Abstract

The optical and electrical properties of InAs quantum dots epitaxially grown on a silicon substrate have been investigated to evaluate their potential as both photodiodes and avalanche photodiodes (APDs) operating at a wavelength of 1300 nm. A peak responsivity of 5 mA/W was observed at 1280 nm, with an absorption tail extending beyond 1300 nm, while the dark currents were two orders of magnitude lower than those reported for Ge on Si photodiodes. The diodes exhibited avalanche breakdown at 22 V reverse bias which is probably dominated by impact ionisation occurring in the GaAs and AlGaAs barrier layers. A red shift in the absorption peak of 61.2 meV was measured when the reverse bias was increased from 0 to 22 V, which we attributed to the quantum confined stark effect. This shift also leads to an increase in the responsivity at a fixed wavelength as the bias is increased, yielding a maximum increase in responsivity by a factor of 140 at the wavelength of 1365 nm, illustrating the potential for such a structure to be used as an optical modulator.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Miller, “Optical interconnects to silicon,” IEEE J. Sel. Top. Quantum Electron. 6(6), 1312–1317 (2000).
    [CrossRef]
  2. R. Soref, “The past, present and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1678–1687 (2006).
    [CrossRef]
  3. Y. A. Vlasov and S. J. McNab, “Losses in single-mode silicon-on-insulator strip waveguides and bends,” Opt. Express 12(8), 1622–1631 (2004).
    [CrossRef] [PubMed]
  4. Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005).
    [CrossRef] [PubMed]
  5. M. Jutzi, M. Berroth, G. Wohl, M. Oehme, and E. Kasper, “Zero biased Ge-on-Si photodetector on a thin buffer with a bandwidth of 3.2GHz at 1300nm,” Mater. Sci. Semicond. Process. 8(1-3), 423–427 (2005).
    [CrossRef]
  6. L. Colace, P. Ferrara, G. Assanto, D. Fulgoni, and L. Nash, “Low dark-current germanium-on-silicon near-infrared detectors,” IEEE Photon. Technol. Lett. 19(22), 1813–1815 (2007).
    [CrossRef]
  7. J. Yang, P. Bhattacharya, and Z. Mi, “High-performance In0.5Ga0.5As/GaAs quantum-dot lasers on silicon with mulitplie-layer quantum-dot dislocation filters,” IEEE Trans. Electron. Dev. 54(11), 2849–2855 (2007).
    [CrossRef]
  8. H. Y. Liu, T. Wang, Q. Jiang, R. Hogg, F. Tutu, F. Pozzi, and A. Seeds, “Long-wavelength InAs/GaAs quantum-dot laser diode monolithically grown on Ge substrate,” Nat. Photonics 5(7), 416–419 (2011).
    [CrossRef]
  9. T. Wang, H. Liu, A. Lee, F. Pozzi, and A. Seeds, “1.3-μm InAs/GaAs quantum-dot lasers monolithically grown on Si substrates,” Opt. Express 19(12), 11381–11386 (2011).
    [CrossRef] [PubMed]
  10. P. W. Fry, I. E. Itskevich, D. J. Mowbray, M. S. Skolnick, J. J. Finley, J. A. Barker, E. P. O’Reilly, L. R. Wilson, I. A. Larkin, P. A. Maksym, M. Hopkinson, M. Al-Khafaji, J. P. R. David, A. G. Cullis, G. Hill, and J. C. Clark, “Inverted electron-hole alignment in InAs-GaAs self-assembled quantum dots,” Phys. Rev. Lett. 84(4), 733–736 (2000).
    [CrossRef] [PubMed]
  11. P. Jin, C. M. Li, Z. Y. Zhang, F. Q. Liu, Y. H. Chen, X. L. Ye, B. Xu, and Z. G. Wang, “Quantum-confined Stark effect and built-in dipole moment in self-assembled InAs/GaAs quantum dots,” Appl. Phys. Lett. 85(14), 2791–2793 (2004).
    [CrossRef]
  12. D. B. Malins, A. Gomez-Iglesias, E. U. Rafailov, W. Sibbett, and A. Miller, “Electroabsorption and electrorefraction in an InAs quantum dot waveguide modulator,” IEEE Photon. Technol. Lett. 19(15), 1118–1120 (2007).
    [CrossRef]
  13. J. Yang, P. Bhattacharya, and Z. Wu, “Monolithic Integration of InGaAs–GaAs quantum-dot laser and quantum-well electroabsorption modulator on Silicon,” IEEE Photon. Technol. Lett. 19(10), 747–749 (2007).
    [CrossRef]
  14. X. M. Sun, H. Zhang, H. Zhu, P. Xu, G. R. Li, J. Liu, and H. Z. Zheng, “High responsivity resonant-cavity-enhanced InGaAs/GaAs quantum-dot photodetector for wavelength of ~1 µm at room temperature,” Electron. Lett. 45(6), 329–330 (2009).
    [CrossRef]
  15. M. H. Woods, W. C. Johnson, and M. A. Lampert, “Use of a schottky barrier to measure impact ionization coefficients in semiconductors,” Solid-State Electron. 16(3), 381–394 (1973).
    [CrossRef]
  16. S. A. Plimmer, J. P. R. David, D. C. Herbert, T. W. Lee, G. J. Rees, P. A. Houston, R. Grey, P. N. Robson, A. W. Higgs, and D. R. Wight, “Investigation of impact ionization in thin GaAs diodes,” IEEE Trans. Electron. Dev. 43(7), 1066–1072 (1996).
    [CrossRef]
  17. C. K. Chia, J. P. R. David, G. J. Rees, S. A. Plimmer, R. Grey, and P. N. Robson, “Impact ionization in AlxGa1-xAs/GaAs single heterostructures,” J. Appl. Phys. 84(8), 4363–4369 (1998).
    [CrossRef]
  18. C. K. Chia, J. P. R. David, G. J. Rees, P. N. Robson, S. A. Plimmer, and R. Grey, “Electon multiplication in AlxGa1-xAs /GaAs hetrostructures,” Appl. Phys. Lett. 71(26), 3877–3879 (1997).
    [CrossRef]
  19. B. K. Ng, J. P. R. David, R. C. Tozer, M. Hopkinson, G. Hill, and G. J. Rees, “Excess noise Characteristics of Al0.8Ga0.2As avalanche photodiodes,” IEEE Photon. Technol. Lett. 14(4), 522–524 (2002).
    [CrossRef]
  20. C. H. Tan, J. C. Clark, J. P. R. David, G. J. Rees, S. A. Plimmer, R. C. Tozer, D. C. Herbert, D. J. Robbins, W. Y. Leong, and J. Newey, “Avalanche noise measurement in thin Si p+-i –n+ diodes,” Appl. Phys. Lett. 76(26), 3926–3928 (2000).
    [CrossRef]
  21. K. F. Li, D. S. Ong, J. P. R. David, G. J. Rees, R. C. Tozer, P. N. Robson, and R. Grey, “Avalanche multiplication noise characteristics in thin GaAs p+-i-n+ diodes,” IEEE Trans. Electron. Dev. 45(10), 2102–2107 (1998).

