Abstract

We report handedness-sensitive surface plasmon polariton (SPP) emission in mirror-symmetric ensembles of elliptical nanoholes made in a thin gold film. It is found by means of rigorous calculations and scanning near-field optical microscopy that SPP excitation direction depends on the direction of circularly polarized illumination E-vector rotation. An analytical model based on anisotropic polarizability of each nanohole is presented. Both the experimental and calculated results are in agreement with Curie’s principle, and contribute to better understanding of symmetry in plasmonics.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, Berlin, 1988).
  2. D. P. Tsai, J. Kovacs, Z. Wang, M. Moskovits, J. S. Suh, R. Botet, and V. M. Shalaev, “Photon STM images of optical excitations of fractal metal colloid clusters,” Phys. Rev. Lett.72, 4149–4152 (1994).
    [CrossRef] [PubMed]
  3. H. J. Huang, C. P. Yu, H. C. Chang, K. P. Chiu, H. Ming Chen, R. S. Liu, and D. P. Tsai, “Plasmonic optical properties of a single gold nano-rod,” Opt. Express15(12), 7132–7139 (2007).
    [CrossRef] [PubMed]
  4. W. T. Chen, P. C. Wu, C. J. Chen, H. Y. Chung, Y. F. Chau, C. H. Kuan, and D. P. Tsai, “Electromagnetic energy vortex associated with sub-wavelength plasmonic Taiji marks,” Opt. Express18(19), 19665–19671 (2010).
    [CrossRef] [PubMed]
  5. W. T. Chen, C. J. Chen, P. C. Wu, S. Sun, L. Zhou, G. Y. Guo, C. T. Hsiao, K. Y. Yang, N. I. Zheludev, and D. P. Tsai, “Optical magnetic response in three-dimensional metamaterial of upright plasmonic meta-molecules,” Opt. Express19(13), 12837–12842 (2011).
    [CrossRef] [PubMed]
  6. M. Shcherbakov, M. Dobynde, T. Dolgova, D. P. Tsai, and A. Fedyanin, “Full Poincaré sphere coverage with plasmonic nanoslit metamaterial at Fano resonance,” Phys. Rev. B82(19), 193402 (2010).
    [CrossRef]
  7. Z. Fang, J. Cai, Z. Yan, P. Nordlander, N. J. Halas, and X. Zhu, “Removing a wedge from a metallic nanodisk reveals a fano resonance,” Nano Lett.11(10), 4475–4479 (2011).
    [CrossRef] [PubMed]
  8. Z. Fang, Q. Peng, W. Song, F. Hao, J. Wang, P. Nordlander, and X. Zhu, “Plasmonic focusing in symmetry broken nanocorrals,” Nano Lett.11(2), 893–897 (2011).
    [CrossRef] [PubMed]
  9. W. Chen, D. C. Abeysinghe, R. L. Nelson, and Q. Zhan, “Experimental confirmation of miniature spiral plasmonic lens as a circular polarization analyzer,” Nano Lett.10(6), 2075–2079 (2010).
    [CrossRef] [PubMed]
  10. M. R. Shcherbakov, B. B. Tsema, A. A. Ezhov, V. I. Panov, and A. A. Fedyanin, “Near-field optical polarimetry of plasmonic nanowires,” JETP Lett.93(12), 720–724 (2011).
    [CrossRef]
  11. H. Gao, J. Henzie, and T. W. Odom, “Direct evidence for surface plasmon-mediated enhanced light transmission through metallic nanohole arrays,” Nano Lett.6(9), 2104–2108 (2006).
    [CrossRef] [PubMed]
  12. S.-H. Chang, S. K. Gray, and G. C. Schatz, “Surface plasmon generation and light transmission by isolated nanoholes and arrays of nanoholes in thin metal films,” Opt. Express13(8), 3150–3165 (2005).
    [CrossRef] [PubMed]
  13. R. Gordon, L. K. S. Kumar, and A. G. Brolo, “Resonant light transmission through a nanohole in a metal film,” IEEE Trans. NanoTechnol.5(3), 291–294 (2006).
    [CrossRef]
  14. S. Collin, F. Pardo, and J.-L. Pelouard, “Waveguiding in nanoscale metallic apertures,” Opt. Express15(7), 4310–4320 (2007).
    [CrossRef] [PubMed]
  15. A. Degiron, H. J. Lezec, N. Yamamoto, and T. W. Ebbesen, “Optical transmission properties of a single subwavelength aperture in a real metal,” Opt. Commun.239(1-3), 61–66 (2004).
    [CrossRef]
  16. K. L. van der Molen, K. J. Klein Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Role of shape and localized resonances in extraordinary transmission through periodic arrays of subwavelength holes: Experiment and theory,” Phys. Rev. B72(4), 045421 (2005).
    [CrossRef]
  17. J. Jin, The Finite-Element Method in Electromagnetics (Wiley, New York, 1993).
  18. J. D. Jackson, Classical Electrodynamics, 3rd Ed. (Wiley, New York, 1998).
  19. E. Hartmann, An Introduction to Crystal Physics (University College Cardiff Press, Cardiff, Wales, 1984).

