Abstract

We develop a technique that now enables surface plasmon polaritons (SPPs) coupled by nano-patterned slits in a metal film to be detected using conventional optical microscopy with standard objective lenses. The crux of this method is an ultra-thin polymer layer on the metal surface, whose thickness can be varied over a nanoscale range to enable controllable tuning of the SPP momentum. At an optimal layer thickness for which the SPP momentum matches the momentum of light emerging from the slit, the SPP coupling efficiency is enhanced about six times relative to that without the layer. The enhanced efficiency results in distinctive and bright plasmonic signatures near the slit visible by naked eye under an optical microscope. We demonstrate how this capability can be used for parallel measurement through a simple experiment in which the SPP propagation distance is extracted from a single microscope image of an illuminated array of nano-patterned slits on a metal surface. We also use optical microscopy to image the focal region of a plasmonic lens and obtain results consistent with a previously-reported results using near-field optical microscopy. Measurement of SPPs near a nano-slit using conventional and widely-available optical microscopy is an important step towards making nano-plasmonic device technology highly accessible and easy-to-use.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Liedberg, C. Nylander, and I. Lunström, “Surface plasmon resonance for gas detection and biosensing,” Sens. Actuators 4, 299–304 (1983).
    [CrossRef]
  2. X. Hoa, A. Kirk, and M. Tabrizian, “Towards integrated and sensitive surface plasmon resonance biosensors: A review of recent progress,” Biosens. Bioelectron. 23, 151–160 (2007).
    [CrossRef] [PubMed]
  3. C. Loo, A. Lowery, N. Halas, J. West, and R. Drezek, “Innumotargeted nanoshells for integrated cancer imaging and therapy,” Nano Lett. 5, 709–711 (2005).
    [CrossRef] [PubMed]
  4. T. Okamoto, I. Yamaguchi, and T. Kobayashi, “Local plasmon sensor with gold colloid monolayers deposited upon glass substrates,” Opt. Lett. 25, 372–374 (2000).
    [CrossRef]
  5. E. Kretschmann, “The angular dependence and the polarisation of light emitted by surface plasmons on metals due to roughness,” Opt. Commun. 5, 331–336 (1972).
    [CrossRef]
  6. B. Vohnsen and S. Bozhevolnyi, “Coupling of surface-plasmon polaritons to directional far-field radiation by an individual surface protrusion,” Appl. Opt. 40, 6081–6085 (2001).
    [CrossRef]
  7. A. Hohenau, J. Krenn, A. Stepanov, A. Drezet, H. Ditlbacher, B. Steinberger, A. Leitner, and F. Aussenegg, “Dielectric optical elements for surface plasmons,” Opt. Lett. 30, 893–895 (2005).
    [CrossRef] [PubMed]
  8. B. Steinberger, A. Hohenau, H. Ditlbacher, A. Stepanov, A. Drezet, F. Aussenegg, A. Leitner, and J. Krenn, “Dielectric stripes on gold as surface plasmon waveguides,” Appl. Phys. Lett. 88, 094104 (2006).
    [CrossRef]
  9. T. Homgaard and S. Bozhevolnyi, “Theoretical analysis of dielectric-loaded surface plasmon-polariton waveguides,” Phys. Rev. B 75, 245405 (2007).
    [CrossRef]
  10. B. Rothenhausler and W. Knoll, “Surface-plasmon microscopy,” Nature 40, 615–617 (1988).
  11. I. Smolyaninov, C. Davis, J. Elliott, and A. Zayats, “Resolution enhancement of a surface immersion microscope near the plasmon resonance,” Opt. Lett. 40, 381–384 (2005).
  12. Biacore: Sensor Surface Handbook (General Electric Company, 2005).
  13. K. Lee and Q. Park, “Coupling of surface plasmon polaritons and light in metallic nanoslits,” Phys. Rev. Lett. 95, 103902 (2005).
    [CrossRef] [PubMed]
  14. L. Yin, V. Vlasko-Vlasov, J. Pearson, J. Hiller, J. Hua, U. Welp, D. Brown, and C. Kimball, “Subwavelength focusing and guiding of surface plasmons,” Nano Lett. 5, 1399–1402 (2005).
    [CrossRef] [PubMed]
  15. H. Kihm, K. Lee, D. Kim, J. Kang, and Q. Park, “Control of surface plasmon generation efficiency by slit-width tuning,” Appl. Phys. Lett. 92, 051115 (2008).
    [CrossRef]
  16. P. Lalanne, J. Hugonin, and J. Rodier, “Theory of surface plasmon generation at nanoslit apertures,” Phys. Rev. Lett. 95, 263902 (2005).
    [CrossRef]
  17. H. Ditlbacher, J. Krenn, A. Hohenau, A. Leitner, and F. Aussenegg, “Efficiency of local light-plasmon coupling,” Appl. Phys. Lett. 83, 3665–3667 (2003).
    [CrossRef]
  18. A. Baudrion, F. de León-Perez, O. Mahboub, A. Hohenau, H. Ditlbacher, F. García-Vidal, J. Dintinger, T. Ebbesen, L. Martín-Moreno, and J. Krenn, “Coupling efficiency of light to surface plasmon polariton for single sub-wavelength holes in a gold film,” Opt. Express 16, 3420–3429 (2008).
    [CrossRef] [PubMed]
  19. J. Laluet, A. Drezet, C. Genet, and T. Ebbesen, “Generation of surface plasmons at single subwavelength slits: from slit to ridge plasmon,” New J. Phys. 10, 105014 (2008).
    [CrossRef]
  20. L. Grave de Peralta, “Study of interference between surface plasmon polaritons by leakage radiation microscopy,” J. Opt. Soc. Am. B 27, 1513–1517 (2010).
    [CrossRef]
  21. F. Baida, D. van Labeke, A. Bouhelier, T. Huser, and D. Pohl, “Propagation and diffraction of locally excited surface plasmons,” J. Opt. Soc. Am. A 18, 1552–1561 (2001).
    [CrossRef]
  22. F. López-Tejeira, S. Rodrigo, L. Marín-Moreno, F. García-Vidal, E. Devaux, T. Ebbesen, J. Krenn, I. Radko, S. Bozhevolnyi, M. González, J. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nat. Phys. 3, 324–328 (2007).
    [CrossRef]
  23. R. Mehfuz, M. Maqsood, and K. Chau, “Enhancing the efficiency of slit-coupling to surface-plasmon-polaritons via dispersion engineering,” Opt. Express 18, 18206–18216 (2010).
    [CrossRef] [PubMed]
  24. The restriction that the slit sustain only the lowest order mode simplifies the analysis of SPP coupling. Making the slit larger such that it allows higher order modes would then require considerations of possible diffraction-assisted SPP coupling, which was studied in Ref. [25].
  25. M. Maqsood, R. Mehfuz, and K. Chau, “High-throughput diffraction-assisted surface-plasmon-polariton coupling by a super-wavelength slit,” Opt. Express 18, 21669–21677 (2010).
    [CrossRef] [PubMed]
  26. B. Wang, L. Aigouy, E. Bourhis, J. Gierak, J. Hugonin, and P. Lalanne, “Efficient generation of surface plasmon by single-nanoslit illumination under highly oblique incidence,” Appl. Phys. Lett. 94, 011114 (2009).
    [CrossRef]
  27. P. Johnson and R. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
    [CrossRef]