2011 (2)

H. Y. Liu, T. Wang, Q. Jiang, R. Hogg, F. Tutu, F. Pozzi, and A. Seeds, “Long-wavelength InAs/GaAs quantum-dot laser diode monolithically grown on Ge substrate,” Nat. Photonics 5(7), 416–419 (2011).
[CrossRef]

T. Wang, H. Liu, A. Lee, F. Pozzi, and A. Seeds, “1.3-μm InAs/GaAs quantum-dot lasers monolithically grown on Si substrates,” Opt. Express 19(12), 11381–11386 (2011).
[CrossRef] [PubMed]

2009 (1)

X. M. Sun, H. Zhang, H. Zhu, P. Xu, G. R. Li, J. Liu, and H. Z. Zheng, “High responsivity resonant-cavity-enhanced InGaAs/GaAs quantum-dot photodetector for wavelength of ~1 µm at room temperature,” Electron. Lett. 45(6), 329–330 (2009).
[CrossRef]

2007 (4)

D. B. Malins, A. Gomez-Iglesias, E. U. Rafailov, W. Sibbett, and A. Miller, “Electroabsorption and electrorefraction in an InAs quantum dot waveguide modulator,” IEEE Photon. Technol. Lett. 19(15), 1118–1120 (2007).
[CrossRef]

J. Yang, P. Bhattacharya, and Z. Wu, “Monolithic Integration of InGaAs–GaAs quantum-dot laser and quantum-well electroabsorption modulator on Silicon,” IEEE Photon. Technol. Lett. 19(10), 747–749 (2007).
[CrossRef]

L. Colace, P. Ferrara, G. Assanto, D. Fulgoni, and L. Nash, “Low dark-current germanium-on-silicon near-infrared detectors,” IEEE Photon. Technol. Lett. 19(22), 1813–1815 (2007).
[CrossRef]