2011

Z. Fang, J. Cai, Z. Yan, P. Nordlander, N. J. Halas, and X. Zhu, “Removing a wedge from a metallic nanodisk reveals a fano resonance,” Nano Lett.11(10), 4475–4479 (2011).
[CrossRef] [PubMed]

Z. Fang, Q. Peng, W. Song, F. Hao, J. Wang, P. Nordlander, and X. Zhu, “Plasmonic focusing in symmetry broken nanocorrals,” Nano Lett.11(2), 893–897 (2011).
[CrossRef] [PubMed]

M. R. Shcherbakov, B. B. Tsema, A. A. Ezhov, V. I. Panov, and A. A. Fedyanin, “Near-field optical polarimetry of plasmonic nanowires,” JETP Lett.93(12), 720–724 (2011).
[CrossRef]

W. T. Chen, C. J. Chen, P. C. Wu, S. Sun, L. Zhou, G. Y. Guo, C. T. Hsiao, K. Y. Yang, N. I. Zheludev, and D. P. Tsai, “Optical magnetic response in three-dimensional metamaterial of upright plasmonic meta-molecules,” Opt. Express19(13), 12837–12842 (2011).
[CrossRef] [PubMed]

2010

W. T. Chen, P. C. Wu, C. J. Chen, H. Y. Chung, Y. F. Chau, C. H. Kuan, and D. P. Tsai, “Electromagnetic energy vortex associated with sub-wavelength plasmonic Taiji marks,” Opt. Express18(19), 19665–19671 (2010).
[CrossRef] [PubMed]

W. Chen, D. C. Abeysinghe, R. L. Nelson, and Q. Zhan, “Experimental confirmation of miniature spiral plasmonic lens as a circular polarization analyzer,” Nano Lett.10(6), 2075–2079 (2010).
[CrossRef] [PubMed]

M. Shcherbakov, M. Dobynde, T. Dolgova, D. P. Tsai, and A. Fedyanin, “Full Poincaré sphere coverage with plasmonic nanoslit metamaterial at Fano resonance,” Phys. Rev. B82(19), 193402 (2010).
[CrossRef]

2007

2006

H. Gao, J. Henzie, and T. W. Odom, “Direct evidence for surface plasmon-mediated enhanced light transmission through metallic nanohole arrays,” Nano Lett.6(9), 2104–2108 (2006).
[CrossRef] [PubMed]

R. Gordon, L. K. S. Kumar, and A. G. Brolo, “Resonant light transmission through a nanohole in a metal film,” IEEE Trans. NanoTechnol.5(3), 291–294 (2006).
[CrossRef]

2005

K. L. van der Molen, K. J. Klein Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Role of shape and localized resonances in extraordinary transmission through periodic arrays of subwavelength holes: Experiment and theory,” Phys. Rev. B72(4), 045421 (2005).
[CrossRef]