2010 (3)

2009 (1)

B. Wang, L. Aigouy, E. Bourhis, J. Gierak, J. Hugonin, and P. Lalanne, “Efficient generation of surface plasmon by single-nanoslit illumination under highly oblique incidence,” Appl. Phys. Lett. 94, 011114 (2009).
[CrossRef]

2008 (3)

H. Kihm, K. Lee, D. Kim, J. Kang, and Q. Park, “Control of surface plasmon generation efficiency by slit-width tuning,” Appl. Phys. Lett. 92, 051115 (2008).
[CrossRef]

A. Baudrion, F. de León-Perez, O. Mahboub, A. Hohenau, H. Ditlbacher, F. García-Vidal, J. Dintinger, T. Ebbesen, L. Martín-Moreno, and J. Krenn, “Coupling efficiency of light to surface plasmon polariton for single sub-wavelength holes in a gold film,” Opt. Express 16, 3420–3429 (2008).
[CrossRef] [PubMed]

J. Laluet, A. Drezet, C. Genet, and T. Ebbesen, “Generation of surface plasmons at single subwavelength slits: from slit to ridge plasmon,” New J. Phys. 10, 105014 (2008).
[CrossRef]

2007 (3)

T. Homgaard and S. Bozhevolnyi, “Theoretical analysis of dielectric-loaded surface plasmon-polariton waveguides,” Phys. Rev. B 75, 245405 (2007).
[CrossRef]

X. Hoa, A. Kirk, and M. Tabrizian, “Towards integrated and sensitive surface plasmon resonance biosensors: A review of recent progress,” Biosens. Bioelectron. 23, 151–160 (2007).
[CrossRef] [PubMed]

F. López-Tejeira, S. Rodrigo, L. Marín-Moreno, F. García-Vidal, E. Devaux, T. Ebbesen, J. Krenn, I. Radko, S. Bozhevolnyi, M. González, J. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nat. Phys. 3, 324–328 (2007).
[CrossRef]

2006 (1)

B. Steinberger, A. Hohenau, H. Ditlbacher, A. Stepanov, A. Drezet, F. Aussenegg, A. Leitner, and J. Krenn, “Dielectric stripes on gold as surface plasmon waveguides,” Appl. Phys. Lett. 88, 094104 (2006).
[CrossRef]

2005 (6)

A. Hohenau, J. Krenn, A. Stepanov, A. Drezet, H. Ditlbacher, B. Steinberger, A. Leitner, and F. Aussenegg, “Dielectric optical elements for surface plasmons,” Opt. Lett. 30, 893–895 (2005).
[CrossRef] [PubMed]

C. Loo, A. Lowery, N. Halas, J. West, and R. Drezek, “Innumotargeted nanoshells for integrated cancer imaging and therapy,” Nano Lett. 5, 709–711 (2005).
[CrossRef] [PubMed]

I. Smolyaninov, C. Davis, J. Elliott, and A. Zayats, “Resolution enhancement of a surface immersion microscope near the plasmon resonance,” Opt. Lett. 40, 381–384 (2005).

K. Lee and Q. Park, “Coupling of surface plasmon polaritons and light in metallic nanoslits,” Phys. Rev. Lett. 95, 103902 (2005).
[CrossRef] [PubMed]

L. Yin, V. Vlasko-Vlasov, J. Pearson, J. Hiller, J. Hua, U. Welp, D. Brown, and C. Kimball, “Subwavelength focusing and guiding of surface plasmons,” Nano Lett. 5, 1399–1402 (2005).
[CrossRef] [PubMed]

P. Lalanne, J. Hugonin, and J. Rodier, “Theory of surface plasmon generation at nanoslit apertures,” Phys. Rev. Lett. 95, 263902 (2005).
[CrossRef]

2003 (1)

H. Ditlbacher, J. Krenn, A. Hohenau, A. Leitner, and F. Aussenegg, “Efficiency of local light-plasmon coupling,” Appl. Phys. Lett. 83, 3665–3667 (2003).
[CrossRef]

2001 (2)

2000 (1)

1988 (1)

B. Rothenhausler and W. Knoll, “Surface-plasmon microscopy,” Nature 40, 615–617 (1988).

1983 (1)

B. Liedberg, C. Nylander, and I. Lunström, “Surface plasmon resonance for gas detection and biosensing,” Sens. Actuators 4, 299–304 (1983).
[CrossRef]

1972 (2)

E. Kretschmann, “The angular dependence and the polarisation of light emitted by surface plasmons on metals due to roughness,” Opt. Commun. 5, 331–336 (1972).
[CrossRef]

P. Johnson and R. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

Aigouy, L.