J. Yang, P. Bhattacharya, and Z. Mi, “High-performance In0.5Ga0.5As/GaAs quantum-dot lasers on silicon with mulitplie-layer quantum-dot dislocation filters,” IEEE Trans. Electron. Dev. 54(11), 2849–2855 (2007).
[CrossRef]

2006 (1)

R. Soref, “The past, present and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1678–1687 (2006).
[CrossRef]

2005 (2)

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005).
[CrossRef] [PubMed]

M. Jutzi, M. Berroth, G. Wohl, M. Oehme, and E. Kasper, “Zero biased Ge-on-Si photodetector on a thin buffer with a bandwidth of 3.2GHz at 1300nm,” Mater. Sci. Semicond. Process. 8(1-3), 423–427 (2005).
[CrossRef]

2004 (2)

Y. A. Vlasov and S. J. McNab, “Losses in single-mode silicon-on-insulator strip waveguides and bends,” Opt. Express 12(8), 1622–1631 (2004).
[CrossRef] [PubMed]

P. Jin, C. M. Li, Z. Y. Zhang, F. Q. Liu, Y. H. Chen, X. L. Ye, B. Xu, and Z. G. Wang, “Quantum-confined Stark effect and built-in dipole moment in self-assembled InAs/GaAs quantum dots,” Appl. Phys. Lett. 85(14), 2791–2793 (2004).
[CrossRef]

2002 (1)

B. K. Ng, J. P. R. David, R. C. Tozer, M. Hopkinson, G. Hill, and G. J. Rees, “Excess noise Characteristics of Al0.8Ga0.2As avalanche photodiodes,” IEEE Photon. Technol. Lett. 14(4), 522–524 (2002).
[CrossRef]

2000 (3)

C. H. Tan, J. C. Clark, J. P. R. David, G. J. Rees, S. A. Plimmer, R. C. Tozer, D. C. Herbert, D. J. Robbins, W. Y. Leong, and J. Newey, “Avalanche noise measurement in thin Si p+-i –n+ diodes,” Appl. Phys. Lett. 76(26), 3926–3928 (2000).
[CrossRef]

D. Miller, “Optical interconnects to silicon,” IEEE J. Sel. Top. Quantum Electron. 6(6), 1312–1317 (2000).
[CrossRef]

P. W. Fry, I. E. Itskevich, D. J. Mowbray, M. S. Skolnick, J. J. Finley, J. A. Barker, E. P. O’Reilly, L. R. Wilson, I. A. Larkin, P. A. Maksym, M. Hopkinson, M. Al-Khafaji, J. P. R. David, A. G. Cullis, G. Hill, and J. C. Clark, “Inverted electron-hole alignment in InAs-GaAs self-assembled quantum dots,” Phys. Rev. Lett. 84(4), 733–736 (2000).
[CrossRef] [PubMed]

1998 (2)

C. K. Chia, J. P. R. David, G. J. Rees, S. A. Plimmer, R. Grey, and P. N. Robson, “Impact ionization in AlxGa1-xAs/GaAs single heterostructures,” J. Appl. Phys. 84(8), 4363–4369 (1998).
[CrossRef]

K. F. Li, D. S. Ong, J. P. R. David, G. J. Rees, R. C. Tozer, P. N. Robson, and R. Grey, “Avalanche multiplication noise characteristics in thin GaAs p+-i-n+ diodes,” IEEE Trans. Electron. Dev. 45(10), 2102–2107 (1998).

1997 (1)

C. K. Chia, J. P. R. David, G. J. Rees, P. N. Robson, S. A. Plimmer, and R. Grey, “Electon multiplication in AlxGa1-xAs /GaAs hetrostructures,” Appl. Phys. Lett. 71(26), 3877–3879 (1997).
[CrossRef]

1996 (1)

S. A. Plimmer, J. P. R. David, D. C. Herbert, T. W. Lee, G. J. Rees, P. A. Houston, R. Grey, P. N. Robson, A. W. Higgs, and D. R. Wight, “Investigation of impact ionization in thin GaAs diodes,” IEEE Trans. Electron. Dev. 43(7), 1066–1072 (1996).
[CrossRef]

1973 (1)

M. H. Woods, W. C. Johnson, and M. A. Lampert, “Use of a schottky barrier to measure impact ionization coefficients in semiconductors,” Solid-State Electron. 16(3), 381–394 (1973).
[CrossRef]

Al-Khafaji, M.

P. W. Fry, I. E. Itskevich, D. J. Mowbray, M. S. Skolnick, J. J. Finley, J. A. Barker, E. P. O’Reilly, L. R. Wilson, I. A. Larkin, P. A. Maksym, M. Hopkinson, M. Al-Khafaji, J. P. R. David, A. G. Cullis, G. Hill, and J. C. Clark, “Inverted electron-hole alignment in InAs-GaAs self-assembled quantum dots,” Phys. Rev. Lett. 84(4), 733–736 (2000).
[CrossRef] [PubMed]

Assanto, G.

