Abstract

This paper proposes a novel wavelength division multiplexing-orthogonal frequency multiple access (WDM-OFDMA) union passive optical network (uni-PON) architecture with dynamic resource allocation and variable rate access. It can offer an infrastructure with different access solutions. According to the quality of service (QoS) requirement of different services, the optical local terminal (OLT) can dynamically assign different resources as well as the access rates to different services. An experiment has been demonstrated with 4 wavelengths achieving combined signal at 109.92-Gb/s. A physical-layer adaptive algorithm is employed for the resource allocation and variable rate access. The different services with different resource allocations and variable access rates are also demonstrated in the experiment.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Chang, Z. Jia, J. Yu, A. Chowdhury, T. Wang, and G. Ellinas, “Super-Broadband Optical Wireless Access Technologies,” in Proc. OFC, paper OThD1 (2008).
  2. J. Chen, L. Wosinska, C. Machuca, and M. Jaeger, “Cost vs. reliability performance study of fiber access network architectures,” IEEE Commun. Mag. 48(2), 56–65 (2010).
    [CrossRef]
  3. F. Effenberger, “The XG-PON system: cost effective 10Gb/s access,” J. Lightwave Technol. 29(4), 403–409 (2011).
    [CrossRef]
  4. J. Kani, F. Bourgart, A. Cui, A. Rafel, M. Campbell, R. Davey, and S. Rodrigues, “Next-generation PON part I—Technology roadmap and general requirements,” IEEE Commun. Mag. 47(11), 43–49 (2009).
    [CrossRef]
  5. 10-Gigabit-Capable Passive Optical Network (XG-PON) Systems: Definitions, Abbreviations, and Acronyms, ITU-T G.987 (2009).
  6. S. Jain, F. Effenberger, A. Szabo, Z. Feng, A. Forcucci, W. Guo, Y. Luo, R. Mapes, Y. Zhang, and V. O’Byrne, “The world’s first XG-PON field trial,” J. Lightwave Technol. 29(4), 524–528 (2011).
    [CrossRef]
  7. D. Kilper, “Energy Efficient Networks,” in Proc. OFC, USA, paper OWI5 (2011).
  8. Y. Ma, Q. Yang, Y. Tang, S. Chen, and W. Shieh, “1-Tb/s single-channel coherent optical OFDM transmission over 600-km SSMF fiber with subwavelength bandwidth access,” Opt. Express 17(11), 9421–9427 (2009).
    [CrossRef] [PubMed]
  9. J. L. Wei, A. Hamié, R. P. Gidding, E. Hugues-Salas, X. Zheng, S. Mansoor, and J. M. Tang, “Adaptively modulated optical OFDM modems utilizing RSOAs as intensity modulators in IMDD SMF transmission systems,” Opt. Express 18(8), 8556–8573 (2010).
    [CrossRef] [PubMed]
  10. C. Yeh, C. Chow, and C. Hsu, “40-Gb/s Time-Division-Multiplexed Passive Optical Networks Using Downstream OOK and Upstream OFDM Modulations,” IEEE Photon. Technol. Lett. 22(2), 118–120 (2010).