B. Wang, L. Aigouy, E. Bourhis, J. Gierak, J. Hugonin, and P. Lalanne, “Efficient generation of surface plasmon by single-nanoslit illumination under highly oblique incidence,” Appl. Phys. Lett. 94, 011114 (2009).
[CrossRef]

Aussenegg, F.

B. Steinberger, A. Hohenau, H. Ditlbacher, A. Stepanov, A. Drezet, F. Aussenegg, A. Leitner, and J. Krenn, “Dielectric stripes on gold as surface plasmon waveguides,” Appl. Phys. Lett. 88, 094104 (2006).
[CrossRef]

A. Hohenau, J. Krenn, A. Stepanov, A. Drezet, H. Ditlbacher, B. Steinberger, A. Leitner, and F. Aussenegg, “Dielectric optical elements for surface plasmons,” Opt. Lett. 30, 893–895 (2005).
[CrossRef] [PubMed]

H. Ditlbacher, J. Krenn, A. Hohenau, A. Leitner, and F. Aussenegg, “Efficiency of local light-plasmon coupling,” Appl. Phys. Lett. 83, 3665–3667 (2003).
[CrossRef]

Baida, F.

Baudrion, A.

Bouhelier, A.

Bourhis, E.

B. Wang, L. Aigouy, E. Bourhis, J. Gierak, J. Hugonin, and P. Lalanne, “Efficient generation of surface plasmon by single-nanoslit illumination under highly oblique incidence,” Appl. Phys. Lett. 94, 011114 (2009).
[CrossRef]

Bozhevolnyi, S.

F. López-Tejeira, S. Rodrigo, L. Marín-Moreno, F. García-Vidal, E. Devaux, T. Ebbesen, J. Krenn, I. Radko, S. Bozhevolnyi, M. González, J. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nat. Phys. 3, 324–328 (2007).
[CrossRef]

T. Homgaard and S. Bozhevolnyi, “Theoretical analysis of dielectric-loaded surface plasmon-polariton waveguides,” Phys. Rev. B 75, 245405 (2007).
[CrossRef]

B. Vohnsen and S. Bozhevolnyi, “Coupling of surface-plasmon polaritons to directional far-field radiation by an individual surface protrusion,” Appl. Opt. 40, 6081–6085 (2001).
[CrossRef]

Brown, D.

L. Yin, V. Vlasko-Vlasov, J. Pearson, J. Hiller, J. Hua, U. Welp, D. Brown, and C. Kimball, “Subwavelength focusing and guiding of surface plasmons,” Nano Lett. 5, 1399–1402 (2005).
[CrossRef] [PubMed]

Chau, K.

Christy, R.

P. Johnson and R. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

Davis, C.

I. Smolyaninov, C. Davis, J. Elliott, and A. Zayats, “Resolution enhancement of a surface immersion microscope near the plasmon resonance,” Opt. Lett. 40, 381–384 (2005).

de León-Perez, F.

Dereux, A.

F. López-Tejeira, S. Rodrigo, L. Marín-Moreno, F. García-Vidal, E. Devaux, T. Ebbesen, J. Krenn, I. Radko, S. Bozhevolnyi, M. González, J. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nat. Phys. 3, 324–328 (2007).
[CrossRef]

Devaux, E.

F. López-Tejeira, S. Rodrigo, L. Marín-Moreno, F. García-Vidal, E. Devaux, T. Ebbesen, J. Krenn, I. Radko, S. Bozhevolnyi, M. González, J. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nat. Phys. 3, 324–328 (2007).
[CrossRef]

Dintinger, J.

Ditlbacher, H.

A. Baudrion, F. de León-Perez, O. Mahboub, A. Hohenau, H. Ditlbacher, F. García-Vidal, J. Dintinger, T. Ebbesen, L. Martín-Moreno, and J. Krenn, “Coupling efficiency of light to surface plasmon polariton for single sub-wavelength holes in a gold film,” Opt. Express 16, 3420–3429 (2008).
[CrossRef] [PubMed]

B. Steinberger, A. Hohenau, H. Ditlbacher, A. Stepanov, A. Drezet, F. Aussenegg, A. Leitner, and J. Krenn, “Dielectric stripes on gold as surface plasmon waveguides,” Appl. Phys. Lett. 88, 094104 (2006).
[CrossRef]

A. Hohenau, J. Krenn, A. Stepanov, A. Drezet, H. Ditlbacher, B. Steinberger, A. Leitner, and F. Aussenegg, “Dielectric optical elements for surface plasmons,” Opt. Lett. 30, 893–895 (2005).
[CrossRef] [PubMed]

H. Ditlbacher, J. Krenn, A. Hohenau, A. Leitner, and F. Aussenegg, “Efficiency of local light-plasmon coupling,” Appl. Phys. Lett. 83, 3665–3667 (2003).
[CrossRef]

Drezek, R.

C. Loo, A. Lowery, N. Halas, J. West, and R. Drezek, “Innumotargeted nanoshells for integrated cancer imaging and therapy,” Nano Lett. 5, 709–711 (2005).
[CrossRef] [PubMed]

Drezet, A.