L. Colace, P. Ferrara, G. Assanto, D. Fulgoni, and L. Nash, “Low dark-current germanium-on-silicon near-infrared detectors,” IEEE Photon. Technol. Lett. 19(22), 1813–1815 (2007).
[CrossRef]

Barker, J. A.

P. W. Fry, I. E. Itskevich, D. J. Mowbray, M. S. Skolnick, J. J. Finley, J. A. Barker, E. P. O’Reilly, L. R. Wilson, I. A. Larkin, P. A. Maksym, M. Hopkinson, M. Al-Khafaji, J. P. R. David, A. G. Cullis, G. Hill, and J. C. Clark, “Inverted electron-hole alignment in InAs-GaAs self-assembled quantum dots,” Phys. Rev. Lett. 84(4), 733–736 (2000).
[CrossRef] [PubMed]

Berroth, M.

M. Jutzi, M. Berroth, G. Wohl, M. Oehme, and E. Kasper, “Zero biased Ge-on-Si photodetector on a thin buffer with a bandwidth of 3.2GHz at 1300nm,” Mater. Sci. Semicond. Process. 8(1-3), 423–427 (2005).
[CrossRef]

Bhattacharya, P.

J. Yang, P. Bhattacharya, and Z. Mi, “High-performance In0.5Ga0.5As/GaAs quantum-dot lasers on silicon with mulitplie-layer quantum-dot dislocation filters,” IEEE Trans. Electron. Dev. 54(11), 2849–2855 (2007).
[CrossRef]

J. Yang, P. Bhattacharya, and Z. Wu, “Monolithic Integration of InGaAs–GaAs quantum-dot laser and quantum-well electroabsorption modulator on Silicon,” IEEE Photon. Technol. Lett. 19(10), 747–749 (2007).
[CrossRef]

Chen, Y. H.

P. Jin, C. M. Li, Z. Y. Zhang, F. Q. Liu, Y. H. Chen, X. L. Ye, B. Xu, and Z. G. Wang, “Quantum-confined Stark effect and built-in dipole moment in self-assembled InAs/GaAs quantum dots,” Appl. Phys. Lett. 85(14), 2791–2793 (2004).
[CrossRef]

Chia, C. K.

C. K. Chia, J. P. R. David, G. J. Rees, S. A. Plimmer, R. Grey, and P. N. Robson, “Impact ionization in AlxGa1-xAs/GaAs single heterostructures,” J. Appl. Phys. 84(8), 4363–4369 (1998).
[CrossRef]

C. K. Chia, J. P. R. David, G. J. Rees, P. N. Robson, S. A. Plimmer, and R. Grey, “Electon multiplication in AlxGa1-xAs /GaAs hetrostructures,” Appl. Phys. Lett. 71(26), 3877–3879 (1997).
[CrossRef]

Clark, J. C.

P. W. Fry, I. E. Itskevich, D. J. Mowbray, M. S. Skolnick, J. J. Finley, J. A. Barker, E. P. O’Reilly, L. R. Wilson, I. A. Larkin, P. A. Maksym, M. Hopkinson, M. Al-Khafaji, J. P. R. David, A. G. Cullis, G. Hill, and J. C. Clark, “Inverted electron-hole alignment in InAs-GaAs self-assembled quantum dots,” Phys. Rev. Lett. 84(4), 733–736 (2000).
[CrossRef] [PubMed]

C. H. Tan, J. C. Clark, J. P. R. David, G. J. Rees, S. A. Plimmer, R. C. Tozer, D. C. Herbert, D. J. Robbins, W. Y. Leong, and J. Newey, “Avalanche noise measurement in thin Si p+-i –n+ diodes,” Appl. Phys. Lett. 76(26), 3926–3928 (2000).
[CrossRef]

Colace, L.

L. Colace, P. Ferrara, G. Assanto, D. Fulgoni, and L. Nash, “Low dark-current germanium-on-silicon near-infrared detectors,” IEEE Photon. Technol. Lett. 19(22), 1813–1815 (2007).
[CrossRef]

Cullis, A. G.

