Abstract

We theoretically and experimentally compare the performance of two fully tunable phase shifter structures based on semiconductor optical amplifiers (SOA) by means of several figures of merit common to microwave photonic systems. A single SOA stage followed by a tailored notch filter is compared with a cascaded implementation comprising three SOA-based phase shifter stages. Attention is focused on the assessment of the RF net gain, noise figure and nonlinear distortion. Recommendations on the performance optimization of this sort of approaches are detailed.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
    [CrossRef]
  2. J. Yao, “Microwave photonics,” J. Lightwave Technol. 27(3), 314–335 (2009).
    [CrossRef]
  3. J. Capmany, B. Ortega, and D. Pastor, “A tutorial on microwave photonic filters,” J. Lightwave Technol. 24(1), 201–229 (2006).
    [CrossRef]
  4. D. Dolfi, P. Joffre, J. Antoine, J.-P. Huignard, D. Philippet, and P. Granger, “Experimental demonstration of a phased-array antenna optically controlled with phase and time delays,” Appl. Opt. 35(26), 5293–5300 (1996).
    [CrossRef] [PubMed]
  5. R. W. Boyd and D. J. Gauthier, “Slow and fast light,” Prog. Opt. 43, 497–530 (2002).
    [CrossRef]
  6. S. Sales, W. Xue, J. Mork, and I. Gasulla, “Slow and fast light effects and their applications to microwave photonics using semiconductor optical amplifiers,” J. Lightwave Technol. 58, 3022–3038 (2010).
  7. J. Lloret, J. Sancho, M. Pu, I. Gasulla, K. Yvind, S. Sales, and J. Capmany, “Tunable complex-valued multi-tap microwave photonic filter based on single silicon-on-insulator microring resonator,” Opt. Express 19(13), 12402–12407 (2011).
    [CrossRef] [PubMed]
  8. J. Sancho, S. Chin, M. Sagues, A. Loayssa, J. Lloret, I. Gasulla, S. Sales, L. Thevenaz, and J. Capmany, “Dynamic microwave photonic filter using separate carrier tuning based on stimulated brillouin scattering in fibers,” IEEE Photon. Tech. Lett. 22(23), 1753–1755 (2010).
    [CrossRef]
  9. J. Mørk, R. Kjær, M. van der Poel, and K. Yvind, “Slow light in a semiconductor waveguide at gigahertz frequencies,” Opt. Express 13(20), 8136–8145 (2005).
    [CrossRef] [PubMed]
  10. W. Xue, Y. Chen, F. Öhman, S. Sales, and J. Mørk, “Enhancing light slow-down in semiconductor optical amplifiers by optical filtering,” Opt. Lett. 33(10), 1084–1086 (2008).
    [CrossRef] [PubMed]
  11. W. Xue, S. Sales, J. Capmany, and J. Mørk, “Wideband 360 ° microwave photonic phase shifter based on slow light in semiconductor optical amplifiers,” Opt. Express 18(6), 6156–6163 (2010).
    [CrossRef] [PubMed]
  12. J. Sancho, J. Lloret, I. Gasulla, S. Sales, and J. Capmany, “Fully tunable 360° microwave photonic phase shifter based on a single semiconductor optical amplifier,” Opt. Express 19(18), 17421–17426 (2011).
    [CrossRef] [PubMed]
  13. C. Cox, Analog optical links (U.K. Cambridge Univ. Press, 2004)
  14. S. Ó. Dúill, E. Shumakher, and G. Eisentein, “Noise properties of microwave phase shifters based on semiconductor optical amplifiers,” J. Lightwave Technol. 28(5), 791–797 (2010).
    [CrossRef]
  15. J. Lloret, F. Ramos, W. Xue, J. Sancho, I. Gasulla, S. Sales, J. Mork, and J. Capmany, “The influence of optical filtering on the noise performance of microwave photonic phase shifters based on SOAs,” J. Lightwave Technol. 29(12), 1746–1752 (2011).
    [CrossRef]
  16. I. Gasulla, J. Sancho, J. Capmany, J. Lloret, and S. Sales, “Intermodulation and harmonic distortion in slow light Microwave Photonic phase shifters based on Coherent Population Oscillations in SOAs,” Opt. Express 18(25), 25677–25692 (2010).
    [CrossRef] [PubMed]

2011 (3)

2010 (5)