    [CrossRef]
  11. H. Zhang, G. Pickrell, Z. Morbi, Y. Wang, M. Ho, K. Anselm, and W. Hwang, “32-Channel, Injection-Locked WDM-PON SFP Transceivers for Symmetric 1.25 Gbps Operation,” in Proc. OFC, USA, paper NTuB4 (2011).
  12. E. Wong, “Current and Next-Generation Broadband Access Technologies,” in Proc. OFC, USA, paper NMD1 (2011).
  13. N. Cvijetic, “OFDM for Next-Generation Optical Access Networks,” J. Lightwave Technol. 30(4), 384–398 (2012).
    [CrossRef]
  14. “Cloud-Radio Access Network (C-RAN) White Paper,” website: http://labs.chinamobile.com/cran/ .
  15. N. Cvijetic, M.-F. Huang, E. Ip, Y. Shao, Y.-K. Huang, M. Cvijetic, and T. Wang, “1.92 Tb/s coherent DWDM-OFDMA-PON with no high-speed ONU-side electronics over 100 km SSMF and 1:64 passive split,” Opt. Express 19(24), 24540–24545 (2011).
    [CrossRef] [PubMed]
  16. D. Qian, N. Cvijetic, J. Hu, and T. Wang, “108 Gb/s OFDMA-PON with Polarization Multiplexing and Direct Detection,” J. Lightwave Technol. 28(4), 484–493 (2010).
    [CrossRef]
  17. J. Armstrong, “OFDM for Optical Communications,” J. Lightwave Technol. 27(3), 189–204 (2009).
    [CrossRef]
  18. X. Liu, F. Buchali, and R. W. Tkach, “Improving the Nonlinear Tolerance of Polarization-Division-Multiplexed CO-OFDM in Long-Haul Fiber Transmission,” J. Lightwave Technol. 27(16), 3632–3640 (2009).
    [CrossRef]
  19. Z. Jia, J. Yu, and G.-K. Chang, “A Full-Duplex Radio-Over-Fiber System Based on Optical Carrier Suppression and Reuse,” IEEE Photon. Technol. Lett. 18(16), 1726–1728 (2006).
    [CrossRef]
  20. P. T. Shih, C. T. Lin, W. J. Jiang, H. S. Huang, J. Chen, A. Ng’oma, M. Sauer, and S. Chi, “Transmission of 20-Gb/s OFDM signals occupying 7-GHz license-free band at 60 GHz using a RoF system employing frequency sextupling optical up-conversion,” Opt. Express 18(12), 12748–12755 (2010).
    [CrossRef] [PubMed]
  21. Y. Hsueh, M. Huang, S. Fan, and G. Chang, “A Novel Lightwave Centralized Bidirectional Hybrid Access Network: Seamless Integration of RoF With WDM-OFDM-PON,” IEEE Photon. Technol. Lett. 23(15), 1085–1087 (2011).
    [CrossRef]
  22. C. H. Yeh, C. W. Chow, H. Y. Chen, and B. W. Chen, “Using adaptive four-band OFDM modulation with 40 Gb/s downstream and 10 Gb/s upstream signals for next generation long-reach PON,” Opt. Express 19(27), 26150–26160 (2011).
    [CrossRef] [PubMed]
  23. J. Ma, J. Yu, C. Yu, X. Xin, and Q. Zhang, “Transmission performance of the optical mm-wave generated by double-sideband intensity-modulation,” Opt. Commun. 280(2), 317–326 (2007).
    [CrossRef]