P. W. Fry, I. E. Itskevich, D. J. Mowbray, M. S. Skolnick, J. J. Finley, J. A. Barker, E. P. O’Reilly, L. R. Wilson, I. A. Larkin, P. A. Maksym, M. Hopkinson, M. Al-Khafaji, J. P. R. David, A. G. Cullis, G. Hill, and J. C. Clark, “Inverted electron-hole alignment in InAs-GaAs self-assembled quantum dots,” Phys. Rev. Lett. 84(4), 733–736 (2000).
[CrossRef] [PubMed]

David, J. P. R.

B. K. Ng, J. P. R. David, R. C. Tozer, M. Hopkinson, G. Hill, and G. J. Rees, “Excess noise Characteristics of Al0.8Ga0.2As avalanche photodiodes,” IEEE Photon. Technol. Lett. 14(4), 522–524 (2002).
[CrossRef]

P. W. Fry, I. E. Itskevich, D. J. Mowbray, M. S. Skolnick, J. J. Finley, J. A. Barker, E. P. O’Reilly, L. R. Wilson, I. A. Larkin, P. A. Maksym, M. Hopkinson, M. Al-Khafaji, J. P. R. David, A. G. Cullis, G. Hill, and J. C. Clark, “Inverted electron-hole alignment in InAs-GaAs self-assembled quantum dots,” Phys. Rev. Lett. 84(4), 733–736 (2000).
[CrossRef] [PubMed]

C. H. Tan, J. C. Clark, J. P. R. David, G. J. Rees, S. A. Plimmer, R. C. Tozer, D. C. Herbert, D. J. Robbins, W. Y. Leong, and J. Newey, “Avalanche noise measurement in thin Si p+-i –n+ diodes,” Appl. Phys. Lett. 76(26), 3926–3928 (2000).
[CrossRef]

K. F. Li, D. S. Ong, J. P. R. David, G. J. Rees, R. C. Tozer, P. N. Robson, and R. Grey, “Avalanche multiplication noise characteristics in thin GaAs p+-i-n+ diodes,” IEEE Trans. Electron. Dev. 45(10), 2102–2107 (1998).

C. K. Chia, J. P. R. David, G. J. Rees, S. A. Plimmer, R. Grey, and P. N. Robson, “Impact ionization in AlxGa1-xAs/GaAs single heterostructures,” J. Appl. Phys. 84(8), 4363–4369 (1998).
[CrossRef]

C. K. Chia, J. P. R. David, G. J. Rees, P. N. Robson, S. A. Plimmer, and R. Grey, “Electon multiplication in AlxGa1-xAs /GaAs hetrostructures,” Appl. Phys. Lett. 71(26), 3877–3879 (1997).
[CrossRef]

S. A. Plimmer, J. P. R. David, D. C. Herbert, T. W. Lee, G. J. Rees, P. A. Houston, R. Grey, P. N. Robson, A. W. Higgs, and D. R. Wight, “Investigation of impact ionization in thin GaAs diodes,” IEEE Trans. Electron. Dev. 43(7), 1066–1072 (1996).
[CrossRef]

Ferrara, P.

L. Colace, P. Ferrara, G. Assanto, D. Fulgoni, and L. Nash, “Low dark-current germanium-on-silicon near-infrared detectors,” IEEE Photon. Technol. Lett. 19(22), 1813–1815 (2007).
[CrossRef]

Finley, J. J.

P. W. Fry, I. E. Itskevich, D. J. Mowbray, M. S. Skolnick, J. J. Finley, J. A. Barker, E. P. O’Reilly, L. R. Wilson, I. A. Larkin, P. A. Maksym, M. Hopkinson, M. Al-Khafaji, J. P. R. David, A. G. Cullis, G. Hill, and J. C. Clark, “Inverted electron-hole alignment in InAs-GaAs self-assembled quantum dots,” Phys. Rev. Lett. 84(4), 733–736 (2000).
[CrossRef] [PubMed]

Fry, P. W.

P. W. Fry, I. E. Itskevich, D. J. Mowbray, M. S. Skolnick, J. J. Finley, J. A. Barker, E. P. O’Reilly, L. R. Wilson, I. A. Larkin, P. A. Maksym, M. Hopkinson, M. Al-Khafaji, J. P. R. David, A. G. Cullis, G. Hill, and J. C. Clark, “Inverted electron-hole alignment in InAs-GaAs self-assembled quantum dots,” Phys. Rev. Lett. 84(4), 733–736 (2000).
[CrossRef] [PubMed]

Fulgoni, D.

L. Colace, P. Ferrara, G. Assanto, D. Fulgoni, and L. Nash, “Low dark-current germanium-on-silicon near-infrared detectors,” IEEE Photon. Technol. Lett. 19(22), 1813–1815 (2007).
[CrossRef]

Gomez-Iglesias, A.