J. Laluet, A. Drezet, C. Genet, and T. Ebbesen, “Generation of surface plasmons at single subwavelength slits: from slit to ridge plasmon,” New J. Phys. 10, 105014 (2008).
[CrossRef]

B. Steinberger, A. Hohenau, H. Ditlbacher, A. Stepanov, A. Drezet, F. Aussenegg, A. Leitner, and J. Krenn, “Dielectric stripes on gold as surface plasmon waveguides,” Appl. Phys. Lett. 88, 094104 (2006).
[CrossRef]

A. Hohenau, J. Krenn, A. Stepanov, A. Drezet, H. Ditlbacher, B. Steinberger, A. Leitner, and F. Aussenegg, “Dielectric optical elements for surface plasmons,” Opt. Lett. 30, 893–895 (2005).
[CrossRef] [PubMed]

Ebbesen, T.

J. Laluet, A. Drezet, C. Genet, and T. Ebbesen, “Generation of surface plasmons at single subwavelength slits: from slit to ridge plasmon,” New J. Phys. 10, 105014 (2008).
[CrossRef]

A. Baudrion, F. de León-Perez, O. Mahboub, A. Hohenau, H. Ditlbacher, F. García-Vidal, J. Dintinger, T. Ebbesen, L. Martín-Moreno, and J. Krenn, “Coupling efficiency of light to surface plasmon polariton for single sub-wavelength holes in a gold film,” Opt. Express 16, 3420–3429 (2008).
[CrossRef] [PubMed]

F. López-Tejeira, S. Rodrigo, L. Marín-Moreno, F. García-Vidal, E. Devaux, T. Ebbesen, J. Krenn, I. Radko, S. Bozhevolnyi, M. González, J. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nat. Phys. 3, 324–328 (2007).
[CrossRef]

Elliott, J.

I. Smolyaninov, C. Davis, J. Elliott, and A. Zayats, “Resolution enhancement of a surface immersion microscope near the plasmon resonance,” Opt. Lett. 40, 381–384 (2005).

García-Vidal, F.

A. Baudrion, F. de León-Perez, O. Mahboub, A. Hohenau, H. Ditlbacher, F. García-Vidal, J. Dintinger, T. Ebbesen, L. Martín-Moreno, and J. Krenn, “Coupling efficiency of light to surface plasmon polariton for single sub-wavelength holes in a gold film,” Opt. Express 16, 3420–3429 (2008).
[CrossRef] [PubMed]

F. López-Tejeira, S. Rodrigo, L. Marín-Moreno, F. García-Vidal, E. Devaux, T. Ebbesen, J. Krenn, I. Radko, S. Bozhevolnyi, M. González, J. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nat. Phys. 3, 324–328 (2007).
[CrossRef]

Genet, C.

J. Laluet, A. Drezet, C. Genet, and T. Ebbesen, “Generation of surface plasmons at single subwavelength slits: from slit to ridge plasmon,” New J. Phys. 10, 105014 (2008).
[CrossRef]

Gierak, J.

B. Wang, L. Aigouy, E. Bourhis, J. Gierak, J. Hugonin, and P. Lalanne, “Efficient generation of surface plasmon by single-nanoslit illumination under highly oblique incidence,” Appl. Phys. Lett. 94, 011114 (2009).
[CrossRef]

González, M.

F. López-Tejeira, S. Rodrigo, L. Marín-Moreno, F. García-Vidal, E. Devaux, T. Ebbesen, J. Krenn, I. Radko, S. Bozhevolnyi, M. González, J. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nat. Phys. 3, 324–328 (2007).
[CrossRef]

Grave de Peralta, L.

Halas, N.

C. Loo, A. Lowery, N. Halas, J. West, and R. Drezek, “Innumotargeted nanoshells for integrated cancer imaging and therapy,” Nano Lett. 5, 709–711 (2005).
[CrossRef] [PubMed]

Hiller, J.

L. Yin, V. Vlasko-Vlasov, J. Pearson, J. Hiller, J. Hua, U. Welp, D. Brown, and C. Kimball, “Subwavelength focusing and guiding of surface plasmons,” Nano Lett. 5, 1399–1402 (2005).
[CrossRef] [PubMed]

Hoa, X.

X. Hoa, A. Kirk, and M. Tabrizian, “Towards integrated and sensitive surface plasmon resonance biosensors: A review of recent progress,” Biosens. Bioelectron. 23, 151–160 (2007).
[CrossRef] [PubMed]

Hohenau, A.

A. Baudrion, F. de León-Perez, O. Mahboub, A. Hohenau, H. Ditlbacher, F. García-Vidal, J. Dintinger, T. Ebbesen, L. Martín-Moreno, and J. Krenn, “Coupling efficiency of light to surface plasmon polariton for single sub-wavelength holes in a gold film,” Opt. Express 16, 3420–3429 (2008).
[CrossRef] [PubMed]

B. Steinberger, A. Hohenau, H. Ditlbacher, A. Stepanov, A. Drezet, F. Aussenegg, A. Leitner, and J. Krenn, “Dielectric stripes on gold as surface plasmon waveguides,” Appl. Phys. Lett. 88, 094104 (2006).
[CrossRef]

A. Hohenau, J. Krenn, A. Stepanov, A. Drezet, H. Ditlbacher, B. Steinberger, A. Leitner, and F. Aussenegg, “Dielectric optical elements for surface plasmons,” Opt. Lett. 30, 893–895 (2005).
[CrossRef] [PubMed]

H. Ditlbacher, J. Krenn, A. Hohenau, A. Leitner, and F. Aussenegg, “Efficiency of local light-plasmon coupling,” Appl. Phys. Lett. 83, 3665–3667 (2003).
[CrossRef]

Homgaard, T.