S.-H. Chang, S. K. Gray, and G. C. Schatz, “Surface plasmon generation and light transmission by isolated nanoholes and arrays of nanoholes in thin metal films,” Opt. Express13(8), 3150–3165 (2005).
[CrossRef] [PubMed]

2004

A. Degiron, H. J. Lezec, N. Yamamoto, and T. W. Ebbesen, “Optical transmission properties of a single subwavelength aperture in a real metal,” Opt. Commun.239(1-3), 61–66 (2004).
[CrossRef]

1994

D. P. Tsai, J. Kovacs, Z. Wang, M. Moskovits, J. S. Suh, R. Botet, and V. M. Shalaev, “Photon STM images of optical excitations of fractal metal colloid clusters,” Phys. Rev. Lett.72, 4149–4152 (1994).
[CrossRef] [PubMed]

Abeysinghe, D. C.

W. Chen, D. C. Abeysinghe, R. L. Nelson, and Q. Zhan, “Experimental confirmation of miniature spiral plasmonic lens as a circular polarization analyzer,” Nano Lett.10(6), 2075–2079 (2010).
[CrossRef] [PubMed]

Botet, R.

D. P. Tsai, J. Kovacs, Z. Wang, M. Moskovits, J. S. Suh, R. Botet, and V. M. Shalaev, “Photon STM images of optical excitations of fractal metal colloid clusters,” Phys. Rev. Lett.72, 4149–4152 (1994).
[CrossRef] [PubMed]

Brolo, A. G.

R. Gordon, L. K. S. Kumar, and A. G. Brolo, “Resonant light transmission through a nanohole in a metal film,” IEEE Trans. NanoTechnol.5(3), 291–294 (2006).
[CrossRef]

Cai, J.

Z. Fang, J. Cai, Z. Yan, P. Nordlander, N. J. Halas, and X. Zhu, “Removing a wedge from a metallic nanodisk reveals a fano resonance,” Nano Lett.11(10), 4475–4479 (2011).
[CrossRef] [PubMed]

Chang, H. C.

Chang, S.-H.

Chau, Y. F.

Chen, C. J.

Chen, W.

W. Chen, D. C. Abeysinghe, R. L. Nelson, and Q. Zhan, “Experimental confirmation of miniature spiral plasmonic lens as a circular polarization analyzer,” Nano Lett.10(6), 2075–2079 (2010).
[CrossRef] [PubMed]

Chen, W. T.

Chiu, K. P.

Chung, H. Y.

Collin, S.

Degiron, A.

A. Degiron, H. J. Lezec, N. Yamamoto, and T. W. Ebbesen, “Optical transmission properties of a single subwavelength aperture in a real metal,” Opt. Commun.239(1-3), 61–66 (2004).
[CrossRef]

Dobynde, M.

M. Shcherbakov, M. Dobynde, T. Dolgova, D. P. Tsai, and A. Fedyanin, “Full Poincaré sphere coverage with plasmonic nanoslit metamaterial at Fano resonance,” Phys. Rev. B82(19), 193402 (2010).
[CrossRef]

Dolgova, T.

M. Shcherbakov, M. Dobynde, T. Dolgova, D. P. Tsai, and A. Fedyanin, “Full Poincaré sphere coverage with plasmonic nanoslit metamaterial at Fano resonance,” Phys. Rev. B82(19), 193402 (2010).
[CrossRef]

Ebbesen, T. W.

A. Degiron, H. J. Lezec, N. Yamamoto, and T. W. Ebbesen, “Optical transmission properties of a single subwavelength aperture in a real metal,” Opt. Commun.239(1-3), 61–66 (2004).
[CrossRef]

Enoch, S.

K. L. van der Molen, K. J. Klein Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Role of shape and localized resonances in extraordinary transmission through periodic arrays of subwavelength holes: Experiment and theory,” Phys. Rev. B72(4), 045421 (2005).
[CrossRef]

Ezhov, A. A.