W. Xue, S. Sales, J. Capmany, and J. Mørk, “Wideband 360 ° microwave photonic phase shifter based on slow light in semiconductor optical amplifiers,” Opt. Express 18(6), 6156–6163 (2010).
[CrossRef] [PubMed]

S. Ó. Dúill, E. Shumakher, and G. Eisentein, “Noise properties of microwave phase shifters based on semiconductor optical amplifiers,” J. Lightwave Technol. 28(5), 791–797 (2010).
[CrossRef]

I. Gasulla, J. Sancho, J. Capmany, J. Lloret, and S. Sales, “Intermodulation and harmonic distortion in slow light Microwave Photonic phase shifters based on Coherent Population Oscillations in SOAs,” Opt. Express 18(25), 25677–25692 (2010).
[CrossRef] [PubMed]

J. Sancho, S. Chin, M. Sagues, A. Loayssa, J. Lloret, I. Gasulla, S. Sales, L. Thevenaz, and J. Capmany, “Dynamic microwave photonic filter using separate carrier tuning based on stimulated brillouin scattering in fibers,” IEEE Photon. Tech. Lett. 22(23), 1753–1755 (2010).
[CrossRef]

S. Sales, W. Xue, J. Mork, and I. Gasulla, “Slow and fast light effects and their applications to microwave photonics using semiconductor optical amplifiers,” J. Lightwave Technol. 58, 3022–3038 (2010).

2009 (1)

2008 (1)

2007 (1)

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[CrossRef]

2006 (1)

2005 (1)

2002 (1)

R. W. Boyd and D. J. Gauthier, “Slow and fast light,” Prog. Opt. 43, 497–530 (2002).
[CrossRef]

1996 (1)

Antoine, J.

Boyd, R. W.

R. W. Boyd and D. J. Gauthier, “Slow and fast light,” Prog. Opt. 43, 497–530 (2002).
[CrossRef]

Capmany, J.

J. Lloret, J. Sancho, M. Pu, I. Gasulla, K. Yvind, S. Sales, and J. Capmany, “Tunable complex-valued multi-tap microwave photonic filter based on single silicon-on-insulator microring resonator,” Opt. Express 19(13), 12402–12407 (2011).
[CrossRef] [PubMed]

J. Sancho, J. Lloret, I. Gasulla, S. Sales, and J. Capmany, “Fully tunable 360° microwave photonic phase shifter based on a single semiconductor optical amplifier,” Opt. Express 19(18), 17421–17426 (2011).
[CrossRef] [PubMed]

J. Lloret, F. Ramos, W. Xue, J. Sancho, I. Gasulla, S. Sales, J. Mork, and J. Capmany, “The influence of optical filtering on the noise performance of microwave photonic phase shifters based on SOAs,” J. Lightwave Technol. 29(12), 1746–1752 (2011).
[CrossRef]

I. Gasulla, J. Sancho, J. Capmany, J. Lloret, and S. Sales, “Intermodulation and harmonic distortion in slow light Microwave Photonic phase shifters based on Coherent Population Oscillations in SOAs,” Opt. Express 18(25), 25677–25692 (2010).
[CrossRef] [PubMed]

J. Sancho, S. Chin, M. Sagues, A. Loayssa, J. Lloret, I. Gasulla, S. Sales, L. Thevenaz, and J. Capmany, “Dynamic microwave photonic filter using separate carrier tuning based on stimulated brillouin scattering in fibers,” IEEE Photon. Tech. Lett. 22(23), 1753–1755 (2010).
[CrossRef]

W. Xue, S. Sales, J. Capmany, and J. Mørk, “Wideband 360 ° microwave photonic phase shifter based on slow light in semiconductor optical amplifiers,” Opt. Express 18(6), 6156–6163 (2010).
[CrossRef] [PubMed]

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[CrossRef]

J. Capmany, B. Ortega, and D. Pastor, “A tutorial on microwave photonic filters,” J. Lightwave Technol. 24(1), 201–229 (2006).
[CrossRef]

Chen, Y.

Chin, S.

J. Sancho, S. Chin, M. Sagues, A. Loayssa, J. Lloret, I. Gasulla, S. Sales, L. Thevenaz, and J. Capmany, “Dynamic microwave photonic filter using separate carrier tuning based on stimulated brillouin scattering in fibers,” IEEE Photon. Tech. Lett. 22(23), 1753–1755 (2010).
[CrossRef]

Dolfi, D.

Dúill, S. Ó.

Eisentein, G.

Gasulla, I.