T. Homgaard and S. Bozhevolnyi, “Theoretical analysis of dielectric-loaded surface plasmon-polariton waveguides,” Phys. Rev. B 75, 245405 (2007).
[CrossRef]

Hua, J.

L. Yin, V. Vlasko-Vlasov, J. Pearson, J. Hiller, J. Hua, U. Welp, D. Brown, and C. Kimball, “Subwavelength focusing and guiding of surface plasmons,” Nano Lett. 5, 1399–1402 (2005).
[CrossRef] [PubMed]

Hugonin, J.

B. Wang, L. Aigouy, E. Bourhis, J. Gierak, J. Hugonin, and P. Lalanne, “Efficient generation of surface plasmon by single-nanoslit illumination under highly oblique incidence,” Appl. Phys. Lett. 94, 011114 (2009).
[CrossRef]

P. Lalanne, J. Hugonin, and J. Rodier, “Theory of surface plasmon generation at nanoslit apertures,” Phys. Rev. Lett. 95, 263902 (2005).
[CrossRef]

Huser, T.

Johnson, P.

P. Johnson and R. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

Kang, J.

H. Kihm, K. Lee, D. Kim, J. Kang, and Q. Park, “Control of surface plasmon generation efficiency by slit-width tuning,” Appl. Phys. Lett. 92, 051115 (2008).
[CrossRef]

Kihm, H.

H. Kihm, K. Lee, D. Kim, J. Kang, and Q. Park, “Control of surface plasmon generation efficiency by slit-width tuning,” Appl. Phys. Lett. 92, 051115 (2008).
[CrossRef]

Kim, D.

H. Kihm, K. Lee, D. Kim, J. Kang, and Q. Park, “Control of surface plasmon generation efficiency by slit-width tuning,” Appl. Phys. Lett. 92, 051115 (2008).
[CrossRef]

Kimball, C.

L. Yin, V. Vlasko-Vlasov, J. Pearson, J. Hiller, J. Hua, U. Welp, D. Brown, and C. Kimball, “Subwavelength focusing and guiding of surface plasmons,” Nano Lett. 5, 1399–1402 (2005).
[CrossRef] [PubMed]

Kirk, A.

X. Hoa, A. Kirk, and M. Tabrizian, “Towards integrated and sensitive surface plasmon resonance biosensors: A review of recent progress,” Biosens. Bioelectron. 23, 151–160 (2007).
[CrossRef] [PubMed]

Knoll, W.

B. Rothenhausler and W. Knoll, “Surface-plasmon microscopy,” Nature 40, 615–617 (1988).

Kobayashi, T.

Krenn, J.

A. Baudrion, F. de León-Perez, O. Mahboub, A. Hohenau, H. Ditlbacher, F. García-Vidal, J. Dintinger, T. Ebbesen, L. Martín-Moreno, and J. Krenn, “Coupling efficiency of light to surface plasmon polariton for single sub-wavelength holes in a gold film,” Opt. Express 16, 3420–3429 (2008).
[CrossRef] [PubMed]

F. López-Tejeira, S. Rodrigo, L. Marín-Moreno, F. García-Vidal, E. Devaux, T. Ebbesen, J. Krenn, I. Radko, S. Bozhevolnyi, M. González, J. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nat. Phys. 3, 324–328 (2007).
[CrossRef]

B. Steinberger, A. Hohenau, H. Ditlbacher, A. Stepanov, A. Drezet, F. Aussenegg, A. Leitner, and J. Krenn, “Dielectric stripes on gold as surface plasmon waveguides,” Appl. Phys. Lett. 88, 094104 (2006).
[CrossRef]

A. Hohenau, J. Krenn, A. Stepanov, A. Drezet, H. Ditlbacher, B. Steinberger, A. Leitner, and F. Aussenegg, “Dielectric optical elements for surface plasmons,” Opt. Lett. 30, 893–895 (2005).
[CrossRef] [PubMed]

H. Ditlbacher, J. Krenn, A. Hohenau, A. Leitner, and F. Aussenegg, “Efficiency of local light-plasmon coupling,” Appl. Phys. Lett. 83, 3665–3667 (2003).
[CrossRef]

Kretschmann, E.

E. Kretschmann, “The angular dependence and the polarisation of light emitted by surface plasmons on metals due to roughness,” Opt. Commun. 5, 331–336 (1972).
[CrossRef]

Lalanne, P.

B. Wang, L. Aigouy, E. Bourhis, J. Gierak, J. Hugonin, and P. Lalanne, “Efficient generation of surface plasmon by single-nanoslit illumination under highly oblique incidence,” Appl. Phys. Lett. 94, 011114 (2009).
[CrossRef]

P. Lalanne, J. Hugonin, and J. Rodier, “Theory of surface plasmon generation at nanoslit apertures,” Phys. Rev. Lett. 95, 263902 (2005).
[CrossRef]

Laluet, J.

J. Laluet, A. Drezet, C. Genet, and T. Ebbesen, “Generation of surface plasmons at single subwavelength slits: from slit to ridge plasmon,” New J. Phys. 10, 105014 (2008).
[CrossRef]

Lee, K.

H. Kihm, K. Lee, D. Kim, J. Kang, and Q. Park, “Control of surface plasmon generation efficiency by slit-width tuning,” Appl. Phys. Lett. 92, 051115 (2008).
[CrossRef]

K. Lee and Q. Park, “Coupling of surface plasmon polaritons and light in metallic nanoslits,” Phys. Rev. Lett. 95, 103902 (2005).
[CrossRef] [PubMed]

Leitner, A.