2012 (1)

2011 (5)

2010 (5)

2009 (4)

2007 (1)

J. Ma, J. Yu, C. Yu, X. Xin, and Q. Zhang, “Transmission performance of the optical mm-wave generated by double-sideband intensity-modulation,” Opt. Commun. 280(2), 317–326 (2007).
[CrossRef]

2006 (1)

Z. Jia, J. Yu, and G.-K. Chang, “A Full-Duplex Radio-Over-Fiber System Based on Optical Carrier Suppression and Reuse,” IEEE Photon. Technol. Lett. 18(16), 1726–1728 (2006).
[CrossRef]

Armstrong, J.

Bourgart, F.

J. Kani, F. Bourgart, A. Cui, A. Rafel, M. Campbell, R. Davey, and S. Rodrigues, “Next-generation PON part I—Technology roadmap and general requirements,” IEEE Commun. Mag. 47(11), 43–49 (2009).
[CrossRef]

Buchali, F.

Campbell, M.

J. Kani, F. Bourgart, A. Cui, A. Rafel, M. Campbell, R. Davey, and S. Rodrigues, “Next-generation PON part I—Technology roadmap and general requirements,” IEEE Commun. Mag. 47(11), 43–49 (2009).
[CrossRef]

Chang, G.

Y. Hsueh, M. Huang, S. Fan, and G. Chang, “A Novel Lightwave Centralized Bidirectional Hybrid Access Network: Seamless Integration of RoF With WDM-OFDM-PON,” IEEE Photon. Technol. Lett. 23(15), 1085–1087 (2011).
[CrossRef]

Chang, G.-K.

Z. Jia, J. Yu, and G.-K. Chang, “A Full-Duplex Radio-Over-Fiber System Based on Optical Carrier Suppression and Reuse,” IEEE Photon. Technol. Lett. 18(16), 1726–1728 (2006).
[CrossRef]

Chen, B. W.

Chen, H. Y.

Chen, J.

Chen, S.

Chi, S.

Chow, C.

C. Yeh, C. Chow, and C. Hsu, “40-Gb/s Time-Division-Multiplexed Passive Optical Networks Using Downstream OOK and Upstream OFDM Modulations,” IEEE Photon. Technol. Lett. 22(2), 118–120 (2010).
[CrossRef]

Chow, C. W.

Cui, A.

J. Kani, F. Bourgart, A. Cui, A. Rafel, M. Campbell, R. Davey, and S. Rodrigues, “Next-generation PON part I—Technology roadmap and general requirements,” IEEE Commun. Mag. 47(11), 43–49 (2009).
[CrossRef]

Cvijetic, M.

Cvijetic, N.

Davey, R.

J. Kani, F. Bourgart, A. Cui, A. Rafel, M. Campbell, R. Davey, and S. Rodrigues, “Next-generation PON part I—Technology roadmap and general requirements,” IEEE Commun. Mag. 47(11), 43–49 (2009).
[CrossRef]

Effenberger, F.

Fan, S.

Y. Hsueh, M. Huang, S. Fan, and G. Chang, “A Novel Lightwave Centralized Bidirectional Hybrid Access Network: Seamless Integration of RoF With WDM-OFDM-PON,” IEEE Photon. Technol. Lett. 23(15), 1085–1087 (2011).
[CrossRef]

Feng, Z.

Forcucci, A.

Gidding, R. P.

Guo, W.

Hamié, A.

Hsu, C.

C. Yeh, C. Chow, and C. Hsu, “40-Gb/s Time-Division-Multiplexed Passive Optical Networks Using Downstream OOK and Upstream OFDM Modulations,” IEEE Photon. Technol. Lett. 22(2), 118–120 (2010).
[CrossRef]

Hsueh, Y.

Y. Hsueh, M. Huang, S. Fan, and G. Chang, “A Novel Lightwave Centralized Bidirectional Hybrid Access Network: Seamless Integration of RoF With WDM-OFDM-PON,” IEEE Photon. Technol. Lett. 23(15), 1085–1087 (2011).
[CrossRef]

Hu, J.

Huang, H. S.

Huang, M.

Y. Hsueh, M. Huang, S. Fan, and G. Chang, “A Novel Lightwave Centralized Bidirectional Hybrid Access Network: Seamless Integration of RoF With WDM-OFDM-PON,” IEEE Photon. Technol. Lett. 23(15), 1085–1087 (2011).
[CrossRef]

Huang, M.-F.

Huang, Y.-K.

Hugues-Salas, E.

Ip, E.

Jaeger, M.

J. Chen, L. Wosinska, C. Machuca, and M. Jaeger, “Cost vs. reliability performance study of fiber access network architectures,” IEEE Commun. Mag. 48(2), 56–65 (2010).
[CrossRef]

Jain, S.

Jia, Z.

Z. Jia, J. Yu, and G.-K. Chang, “A Full-Duplex Radio-Over-Fiber System Based on Optical Carrier Suppression and Reuse,” IEEE Photon. Technol. Lett. 18(16), 1726–1728 (2006).
[CrossRef]

Jiang, W. J.

Kani, J.

J. Kani, F. Bourgart, A. Cui, A. Rafel, M. Campbell, R. Davey, and S. Rodrigues, “Next-generation PON part I—Technology roadmap and general requirements,” IEEE Commun. Mag. 47(11), 43–49 (2009).
[CrossRef]

Lin, C. T.