M. R. Shcherbakov, B. B. Tsema, A. A. Ezhov, V. I. Panov, and A. A. Fedyanin, “Near-field optical polarimetry of plasmonic nanowires,” JETP Lett.93(12), 720–724 (2011).
[CrossRef]

Fang, Z.

Z. Fang, Q. Peng, W. Song, F. Hao, J. Wang, P. Nordlander, and X. Zhu, “Plasmonic focusing in symmetry broken nanocorrals,” Nano Lett.11(2), 893–897 (2011).
[CrossRef] [PubMed]

Z. Fang, J. Cai, Z. Yan, P. Nordlander, N. J. Halas, and X. Zhu, “Removing a wedge from a metallic nanodisk reveals a fano resonance,” Nano Lett.11(10), 4475–4479 (2011).
[CrossRef] [PubMed]

Fedyanin, A.

M. Shcherbakov, M. Dobynde, T. Dolgova, D. P. Tsai, and A. Fedyanin, “Full Poincaré sphere coverage with plasmonic nanoslit metamaterial at Fano resonance,” Phys. Rev. B82(19), 193402 (2010).
[CrossRef]

Fedyanin, A. A.

M. R. Shcherbakov, B. B. Tsema, A. A. Ezhov, V. I. Panov, and A. A. Fedyanin, “Near-field optical polarimetry of plasmonic nanowires,” JETP Lett.93(12), 720–724 (2011).
[CrossRef]

Gao, H.

H. Gao, J. Henzie, and T. W. Odom, “Direct evidence for surface plasmon-mediated enhanced light transmission through metallic nanohole arrays,” Nano Lett.6(9), 2104–2108 (2006).
[CrossRef] [PubMed]

Gordon, R.

R. Gordon, L. K. S. Kumar, and A. G. Brolo, “Resonant light transmission through a nanohole in a metal film,” IEEE Trans. NanoTechnol.5(3), 291–294 (2006).
[CrossRef]

Gray, S. K.

Guo, G. Y.

Halas, N. J.

Z. Fang, J. Cai, Z. Yan, P. Nordlander, N. J. Halas, and X. Zhu, “Removing a wedge from a metallic nanodisk reveals a fano resonance,” Nano Lett.11(10), 4475–4479 (2011).
[CrossRef] [PubMed]

Hao, F.

Z. Fang, Q. Peng, W. Song, F. Hao, J. Wang, P. Nordlander, and X. Zhu, “Plasmonic focusing in symmetry broken nanocorrals,” Nano Lett.11(2), 893–897 (2011).
[CrossRef] [PubMed]

Henzie, J.

H. Gao, J. Henzie, and T. W. Odom, “Direct evidence for surface plasmon-mediated enhanced light transmission through metallic nanohole arrays,” Nano Lett.6(9), 2104–2108 (2006).
[CrossRef] [PubMed]

Hsiao, C. T.

Huang, H. J.

Klein Koerkamp, K. J.

K. L. van der Molen, K. J. Klein Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Role of shape and localized resonances in extraordinary transmission through periodic arrays of subwavelength holes: Experiment and theory,” Phys. Rev. B72(4), 045421 (2005).
[CrossRef]

Kovacs, J.

D. P. Tsai, J. Kovacs, Z. Wang, M. Moskovits, J. S. Suh, R. Botet, and V. M. Shalaev, “Photon STM images of optical excitations of fractal metal colloid clusters,” Phys. Rev. Lett.72, 4149–4152 (1994).
[CrossRef] [PubMed]

Kuan, C. H.

Kuipers, L.

K. L. van der Molen, K. J. Klein Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Role of shape and localized resonances in extraordinary transmission through periodic arrays of subwavelength holes: Experiment and theory,” Phys. Rev. B72(4), 045421 (2005).
[CrossRef]

Kumar, L. K. S.