B. Steinberger, A. Hohenau, H. Ditlbacher, A. Stepanov, A. Drezet, F. Aussenegg, A. Leitner, and J. Krenn, “Dielectric stripes on gold as surface plasmon waveguides,” Appl. Phys. Lett. 88, 094104 (2006).
[CrossRef]

A. Hohenau, J. Krenn, A. Stepanov, A. Drezet, H. Ditlbacher, B. Steinberger, A. Leitner, and F. Aussenegg, “Dielectric optical elements for surface plasmons,” Opt. Lett. 30, 893–895 (2005).
[CrossRef] [PubMed]

H. Ditlbacher, J. Krenn, A. Hohenau, A. Leitner, and F. Aussenegg, “Efficiency of local light-plasmon coupling,” Appl. Phys. Lett. 83, 3665–3667 (2003).
[CrossRef]

Liedberg, B.

B. Liedberg, C. Nylander, and I. Lunström, “Surface plasmon resonance for gas detection and biosensing,” Sens. Actuators 4, 299–304 (1983).
[CrossRef]

Loo, C.

C. Loo, A. Lowery, N. Halas, J. West, and R. Drezek, “Innumotargeted nanoshells for integrated cancer imaging and therapy,” Nano Lett. 5, 709–711 (2005).
[CrossRef] [PubMed]

López-Tejeira, F.

F. López-Tejeira, S. Rodrigo, L. Marín-Moreno, F. García-Vidal, E. Devaux, T. Ebbesen, J. Krenn, I. Radko, S. Bozhevolnyi, M. González, J. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nat. Phys. 3, 324–328 (2007).
[CrossRef]

Lowery, A.

C. Loo, A. Lowery, N. Halas, J. West, and R. Drezek, “Innumotargeted nanoshells for integrated cancer imaging and therapy,” Nano Lett. 5, 709–711 (2005).
[CrossRef] [PubMed]

Lunström, I.

B. Liedberg, C. Nylander, and I. Lunström, “Surface plasmon resonance for gas detection and biosensing,” Sens. Actuators 4, 299–304 (1983).
[CrossRef]

Mahboub, O.

Maqsood, M.

Marín-Moreno, L.

F. López-Tejeira, S. Rodrigo, L. Marín-Moreno, F. García-Vidal, E. Devaux, T. Ebbesen, J. Krenn, I. Radko, S. Bozhevolnyi, M. González, J. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nat. Phys. 3, 324–328 (2007).
[CrossRef]

Martín-Moreno, L.

Mehfuz, R.

Nylander, C.

B. Liedberg, C. Nylander, and I. Lunström, “Surface plasmon resonance for gas detection and biosensing,” Sens. Actuators 4, 299–304 (1983).
[CrossRef]

Okamoto, T.

Park, Q.

H. Kihm, K. Lee, D. Kim, J. Kang, and Q. Park, “Control of surface plasmon generation efficiency by slit-width tuning,” Appl. Phys. Lett. 92, 051115 (2008).
[CrossRef]

K. Lee and Q. Park, “Coupling of surface plasmon polaritons and light in metallic nanoslits,” Phys. Rev. Lett. 95, 103902 (2005).
[CrossRef] [PubMed]

Pearson, J.

L. Yin, V. Vlasko-Vlasov, J. Pearson, J. Hiller, J. Hua, U. Welp, D. Brown, and C. Kimball, “Subwavelength focusing and guiding of surface plasmons,” Nano Lett. 5, 1399–1402 (2005).
[CrossRef] [PubMed]

Pohl, D.

Radko, I.

F. López-Tejeira, S. Rodrigo, L. Marín-Moreno, F. García-Vidal, E. Devaux, T. Ebbesen, J. Krenn, I. Radko, S. Bozhevolnyi, M. González, J. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nat. Phys. 3, 324–328 (2007).
[CrossRef]

Rodier, J.

P. Lalanne, J. Hugonin, and J. Rodier, “Theory of surface plasmon generation at nanoslit apertures,” Phys. Rev. Lett. 95, 263902 (2005).
[CrossRef]

Rodrigo, S.

F. López-Tejeira, S. Rodrigo, L. Marín-Moreno, F. García-Vidal, E. Devaux, T. Ebbesen, J. Krenn, I. Radko, S. Bozhevolnyi, M. González, J. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nat. Phys. 3, 324–328 (2007).
[CrossRef]

Rothenhausler, B.

B. Rothenhausler and W. Knoll, “Surface-plasmon microscopy,” Nature 40, 615–617 (1988).

Smolyaninov, I.

I. Smolyaninov, C. Davis, J. Elliott, and A. Zayats, “Resolution enhancement of a surface immersion microscope near the plasmon resonance,” Opt. Lett. 40, 381–384 (2005).

Steinberger, B.

B. Steinberger, A. Hohenau, H. Ditlbacher, A. Stepanov, A. Drezet, F. Aussenegg, A. Leitner, and J. Krenn, “Dielectric stripes on gold as surface plasmon waveguides,” Appl. Phys. Lett. 88, 094104 (2006).
[CrossRef]

A. Hohenau, J. Krenn, A. Stepanov, A. Drezet, H. Ditlbacher, B. Steinberger, A. Leitner, and F. Aussenegg, “Dielectric optical elements for surface plasmons,” Opt. Lett. 30, 893–895 (2005).
[CrossRef] [PubMed]

Stepanov, A.