Liu, X.

Luo, Y.

Ma, J.

J. Ma, J. Yu, C. Yu, X. Xin, and Q. Zhang, “Transmission performance of the optical mm-wave generated by double-sideband intensity-modulation,” Opt. Commun. 280(2), 317–326 (2007).
[CrossRef]

Ma, Y.

Machuca, C.

J. Chen, L. Wosinska, C. Machuca, and M. Jaeger, “Cost vs. reliability performance study of fiber access network architectures,” IEEE Commun. Mag. 48(2), 56–65 (2010).
[CrossRef]

Mansoor, S.

Mapes, R.

Ng’oma, A.

O’Byrne, V.

Qian, D.

Rafel, A.

J. Kani, F. Bourgart, A. Cui, A. Rafel, M. Campbell, R. Davey, and S. Rodrigues, “Next-generation PON part I—Technology roadmap and general requirements,” IEEE Commun. Mag. 47(11), 43–49 (2009).
[CrossRef]

Rodrigues, S.

J. Kani, F. Bourgart, A. Cui, A. Rafel, M. Campbell, R. Davey, and S. Rodrigues, “Next-generation PON part I—Technology roadmap and general requirements,” IEEE Commun. Mag. 47(11), 43–49 (2009).
[CrossRef]

Sauer, M.

Shao, Y.

Shieh, W.

Shih, P. T.

Szabo, A.

Tang, J. M.

Tang, Y.

Tkach, R. W.

Wang, T.

Wei, J. L.

Wosinska, L.

J. Chen, L. Wosinska, C. Machuca, and M. Jaeger, “Cost vs. reliability performance study of fiber access network architectures,” IEEE Commun. Mag. 48(2), 56–65 (2010).
[CrossRef]

Xin, X.

J. Ma, J. Yu, C. Yu, X. Xin, and Q. Zhang, “Transmission performance of the optical mm-wave generated by double-sideband intensity-modulation,” Opt. Commun. 280(2), 317–326 (2007).
[CrossRef]

Yang, Q.

Yeh, C.

C. Yeh, C. Chow, and C. Hsu, “40-Gb/s Time-Division-Multiplexed Passive Optical Networks Using Downstream OOK and Upstream OFDM Modulations,” IEEE Photon. Technol. Lett. 22(2), 118–120 (2010).
[CrossRef]

Yeh, C. H.

Yu, C.

J. Ma, J. Yu, C. Yu, X. Xin, and Q. Zhang, “Transmission performance of the optical mm-wave generated by double-sideband intensity-modulation,” Opt. Commun. 280(2), 317–326 (2007).
[CrossRef]

Yu, J.

J. Ma, J. Yu, C. Yu, X. Xin, and Q. Zhang, “Transmission performance of the optical mm-wave generated by double-sideband intensity-modulation,” Opt. Commun. 280(2), 317–326 (2007).
[CrossRef]

Z. Jia, J. Yu, and G.-K. Chang, “A Full-Duplex Radio-Over-Fiber System Based on Optical Carrier Suppression and Reuse,” IEEE Photon. Technol. Lett. 18(16), 1726–1728 (2006).
[CrossRef]

Zhang, Q.

J. Ma, J. Yu, C. Yu, X. Xin, and Q. Zhang, “Transmission performance of the optical mm-wave generated by double-sideband intensity-modulation,” Opt. Commun. 280(2), 317–326 (2007).
[CrossRef]

Zhang, Y.

Zheng, X.