D. B. Malins, A. Gomez-Iglesias, E. U. Rafailov, W. Sibbett, and A. Miller, “Electroabsorption and electrorefraction in an InAs quantum dot waveguide modulator,” IEEE Photon. Technol. Lett. 19(15), 1118–1120 (2007).
[CrossRef]

Grey, R.

C. K. Chia, J. P. R. David, G. J. Rees, S. A. Plimmer, R. Grey, and P. N. Robson, “Impact ionization in AlxGa1-xAs/GaAs single heterostructures,” J. Appl. Phys. 84(8), 4363–4369 (1998).
[CrossRef]

K. F. Li, D. S. Ong, J. P. R. David, G. J. Rees, R. C. Tozer, P. N. Robson, and R. Grey, “Avalanche multiplication noise characteristics in thin GaAs p+-i-n+ diodes,” IEEE Trans. Electron. Dev. 45(10), 2102–2107 (1998).

C. K. Chia, J. P. R. David, G. J. Rees, P. N. Robson, S. A. Plimmer, and R. Grey, “Electon multiplication in AlxGa1-xAs /GaAs hetrostructures,” Appl. Phys. Lett. 71(26), 3877–3879 (1997).
[CrossRef]

S. A. Plimmer, J. P. R. David, D. C. Herbert, T. W. Lee, G. J. Rees, P. A. Houston, R. Grey, P. N. Robson, A. W. Higgs, and D. R. Wight, “Investigation of impact ionization in thin GaAs diodes,” IEEE Trans. Electron. Dev. 43(7), 1066–1072 (1996).
[CrossRef]

Herbert, D. C.

C. H. Tan, J. C. Clark, J. P. R. David, G. J. Rees, S. A. Plimmer, R. C. Tozer, D. C. Herbert, D. J. Robbins, W. Y. Leong, and J. Newey, “Avalanche noise measurement in thin Si p+-i –n+ diodes,” Appl. Phys. Lett. 76(26), 3926–3928 (2000).
[CrossRef]

S. A. Plimmer, J. P. R. David, D. C. Herbert, T. W. Lee, G. J. Rees, P. A. Houston, R. Grey, P. N. Robson, A. W. Higgs, and D. R. Wight, “Investigation of impact ionization in thin GaAs diodes,” IEEE Trans. Electron. Dev. 43(7), 1066–1072 (1996).
[CrossRef]

Higgs, A. W.

S. A. Plimmer, J. P. R. David, D. C. Herbert, T. W. Lee, G. J. Rees, P. A. Houston, R. Grey, P. N. Robson, A. W. Higgs, and D. R. Wight, “Investigation of impact ionization in thin GaAs diodes,” IEEE Trans. Electron. Dev. 43(7), 1066–1072 (1996).
[CrossRef]

Hill, G.

B. K. Ng, J. P. R. David, R. C. Tozer, M. Hopkinson, G. Hill, and G. J. Rees, “Excess noise Characteristics of Al0.8Ga0.2As avalanche photodiodes,” IEEE Photon. Technol. Lett. 14(4), 522–524 (2002).
[CrossRef]

P. W. Fry, I. E. Itskevich, D. J. Mowbray, M. S. Skolnick, J. J. Finley, J. A. Barker, E. P. O’Reilly, L. R. Wilson, I. A. Larkin, P. A. Maksym, M. Hopkinson, M. Al-Khafaji, J. P. R. David, A. G. Cullis, G. Hill, and J. C. Clark, “Inverted electron-hole alignment in InAs-GaAs self-assembled quantum dots,” Phys. Rev. Lett. 84(4), 733–736 (2000).
[CrossRef] [PubMed]

Hogg, R.

H. Y. Liu, T. Wang, Q. Jiang, R. Hogg, F. Tutu, F. Pozzi, and A. Seeds, “Long-wavelength InAs/GaAs quantum-dot laser diode monolithically grown on Ge substrate,” Nat. Photonics 5(7), 416–419 (2011).
[CrossRef]

Hopkinson, M.

B. K. Ng, J. P. R. David, R. C. Tozer, M. Hopkinson, G. Hill, and G. J. Rees, “Excess noise Characteristics of Al0.8Ga0.2As avalanche photodiodes,” IEEE Photon. Technol. Lett. 14(4), 522–524 (2002).
[CrossRef]

P. W. Fry, I. E. Itskevich, D. J. Mowbray, M. S. Skolnick, J. J. Finley, J. A. Barker, E. P. O’Reilly, L. R. Wilson, I. A. Larkin, P. A. Maksym, M. Hopkinson, M. Al-Khafaji, J. P. R. David, A. G. Cullis, G. Hill, and J. C. Clark, “Inverted electron-hole alignment in InAs-GaAs self-assembled quantum dots,” Phys. Rev. Lett. 84(4), 733–736 (2000).
[CrossRef] [PubMed]

Houston, P. A.