B. Steinberger, A. Hohenau, H. Ditlbacher, A. Stepanov, A. Drezet, F. Aussenegg, A. Leitner, and J. Krenn, “Dielectric stripes on gold as surface plasmon waveguides,” Appl. Phys. Lett. 88, 094104 (2006).
[CrossRef]

A. Hohenau, J. Krenn, A. Stepanov, A. Drezet, H. Ditlbacher, B. Steinberger, A. Leitner, and F. Aussenegg, “Dielectric optical elements for surface plasmons,” Opt. Lett. 30, 893–895 (2005).
[CrossRef] [PubMed]

Tabrizian, M.

X. Hoa, A. Kirk, and M. Tabrizian, “Towards integrated and sensitive surface plasmon resonance biosensors: A review of recent progress,” Biosens. Bioelectron. 23, 151–160 (2007).
[CrossRef] [PubMed]

van Labeke, D.

Vlasko-Vlasov, V.

L. Yin, V. Vlasko-Vlasov, J. Pearson, J. Hiller, J. Hua, U. Welp, D. Brown, and C. Kimball, “Subwavelength focusing and guiding of surface plasmons,” Nano Lett. 5, 1399–1402 (2005).
[CrossRef] [PubMed]

Vohnsen, B.

Wang, B.

B. Wang, L. Aigouy, E. Bourhis, J. Gierak, J. Hugonin, and P. Lalanne, “Efficient generation of surface plasmon by single-nanoslit illumination under highly oblique incidence,” Appl. Phys. Lett. 94, 011114 (2009).
[CrossRef]

Weeber, J.

F. López-Tejeira, S. Rodrigo, L. Marín-Moreno, F. García-Vidal, E. Devaux, T. Ebbesen, J. Krenn, I. Radko, S. Bozhevolnyi, M. González, J. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nat. Phys. 3, 324–328 (2007).
[CrossRef]

Welp, U.

L. Yin, V. Vlasko-Vlasov, J. Pearson, J. Hiller, J. Hua, U. Welp, D. Brown, and C. Kimball, “Subwavelength focusing and guiding of surface plasmons,” Nano Lett. 5, 1399–1402 (2005).
[CrossRef] [PubMed]

West, J.

C. Loo, A. Lowery, N. Halas, J. West, and R. Drezek, “Innumotargeted nanoshells for integrated cancer imaging and therapy,” Nano Lett. 5, 709–711 (2005).
[CrossRef] [PubMed]

Yamaguchi, I.

Yin, L.

L. Yin, V. Vlasko-Vlasov, J. Pearson, J. Hiller, J. Hua, U. Welp, D. Brown, and C. Kimball, “Subwavelength focusing and guiding of surface plasmons,” Nano Lett. 5, 1399–1402 (2005).
[CrossRef] [PubMed]

Zayats, A.

I. Smolyaninov, C. Davis, J. Elliott, and A. Zayats, “Resolution enhancement of a surface immersion microscope near the plasmon resonance,” Opt. Lett. 40, 381–384 (2005).

Appl. Opt. (1)

Appl. Phys. Lett. (4)

B. Steinberger, A. Hohenau, H. Ditlbacher, A. Stepanov, A. Drezet, F. Aussenegg, A. Leitner, and J. Krenn, “Dielectric stripes on gold as surface plasmon waveguides,” Appl. Phys. Lett. 88, 094104 (2006).
[CrossRef]

H. Kihm, K. Lee, D. Kim, J. Kang, and Q. Park, “Control of surface plasmon generation efficiency by slit-width tuning,” Appl. Phys. Lett. 92, 051115 (2008).
[CrossRef]

H. Ditlbacher, J. Krenn, A. Hohenau, A. Leitner, and F. Aussenegg, “Efficiency of local light-plasmon coupling,” Appl. Phys. Lett. 83, 3665–3667 (2003).
[CrossRef]

B. Wang, L. Aigouy, E. Bourhis, J. Gierak, J. Hugonin, and P. Lalanne, “Efficient generation of surface plasmon by single-nanoslit illumination under highly oblique incidence,” Appl. Phys. Lett. 94, 011114 (2009).
[CrossRef]

Biosens. Bioelectron. (1)

X. Hoa, A. Kirk, and M. Tabrizian, “Towards integrated and sensitive surface plasmon resonance biosensors: A review of recent progress,” Biosens. Bioelectron. 23, 151–160 (2007).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (1)

Nano Lett. (2)

C. Loo, A. Lowery, N. Halas, J. West, and R. Drezek, “Innumotargeted nanoshells for integrated cancer imaging and therapy,” Nano Lett. 5, 709–711 (2005).
[CrossRef] [PubMed]

L. Yin, V. Vlasko-Vlasov, J. Pearson, J. Hiller, J. Hua, U. Welp, D. Brown, and C. Kimball, “Subwavelength focusing and guiding of surface plasmons,” Nano Lett. 5, 1399–1402 (2005).
[CrossRef] [PubMed]

Nat. Phys. (1)

F. López-Tejeira, S. Rodrigo, L. Marín-Moreno, F. García-Vidal, E. Devaux, T. Ebbesen, J. Krenn, I. Radko, S. Bozhevolnyi, M. González, J. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nat. Phys. 3, 324–328 (2007).
[CrossRef]

Nature (1)

B. Rothenhausler and W. Knoll, “Surface-plasmon microscopy,” Nature 40, 615–617 (1988).

New J. Phys. (1)

J. Laluet, A. Drezet, C. Genet, and T. Ebbesen, “Generation of surface plasmons at single subwavelength slits: from slit to ridge plasmon,” New J. Phys. 10, 105014 (2008).
[CrossRef]

Opt. Commun. (1)

E. Kretschmann, “The angular dependence and the polarisation of light emitted by surface plasmons on metals due to roughness,” Opt. Commun. 5, 331–336 (1972).
[CrossRef]

Opt. Express (3)

Opt. Lett. (3)