IEEE Commun. Mag. (2)

J. Chen, L. Wosinska, C. Machuca, and M. Jaeger, “Cost vs. reliability performance study of fiber access network architectures,” IEEE Commun. Mag. 48(2), 56–65 (2010).
[CrossRef]

J. Kani, F. Bourgart, A. Cui, A. Rafel, M. Campbell, R. Davey, and S. Rodrigues, “Next-generation PON part I—Technology roadmap and general requirements,” IEEE Commun. Mag. 47(11), 43–49 (2009).
[CrossRef]

IEEE Photon. Technol. Lett. (3)

C. Yeh, C. Chow, and C. Hsu, “40-Gb/s Time-Division-Multiplexed Passive Optical Networks Using Downstream OOK and Upstream OFDM Modulations,” IEEE Photon. Technol. Lett. 22(2), 118–120 (2010).
[CrossRef]

Z. Jia, J. Yu, and G.-K. Chang, “A Full-Duplex Radio-Over-Fiber System Based on Optical Carrier Suppression and Reuse,” IEEE Photon. Technol. Lett. 18(16), 1726–1728 (2006).
[CrossRef]

Y. Hsueh, M. Huang, S. Fan, and G. Chang, “A Novel Lightwave Centralized Bidirectional Hybrid Access Network: Seamless Integration of RoF With WDM-OFDM-PON,” IEEE Photon. Technol. Lett. 23(15), 1085–1087 (2011).
[CrossRef]

J. Lightwave Technol. (6)

Opt. Commun. (1)

J. Ma, J. Yu, C. Yu, X. Xin, and Q. Zhang, “Transmission performance of the optical mm-wave generated by double-sideband intensity-modulation,” Opt. Commun. 280(2), 317–326 (2007).
[CrossRef]

Opt. Express (5)

Other (6)

G. Chang, Z. Jia, J. Yu, A. Chowdhury, T. Wang, and G. Ellinas, “Super-Broadband Optical Wireless Access Technologies,” in Proc. OFC, paper OThD1 (2008).

“Cloud-Radio Access Network (C-RAN) White Paper,” website: http://labs.chinamobile.com/cran/ .

H. Zhang, G. Pickrell, Z. Morbi, Y. Wang, M. Ho, K. Anselm, and W. Hwang, “32-Channel, Injection-Locked WDM-PON SFP Transceivers for Symmetric 1.25 Gbps Operation,” in Proc. OFC, USA, paper NTuB4 (2011).

E. Wong, “Current and Next-Generation Broadband Access Technologies,” in Proc. OFC, USA, paper NMD1 (2011).

D. Kilper, “Energy Efficient Networks,” in Proc. OFC, USA, paper OWI5 (2011).

10-Gigabit-Capable Passive Optical Network (XG-PON) Systems: Definitions, Abbreviations, and Acronyms, ITU-T G.987 (2009).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

The proposed uni-PON architecture (CW: continues wave laser; MZM: Mach-Zenhder modulator; IM: intensity modulator; MUX: multiplexer; OF: optical filter; FWB: flexible wavelength blocker; AWG: arrayed waveguide grating; SW: switch; RN: remote node).

Fig. 2
Fig. 2

The block of adaptive algorithm: (a) transmitter; (b) receiver; (c) structure of leading symbol (P/S: parallel to serial; IFFT: inverse fast Fourier transform).

Fig. 3
Fig. 3

Experimental setup for the proposed uni-PON architecture (IL: interleaver; SMF: single mode fiber; LPF: low pass filter; TDS: real time domain sampling scope)

Fig. 4
Fig. 4

The corresponding optical spectra in Fig. 3 with resolution bandwidth of 0.02nm: (a) after the MZM; (b) after IM for radio signal; (c) after IM for baseband signal; (d) after EDFA; (e) before Rx-1; (f) before Rx-2.

Fig. 5
Fig. 5

Measured BER curves of baseband and radio signals with 64QAM constellation mapping and total rate of 109.92 Gb/s.

Fig. 6
Fig. 6

Measured BER curves of the baseband and radio signals with access rate of 18.32 Gb/s, 22.9 Gb/s and 27.48 Gb/s respectively (for λ2 channel).

Fig. 7
Fig. 7

Constellation diagrams of the baseband and radio signals with different access rates.

Fig. 8
Fig. 8

The measured BER curves of the baseband and radio signals with different services and access rates after 30km transmission.

Tables (1)

Tables Icon

Table 1 System Parameters for Experiment

Metrics