R. Gordon, L. K. S. Kumar, and A. G. Brolo, “Resonant light transmission through a nanohole in a metal film,” IEEE Trans. NanoTechnol.5(3), 291–294 (2006).
[CrossRef]

Lezec, H. J.

A. Degiron, H. J. Lezec, N. Yamamoto, and T. W. Ebbesen, “Optical transmission properties of a single subwavelength aperture in a real metal,” Opt. Commun.239(1-3), 61–66 (2004).
[CrossRef]

Liu, R. S.

Ming Chen, H.

Moskovits, M.

D. P. Tsai, J. Kovacs, Z. Wang, M. Moskovits, J. S. Suh, R. Botet, and V. M. Shalaev, “Photon STM images of optical excitations of fractal metal colloid clusters,” Phys. Rev. Lett.72, 4149–4152 (1994).
[CrossRef] [PubMed]

Nelson, R. L.

W. Chen, D. C. Abeysinghe, R. L. Nelson, and Q. Zhan, “Experimental confirmation of miniature spiral plasmonic lens as a circular polarization analyzer,” Nano Lett.10(6), 2075–2079 (2010).
[CrossRef] [PubMed]

Nordlander, P.

Z. Fang, J. Cai, Z. Yan, P. Nordlander, N. J. Halas, and X. Zhu, “Removing a wedge from a metallic nanodisk reveals a fano resonance,” Nano Lett.11(10), 4475–4479 (2011).
[CrossRef] [PubMed]

Z. Fang, Q. Peng, W. Song, F. Hao, J. Wang, P. Nordlander, and X. Zhu, “Plasmonic focusing in symmetry broken nanocorrals,” Nano Lett.11(2), 893–897 (2011).
[CrossRef] [PubMed]

Odom, T. W.

H. Gao, J. Henzie, and T. W. Odom, “Direct evidence for surface plasmon-mediated enhanced light transmission through metallic nanohole arrays,” Nano Lett.6(9), 2104–2108 (2006).
[CrossRef] [PubMed]

Panov, V. I.

M. R. Shcherbakov, B. B. Tsema, A. A. Ezhov, V. I. Panov, and A. A. Fedyanin, “Near-field optical polarimetry of plasmonic nanowires,” JETP Lett.93(12), 720–724 (2011).
[CrossRef]

Pardo, F.

Pelouard, J.-L.

Peng, Q.

Z. Fang, Q. Peng, W. Song, F. Hao, J. Wang, P. Nordlander, and X. Zhu, “Plasmonic focusing in symmetry broken nanocorrals,” Nano Lett.11(2), 893–897 (2011).
[CrossRef] [PubMed]

Schatz, G. C.

Segerink, F. B.

K. L. van der Molen, K. J. Klein Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Role of shape and localized resonances in extraordinary transmission through periodic arrays of subwavelength holes: Experiment and theory,” Phys. Rev. B72(4), 045421 (2005).
[CrossRef]

Shalaev, V. M.

D. P. Tsai, J. Kovacs, Z. Wang, M. Moskovits, J. S. Suh, R. Botet, and V. M. Shalaev, “Photon STM images of optical excitations of fractal metal colloid clusters,” Phys. Rev. Lett.72, 4149–4152 (1994).
[CrossRef] [PubMed]

Shcherbakov, M.

M. Shcherbakov, M. Dobynde, T. Dolgova, D. P. Tsai, and A. Fedyanin, “Full Poincaré sphere coverage with plasmonic nanoslit metamaterial at Fano resonance,” Phys. Rev. B82(19), 193402 (2010).
[CrossRef]

Shcherbakov, M. R.

M. R. Shcherbakov, B. B. Tsema, A. A. Ezhov, V. I. Panov, and A. A. Fedyanin, “Near-field optical polarimetry of plasmonic nanowires,” JETP Lett.93(12), 720–724 (2011).
[CrossRef]

Song, W.