Phys. Rev. B (2)

T. Homgaard and S. Bozhevolnyi, “Theoretical analysis of dielectric-loaded surface plasmon-polariton waveguides,” Phys. Rev. B 75, 245405 (2007).
[CrossRef]

P. Johnson and R. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

Phys. Rev. Lett. (2)

K. Lee and Q. Park, “Coupling of surface plasmon polaritons and light in metallic nanoslits,” Phys. Rev. Lett. 95, 103902 (2005).
[CrossRef] [PubMed]

P. Lalanne, J. Hugonin, and J. Rodier, “Theory of surface plasmon generation at nanoslit apertures,” Phys. Rev. Lett. 95, 263902 (2005).
[CrossRef]

Sens. Actuators (1)

B. Liedberg, C. Nylander, and I. Lunström, “Surface plasmon resonance for gas detection and biosensing,” Sens. Actuators 4, 299–304 (1983).
[CrossRef]

Other (2)

The restriction that the slit sustain only the lowest order mode simplifies the analysis of SPP coupling. Making the slit larger such that it allows higher order modes would then require considerations of possible diffraction-assisted SPP coupling, which was studied in Ref. [25].

Biacore: Sensor Surface Handbook (General Electric Company, 2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Re[kSPP] corresponding to SPP modes propagating along a silver metal surface coated with a dielectric layer of refractive index n = 1.5 and surrounded by air, for various layer thickness values, along with the nk0 line. Complex kSPP values are calculated by solving the dispersion relation of a semi-infinite three-layer silver-glass-air waveguide, where the permittivity of silver εm is fitted to experimental data [27]. The circles highlight, for a given dielectric layer thickness, the frequency at which the momentum matching condition Re[kSPP] = nk0 is satisfied. It should be noted that the momentum matching condition is an approximation and provides only a first-order procedure to estimate the optimal dielectric layer thickness. (b) Schematic of the experimental set-up. Polarized light from a He-Ne laser (λ0 = 632.8nm) illuminates the sample and the far-field transmission image is captured by an optical microscope (Zeiss Axio Imager) using a 100× objective lens with a numerical aperture of 0.90 in air ambient and recorded using a Si CCD camera.

Fig. 2
Fig. 2

Representative microscope images of the slit and grooves for (a) an uncoated sample, (b) a coated sample with PMMA layer thickness d = 80nm, and (c) a coated sample with PMMA layer thickness d = 120nm. The width of the slits is w = 150nm. The left column shows scanning electron microscope (SEM) images, and the middle and right columns show optical microscope images under x-polarized and y-polarized illumination, respectively. The color of the optical microscope images has been modified for clarity, but the images are otherwise unprocessed.

Fig. 3
Fig. 3

Experiment to distinguish diffraction from a slit and SPP scattering from adjacent grooves. (a) SEM image of a representative sample consisting of two identical slits of width w = 150nm, one of which is flanked by grooves. The sample is coated with a PMMA layer of thickness d = 80nm. Optical microscope image of the sample under (b) x-polarized illumination and (c) y-polarized illumination. We apply a subtraction procedure to images (b) and (c) in which the region R2 is subtracted from R1. The resulting subtracted image derived from (b) show bright spots at the groove location indicative of SPP scattering. These bright spots are absent in the subtracted image derived from (c), suggesting the absence of SPPs.

Fig. 4
Fig. 4

(a) SPP coupling efficiency, η, as a function of the PMMA layer thickness, for a fixed slit width of w = 150nm. η is measured using two methods. In the first method, labeled “expt-1”, η is calculated by using Ing,L and Ing,R derived from the image of the slit and grooves under y-polarized illumination and then using Eq. (1) (red circles). In the second method, labeled “expt-2”, η is calculated by using Ing,L and Ing,R derived from the image of the slit with no grooves under x-polarized illumination and then using Eq. (1) (magenta diamond). We calculate η from two-dimensional FDTD simulations modeling x-polarized plane-wave illumination of a coated slit for various d values (blue squares). We also calculate, for the optimal case of d = 80nm, the SPP coupling efficiency when a 20-nm-deep dimple is present in the dielectric layer above the slit (cyan square), which emulates possible non-planarity of the polymer layer due to conforming to the slit walls. (b) shows the SPP coupling efficiency measured using the method “expt-1” (red circles) and calculated using FDTD simulation (blue squares) as a function of the slit width. The error bars in (a) and (b) correspond to the variance of five independent measurements.

Fig. 5
Fig. 5

Parallel SPP measurement from a nano-patterned array illuminated by x-polarized visible light and viewed under an optical microscope. (a) SEM image of an array of identical w = 150nm slits where the groove spacing from the slits is varied from s = 1μm to s = 8μm in 1μm increments. The array is coated with a PMMA layer of thickness d = 80nm. (b) shows the corresponding microscope image of the array. (c) depicts profiles of the image intensity along horizontal lines intersecting the slit and grooves for various slit-groove separation values. (c) The integrated SPP intensity normalized to the integrated intensity of the slit as a function of the slit-groove separation (red circles), where the blue line corresponds to an exponential fit.

Fig. 6
Fig. 6

Measurement of a focussed SPP beam emitted from a curved array of sub-wavelength holes using optical microscopy. (a) SEM image of three plasmonic lenses consists of a curved array of holes, with different groove patterns milled adjacent to the lenses. The lenses consist of 17 holes, each of diameter ≃ 200nm, milled into a semi-circle of radius 5μm. Optical microscope image of the three lenses under (b) x-polarized illumination and (c) y-polarized illumination.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

η = I g , L + I g , R I n g , L I n g , R I s + I g , L + I g , R I n g , L I n g , R × 100 %

Metrics