J. Lloret, F. Ramos, W. Xue, J. Sancho, I. Gasulla, S. Sales, J. Mork, and J. Capmany, “The influence of optical filtering on the noise performance of microwave photonic phase shifters based on SOAs,” J. Lightwave Technol. 29(12), 1746–1752 (2011).
[CrossRef]

J. Sancho, J. Lloret, I. Gasulla, S. Sales, and J. Capmany, “Fully tunable 360° microwave photonic phase shifter based on a single semiconductor optical amplifier,” Opt. Express 19(18), 17421–17426 (2011).
[CrossRef] [PubMed]

J. Lloret, J. Sancho, M. Pu, I. Gasulla, K. Yvind, S. Sales, and J. Capmany, “Tunable complex-valued multi-tap microwave photonic filter based on single silicon-on-insulator microring resonator,” Opt. Express 19(13), 12402–12407 (2011).
[CrossRef] [PubMed]

I. Gasulla, J. Sancho, J. Capmany, J. Lloret, and S. Sales, “Intermodulation and harmonic distortion in slow light Microwave Photonic phase shifters based on Coherent Population Oscillations in SOAs,” Opt. Express 18(25), 25677–25692 (2010).
[CrossRef] [PubMed]

J. Sancho, S. Chin, M. Sagues, A. Loayssa, J. Lloret, I. Gasulla, S. Sales, L. Thevenaz, and J. Capmany, “Dynamic microwave photonic filter using separate carrier tuning based on stimulated brillouin scattering in fibers,” IEEE Photon. Tech. Lett. 22(23), 1753–1755 (2010).
[CrossRef]

S. Sales, W. Xue, J. Mork, and I. Gasulla, “Slow and fast light effects and their applications to microwave photonics using semiconductor optical amplifiers,” J. Lightwave Technol. 58, 3022–3038 (2010).

Gauthier, D. J.

R. W. Boyd and D. J. Gauthier, “Slow and fast light,” Prog. Opt. 43, 497–530 (2002).
[CrossRef]

Granger, P.

Huignard, J.-P.

Joffre, P.

Kjær, R.

Lloret, J.

Loayssa, A.

J. Sancho, S. Chin, M. Sagues, A. Loayssa, J. Lloret, I. Gasulla, S. Sales, L. Thevenaz, and J. Capmany, “Dynamic microwave photonic filter using separate carrier tuning based on stimulated brillouin scattering in fibers,” IEEE Photon. Tech. Lett. 22(23), 1753–1755 (2010).
[CrossRef]

Mork, J.

J. Lloret, F. Ramos, W. Xue, J. Sancho, I. Gasulla, S. Sales, J. Mork, and J. Capmany, “The influence of optical filtering on the noise performance of microwave photonic phase shifters based on SOAs,” J. Lightwave Technol. 29(12), 1746–1752 (2011).
[CrossRef]

S. Sales, W. Xue, J. Mork, and I. Gasulla, “Slow and fast light effects and their applications to microwave photonics using semiconductor optical amplifiers,” J. Lightwave Technol. 58, 3022–3038 (2010).

Mørk, J.

Novak, D.

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[CrossRef]

Öhman, F.

Ortega, B.

Pastor, D.

Philippet, D.

Pu, M.

Ramos, F.

Sagues, M.

J. Sancho, S. Chin, M. Sagues, A. Loayssa, J. Lloret, I. Gasulla, S. Sales, L. Thevenaz, and J. Capmany, “Dynamic microwave photonic filter using separate carrier tuning based on stimulated brillouin scattering in fibers,” IEEE Photon. Tech. Lett. 22(23), 1753–1755 (2010).
[CrossRef]

Sales, S.

J. Sancho, J. Lloret, I. Gasulla, S. Sales, and J. Capmany, “Fully tunable 360° microwave photonic phase shifter based on a single semiconductor optical amplifier,” Opt. Express 19(18), 17421–17426 (2011).
[CrossRef] [PubMed]

J. Lloret, F. Ramos, W. Xue, J. Sancho, I. Gasulla, S. Sales, J. Mork, and J. Capmany, “The influence of optical filtering on the noise performance of microwave photonic phase shifters based on SOAs,” J. Lightwave Technol. 29(12), 1746–1752 (2011).
[CrossRef]