Z. Fang, Q. Peng, W. Song, F. Hao, J. Wang, P. Nordlander, and X. Zhu, “Plasmonic focusing in symmetry broken nanocorrals,” Nano Lett.11(2), 893–897 (2011).
[CrossRef] [PubMed]

Suh, J. S.

D. P. Tsai, J. Kovacs, Z. Wang, M. Moskovits, J. S. Suh, R. Botet, and V. M. Shalaev, “Photon STM images of optical excitations of fractal metal colloid clusters,” Phys. Rev. Lett.72, 4149–4152 (1994).
[CrossRef] [PubMed]

Sun, S.

Tsai, D. P.

Tsema, B. B.

M. R. Shcherbakov, B. B. Tsema, A. A. Ezhov, V. I. Panov, and A. A. Fedyanin, “Near-field optical polarimetry of plasmonic nanowires,” JETP Lett.93(12), 720–724 (2011).
[CrossRef]

van der Molen, K. L.

K. L. van der Molen, K. J. Klein Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Role of shape and localized resonances in extraordinary transmission through periodic arrays of subwavelength holes: Experiment and theory,” Phys. Rev. B72(4), 045421 (2005).
[CrossRef]

van Hulst, N. F.

K. L. van der Molen, K. J. Klein Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Role of shape and localized resonances in extraordinary transmission through periodic arrays of subwavelength holes: Experiment and theory,” Phys. Rev. B72(4), 045421 (2005).
[CrossRef]

Wang, J.

Z. Fang, Q. Peng, W. Song, F. Hao, J. Wang, P. Nordlander, and X. Zhu, “Plasmonic focusing in symmetry broken nanocorrals,” Nano Lett.11(2), 893–897 (2011).
[CrossRef] [PubMed]

Wang, Z.

D. P. Tsai, J. Kovacs, Z. Wang, M. Moskovits, J. S. Suh, R. Botet, and V. M. Shalaev, “Photon STM images of optical excitations of fractal metal colloid clusters,” Phys. Rev. Lett.72, 4149–4152 (1994).
[CrossRef] [PubMed]

Wu, P. C.

Yamamoto, N.

A. Degiron, H. J. Lezec, N. Yamamoto, and T. W. Ebbesen, “Optical transmission properties of a single subwavelength aperture in a real metal,” Opt. Commun.239(1-3), 61–66 (2004).
[CrossRef]

Yan, Z.

Z. Fang, J. Cai, Z. Yan, P. Nordlander, N. J. Halas, and X. Zhu, “Removing a wedge from a metallic nanodisk reveals a fano resonance,” Nano Lett.11(10), 4475–4479 (2011).
[CrossRef] [PubMed]

Yang, K. Y.

Yu, C. P.

Zhan, Q.

W. Chen, D. C. Abeysinghe, R. L. Nelson, and Q. Zhan, “Experimental confirmation of miniature spiral plasmonic lens as a circular polarization analyzer,” Nano Lett.10(6), 2075–2079 (2010).
[CrossRef] [PubMed]

Zheludev, N. I.

Zhou, L.

Zhu, X.

Z. Fang, J. Cai, Z. Yan, P. Nordlander, N. J. Halas, and X. Zhu, “Removing a wedge from a metallic nanodisk reveals a fano resonance,” Nano Lett.11(10), 4475–4479 (2011).
[CrossRef] [PubMed]

Z. Fang, Q. Peng, W. Song, F. Hao, J. Wang, P. Nordlander, and X. Zhu, “Plasmonic focusing in symmetry broken nanocorrals,” Nano Lett.11(2), 893–897 (2011).
[CrossRef] [PubMed]

IEEE Trans. NanoTechnol.

R. Gordon, L. K. S. Kumar, and A. G. Brolo, “Resonant light transmission through a nanohole in a metal film,” IEEE Trans. NanoTechnol.5(3), 291–294 (2006).
[CrossRef]

JETP Lett.

M. R. Shcherbakov, B. B. Tsema, A. A. Ezhov, V. I. Panov, and A. A. Fedyanin, “Near-field optical polarimetry of plasmonic nanowires,” JETP Lett.93(12), 720–724 (2011).
[CrossRef]

Nano Lett.