S. A. Plimmer, J. P. R. David, D. C. Herbert, T. W. Lee, G. J. Rees, P. A. Houston, R. Grey, P. N. Robson, A. W. Higgs, and D. R. Wight, “Investigation of impact ionization in thin GaAs diodes,” IEEE Trans. Electron. Dev. 43(7), 1066–1072 (1996).
[CrossRef]

Itskevich, I. E.

P. W. Fry, I. E. Itskevich, D. J. Mowbray, M. S. Skolnick, J. J. Finley, J. A. Barker, E. P. O’Reilly, L. R. Wilson, I. A. Larkin, P. A. Maksym, M. Hopkinson, M. Al-Khafaji, J. P. R. David, A. G. Cullis, G. Hill, and J. C. Clark, “Inverted electron-hole alignment in InAs-GaAs self-assembled quantum dots,” Phys. Rev. Lett. 84(4), 733–736 (2000).
[CrossRef] [PubMed]

Jiang, Q.

H. Y. Liu, T. Wang, Q. Jiang, R. Hogg, F. Tutu, F. Pozzi, and A. Seeds, “Long-wavelength InAs/GaAs quantum-dot laser diode monolithically grown on Ge substrate,” Nat. Photonics 5(7), 416–419 (2011).
[CrossRef]

Jin, P.

P. Jin, C. M. Li, Z. Y. Zhang, F. Q. Liu, Y. H. Chen, X. L. Ye, B. Xu, and Z. G. Wang, “Quantum-confined Stark effect and built-in dipole moment in self-assembled InAs/GaAs quantum dots,” Appl. Phys. Lett. 85(14), 2791–2793 (2004).
[CrossRef]

Johnson, W. C.

M. H. Woods, W. C. Johnson, and M. A. Lampert, “Use of a schottky barrier to measure impact ionization coefficients in semiconductors,” Solid-State Electron. 16(3), 381–394 (1973).
[CrossRef]

Jutzi, M.

M. Jutzi, M. Berroth, G. Wohl, M. Oehme, and E. Kasper, “Zero biased Ge-on-Si photodetector on a thin buffer with a bandwidth of 3.2GHz at 1300nm,” Mater. Sci. Semicond. Process. 8(1-3), 423–427 (2005).
[CrossRef]

Kasper, E.

M. Jutzi, M. Berroth, G. Wohl, M. Oehme, and E. Kasper, “Zero biased Ge-on-Si photodetector on a thin buffer with a bandwidth of 3.2GHz at 1300nm,” Mater. Sci. Semicond. Process. 8(1-3), 423–427 (2005).
[CrossRef]

Lampert, M. A.

M. H. Woods, W. C. Johnson, and M. A. Lampert, “Use of a schottky barrier to measure impact ionization coefficients in semiconductors,” Solid-State Electron. 16(3), 381–394 (1973).
[CrossRef]

Larkin, I. A.

P. W. Fry, I. E. Itskevich, D. J. Mowbray, M. S. Skolnick, J. J. Finley, J. A. Barker, E. P. O’Reilly, L. R. Wilson, I. A. Larkin, P. A. Maksym, M. Hopkinson, M. Al-Khafaji, J. P. R. David, A. G. Cullis, G. Hill, and J. C. Clark, “Inverted electron-hole alignment in InAs-GaAs self-assembled quantum dots,” Phys. Rev. Lett. 84(4), 733–736 (2000).
[CrossRef] [PubMed]

Lee, A.

Lee, T. W.

S. A. Plimmer, J. P. R. David, D. C. Herbert, T. W. Lee, G. J. Rees, P. A. Houston, R. Grey, P. N. Robson, A. W. Higgs, and D. R. Wight, “Investigation of impact ionization in thin GaAs diodes,” IEEE Trans. Electron. Dev. 43(7), 1066–1072 (1996).
[CrossRef]

Leong, W. Y.

C. H. Tan, J. C. Clark, J. P. R. David, G. J. Rees, S. A. Plimmer, R. C. Tozer, D. C. Herbert, D. J. Robbins, W. Y. Leong, and J. Newey, “Avalanche noise measurement in thin Si p+-i –n+ diodes,” Appl. Phys. Lett. 76(26), 3926–3928 (2000).
[CrossRef]

Li, C. M.