J. Lloret, J. Sancho, M. Pu, I. Gasulla, K. Yvind, S. Sales, and J. Capmany, “Tunable complex-valued multi-tap microwave photonic filter based on single silicon-on-insulator microring resonator,” Opt. Express 19(13), 12402–12407 (2011).
[CrossRef] [PubMed]

W. Xue, S. Sales, J. Capmany, and J. Mørk, “Wideband 360 ° microwave photonic phase shifter based on slow light in semiconductor optical amplifiers,” Opt. Express 18(6), 6156–6163 (2010).
[CrossRef] [PubMed]

I. Gasulla, J. Sancho, J. Capmany, J. Lloret, and S. Sales, “Intermodulation and harmonic distortion in slow light Microwave Photonic phase shifters based on Coherent Population Oscillations in SOAs,” Opt. Express 18(25), 25677–25692 (2010).
[CrossRef] [PubMed]

J. Sancho, S. Chin, M. Sagues, A. Loayssa, J. Lloret, I. Gasulla, S. Sales, L. Thevenaz, and J. Capmany, “Dynamic microwave photonic filter using separate carrier tuning based on stimulated brillouin scattering in fibers,” IEEE Photon. Tech. Lett. 22(23), 1753–1755 (2010).
[CrossRef]

S. Sales, W. Xue, J. Mork, and I. Gasulla, “Slow and fast light effects and their applications to microwave photonics using semiconductor optical amplifiers,” J. Lightwave Technol. 58, 3022–3038 (2010).

W. Xue, Y. Chen, F. Öhman, S. Sales, and J. Mørk, “Enhancing light slow-down in semiconductor optical amplifiers by optical filtering,” Opt. Lett. 33(10), 1084–1086 (2008).
[CrossRef] [PubMed]

Sancho, J.

Shumakher, E.

Thevenaz, L.

J. Sancho, S. Chin, M. Sagues, A. Loayssa, J. Lloret, I. Gasulla, S. Sales, L. Thevenaz, and J. Capmany, “Dynamic microwave photonic filter using separate carrier tuning based on stimulated brillouin scattering in fibers,” IEEE Photon. Tech. Lett. 22(23), 1753–1755 (2010).
[CrossRef]

van der Poel, M.

Xue, W.

Yao, J.

Yvind, K.

Appl. Opt. (1)

IEEE Photon. Tech. Lett. (1)

J. Sancho, S. Chin, M. Sagues, A. Loayssa, J. Lloret, I. Gasulla, S. Sales, L. Thevenaz, and J. Capmany, “Dynamic microwave photonic filter using separate carrier tuning based on stimulated brillouin scattering in fibers,” IEEE Photon. Tech. Lett. 22(23), 1753–1755 (2010).
[CrossRef]

J. Lightwave Technol. (5)

Nat. Photonics (1)

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[CrossRef]

Opt. Express (5)

Opt. Lett. (1)

Prog. Opt. (1)

R. W. Boyd and D. J. Gauthier, “Slow and fast light,” Prog. Opt. 43, 497–530 (2002).
[CrossRef]

Other (1)

C. Cox, Analog optical links (U.K. Cambridge Univ. Press, 2004)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Experimental setup of the MWP phase shifter based on SOAs. (a) SOA + tailored FBG based performance and (b) cascaded implementation.

Fig. 2
Fig. 2

Theoretical (solid lines) and experimental (markers and dashed lines) RF power and noise level at the (a) input (dashed lines) and output (markers), (b) output SNR and NF as a function of the SOA injection currents when the input power is fixed at 0dBm or 2dBm.

Fig. 3
Fig. 3

Theoretical (solid lines) and experimental (markers and dashed lines) RF power and noise level at the (a) input (dashed lines) and output (markers), (b) output SNR and NF as a function of the injection currents into the three PSS.

Fig. 4
Fig. 4

Theoretical (solid lines) and experimental (markers) RF net gain as a function of (a) one and (b) three PSS injection currents.

Fig. 5
Fig. 5

(a) Theoretical (lines) and experimental (markers) RF power from the fundamental, IMD2 and IMD3 terms vs. input RF power at the third PSS output when I = 200 mA. (b) SFDR2 and SFDR3 as a function of the PSS injection current.

Fig. 6
Fig. 6

(a) Theoretical (lines) and experimental (markers) RF power from the fundamental, IMD2 and IMD3 terms vs. input RF power at the third PSS output when IPSS1 = IPSS2 = IPSS3 = 240 mA. (b) SFDR2 and SFDR3 as a function of the three PSS injection currents.

Metrics