The resolution bandwidth of the optical spectrum analyzer was set to 0.5 nm.

Tables Icon

Table 2 Simulation parameters for the numerical model. gB0 is the Brillouin gain peak value and cf the coefficient for the temperature induced Brillouin frequency shift [14].

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

P n i = 4 h ν i Δ ν B S ( 1 + ( 2 ( ν B ν i ) / Δ ν B ) 2 ) ( exp ( h ν B / k T ) 1 ) .
d P B S i d z = Γ s P B S i ( N 2 σ B S i e N 1 σ B S i a ) + α P B S i P s g B i ( P B S i + P n i + P A S E , B S b Δ ν B S Δ ν A S E ) / A eff ,

Metrics