H. Gao, J. Henzie, and T. W. Odom, “Direct evidence for surface plasmon-mediated enhanced light transmission through metallic nanohole arrays,” Nano Lett.6(9), 2104–2108 (2006).
[CrossRef] [PubMed]

Z. Fang, J. Cai, Z. Yan, P. Nordlander, N. J. Halas, and X. Zhu, “Removing a wedge from a metallic nanodisk reveals a fano resonance,” Nano Lett.11(10), 4475–4479 (2011).
[CrossRef] [PubMed]

Z. Fang, Q. Peng, W. Song, F. Hao, J. Wang, P. Nordlander, and X. Zhu, “Plasmonic focusing in symmetry broken nanocorrals,” Nano Lett.11(2), 893–897 (2011).
[CrossRef] [PubMed]

W. Chen, D. C. Abeysinghe, R. L. Nelson, and Q. Zhan, “Experimental confirmation of miniature spiral plasmonic lens as a circular polarization analyzer,” Nano Lett.10(6), 2075–2079 (2010).
[CrossRef] [PubMed]

Opt. Commun.

A. Degiron, H. J. Lezec, N. Yamamoto, and T. W. Ebbesen, “Optical transmission properties of a single subwavelength aperture in a real metal,” Opt. Commun.239(1-3), 61–66 (2004).
[CrossRef]

Opt. Express

Phys. Rev. B

M. Shcherbakov, M. Dobynde, T. Dolgova, D. P. Tsai, and A. Fedyanin, “Full Poincaré sphere coverage with plasmonic nanoslit metamaterial at Fano resonance,” Phys. Rev. B82(19), 193402 (2010).
[CrossRef]

K. L. van der Molen, K. J. Klein Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Role of shape and localized resonances in extraordinary transmission through periodic arrays of subwavelength holes: Experiment and theory,” Phys. Rev. B72(4), 045421 (2005).
[CrossRef]

Phys. Rev. Lett.

D. P. Tsai, J. Kovacs, Z. Wang, M. Moskovits, J. S. Suh, R. Botet, and V. M. Shalaev, “Photon STM images of optical excitations of fractal metal colloid clusters,” Phys. Rev. Lett.72, 4149–4152 (1994).
[CrossRef] [PubMed]

Other

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, Berlin, 1988).

J. Jin, The Finite-Element Method in Electromagnetics (Wiley, New York, 1993).

J. D. Jackson, Classical Electrodynamics, 3rd Ed. (Wiley, New York, 1998).

E. Hartmann, An Introduction to Crystal Physics (University College Cardiff Press, Cardiff, Wales, 1984).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

a) A scanning electron micrograph of an elliptical nanohole ensemble sample milled in a gold film by focused ion beam. The dimensions notation is as follows: a stands for minor ellipse axis length, b is for major ellipse axis length, d is for distance between the inner edges of the ellipses and the center of the ensemble and t is for the thickness of the film. b)-c) Finite element simulations of the logarithmic-scale electromagnetic field intensity at a subwavelength height from the elliptical nanohole ensemble with a = 100 nm, b = 300 nm, d = 250 nm and t = 150 nm illuminated by left-hand (b) and right-hand (c) circularly polarized light at λ = 820 nm. Handedness-sensitive emission of SPPs, which direction and boundaries are marked with arrows and dashed lines, respectively, is observed.

Fig. 2
Fig. 2

A SNOM setup for experimental observation of handedness-sensitive SPP emission

Fig. 3
Fig. 3

a) A shear-force topography image of an elliptical nanohole ensemble sample. As extracted from scanning electron microscopy sample dimensions are: a = 100 nm, b = 500 nm, d = 250 nm. b), c) SNOM images of the sample taken with backside left-hand and right-hand circularly polarized light illumination, respectively. SPP waves considered as handedness sensitive ones are marked with solid arrows. The dashed arrows denote the SPP directions either present for both polarizations either rising from the imperfection of the sample.

Fig. 4
Fig. 4

The distribution of difference of intensities for right- and left-hand circularly polarized illumination in plane of holes (z = 0) under 2πh/λ=1 condition. Black ellipses denote the nanoholes position.

Fig. 5
Fig. 5

Finite element simulations of the elliptical nanohole ensemble with a = 100 nm, b = 500 nm and d = 250 nm illuminated by the left-hand (a) and right-hand (b) circularly polarized light at λ = 650 nm which corresponds to experimental situation. Large arrows indicate SPP waves, which are switched with illumination polarization change, and small arrows indicate ones that do not.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

α kl ( i ) =ξV n k ( i ) n l ( i ) ,
ξ= 1 4π ( ε( ω )1 )( 1 ε ¯ ) ( ε( ω ) ε ¯ ) , ε ¯ = ξ 0 ( 2 ξ 0 +( ξ 0 2 1 )ln( ( ξ 0 +1 )/( ξ 0 1 ) ) ) ( ξ 0 2 1 )( 2+ ξ 0 ln( ( ξ 0 +1 )/( ξ 0 1 ) ) )
r ( 1 ) =h[ 0,1,0 ]; r ( 2 ) =h[ 3 /2,0.5,0 ]; r ( 3 ) =h[ 3 /2,0.5,0 ],
×( × G ^ 0 ( r, r ,ω ) ) ( ω c ) 2 G ^ 0 ( r, r ,ω )=4π ( ω c ) 2 1 ^ δ( r r ),
G 0,i,j ( r, r ,ω )=[ ( δ ij n i n j )+ 3 n i n j δ ij k 2 ( 1 | r r | 2 ik | r r | ) ] e ik| r r | | r r | ,
d 1 = α ^ 1 ( E 0 + G ^ 0 ( r 1 r 2 ,ω ) d 2 + G ^ 0 ( r 1 r 3 ,ω ) d 3 ); d 2 = α ^ 2 ( E 0 + G ^ 0 ( r 2 r 1 ,ω ) d 1 + G ^ 0 ( r 2 r 3 ,ω ) d 3 ); d 3 = α ^ 3 ( E 0 + G ^ 0 ( r 3 r 1 ,ω ) d 1 + G ^ 0 ( r 3 r 2 ,ω ) d 2 ).
d 1 =ξV( n ( 1 ) E 0 + n ( 1 ) G ^ 0 ( r 1 - r 2 ,ω ) n ( 2 ) d 2 + n ( 1 ) G ^ 0 ( r 1 - r 3 ,w ) n ( 3 ) d 3 ); d 2 =ξV( n ( 2 ) E 0 + n ( 2 ) G ^ 0 ( r 2 - r 1 ,ω ) n ( 1 ) d 1 + n ( 2 ) G ^ 0 ( r 2 - r 3 ,ω ) n ( 3 ) d 3 ); d 3 =ξV( n ( 3 ) E 0 + n ( 3 ) G ^ 0 ( r 3 - r 2 ,ω ) n ( 2 ) d 2 + n ( 3 ) G ^ 0 ( r 3 - r 1 ,ω ) n ( 1 ) d 1 ).
n ( 1 ) G ^ 0 ( r 1 r 2 ,ω ) n ( 2 ) = n ( 1 ) G ^ 0 ( r 1 r 3 ,ω ) n ( 3 ) = n ( 2 ) G ^ 0 ( r 2 r 3 ,ω ) n ( 3 ) =c; d 1 + d 2 + d 3 =0.
d i = ξV 1+cξV n ( i ) E 0 .
E( r )= E 0 + 1 1+cξV ( G ^ 0 ( r- r 1 ,ω ) α ^ 1 + G ^ 0 ( r- r 2 ,ω ) α ^ 2 + G ^ 0 ( r- r 3 ,ω ) α ^ 3 ) E 0

Metrics