P. Jin, C. M. Li, Z. Y. Zhang, F. Q. Liu, Y. H. Chen, X. L. Ye, B. Xu, and Z. G. Wang, “Quantum-confined Stark effect and built-in dipole moment in self-assembled InAs/GaAs quantum dots,” Appl. Phys. Lett. 85(14), 2791–2793 (2004).
[CrossRef]

Li, G. R.

X. M. Sun, H. Zhang, H. Zhu, P. Xu, G. R. Li, J. Liu, and H. Z. Zheng, “High responsivity resonant-cavity-enhanced InGaAs/GaAs quantum-dot photodetector for wavelength of ~1 µm at room temperature,” Electron. Lett. 45(6), 329–330 (2009).
[CrossRef]

Li, K. F.

K. F. Li, D. S. Ong, J. P. R. David, G. J. Rees, R. C. Tozer, P. N. Robson, and R. Grey, “Avalanche multiplication noise characteristics in thin GaAs p+-i-n+ diodes,” IEEE Trans. Electron. Dev. 45(10), 2102–2107 (1998).

Lipson, M.

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005).
[CrossRef] [PubMed]

Liu, F. Q.

P. Jin, C. M. Li, Z. Y. Zhang, F. Q. Liu, Y. H. Chen, X. L. Ye, B. Xu, and Z. G. Wang, “Quantum-confined Stark effect and built-in dipole moment in self-assembled InAs/GaAs quantum dots,” Appl. Phys. Lett. 85(14), 2791–2793 (2004).
[CrossRef]

Liu, H.

Liu, H. Y.

H. Y. Liu, T. Wang, Q. Jiang, R. Hogg, F. Tutu, F. Pozzi, and A. Seeds, “Long-wavelength InAs/GaAs quantum-dot laser diode monolithically grown on Ge substrate,” Nat. Photonics 5(7), 416–419 (2011).
[CrossRef]

Liu, J.

X. M. Sun, H. Zhang, H. Zhu, P. Xu, G. R. Li, J. Liu, and H. Z. Zheng, “High responsivity resonant-cavity-enhanced InGaAs/GaAs quantum-dot photodetector for wavelength of ~1 µm at room temperature,” Electron. Lett. 45(6), 329–330 (2009).
[CrossRef]

Maksym, P. A.

P. W. Fry, I. E. Itskevich, D. J. Mowbray, M. S. Skolnick, J. J. Finley, J. A. Barker, E. P. O’Reilly, L. R. Wilson, I. A. Larkin, P. A. Maksym, M. Hopkinson, M. Al-Khafaji, J. P. R. David, A. G. Cullis, G. Hill, and J. C. Clark, “Inverted electron-hole alignment in InAs-GaAs self-assembled quantum dots,” Phys. Rev. Lett. 84(4), 733–736 (2000).
[CrossRef] [PubMed]

Malins, D. B.

D. B. Malins, A. Gomez-Iglesias, E. U. Rafailov, W. Sibbett, and A. Miller, “Electroabsorption and electrorefraction in an InAs quantum dot waveguide modulator,” IEEE Photon. Technol. Lett. 19(15), 1118–1120 (2007).
[CrossRef]

McNab, S. J.

Mi, Z.

J. Yang, P. Bhattacharya, and Z. Mi, “High-performance In0.5Ga0.5As/GaAs quantum-dot lasers on silicon with mulitplie-layer quantum-dot dislocation filters,” IEEE Trans. Electron. Dev. 54(11), 2849–2855 (2007).
[CrossRef]

Miller, A.

D. B. Malins, A. Gomez-Iglesias, E. U. Rafailov, W. Sibbett, and A. Miller, “Electroabsorption and electrorefraction in an InAs quantum dot waveguide modulator,” IEEE Photon. Technol. Lett. 19(15), 1118–1120 (2007).
[CrossRef]

Miller, D.

D. Miller, “Optical interconnects to silicon,” IEEE J. Sel. Top. Quantum Electron. 6(6), 1312–1317 (2000).
[CrossRef]

Mowbray, D. J.

P. W. Fry, I. E. Itskevich, D. J. Mowbray, M. S. Skolnick, J. J. Finley, J. A. Barker, E. P. O’Reilly, L. R. Wilson, I. A. Larkin, P. A. Maksym, M. Hopkinson, M. Al-Khafaji, J. P. R. David, A. G. Cullis, G. Hill, and J. C. Clark, “Inverted electron-hole alignment in InAs-GaAs self-assembled quantum dots,” Phys. Rev. Lett. 84(4), 733–736 (2000).
[CrossRef] [PubMed]

Nash, L.

L. Colace, P. Ferrara, G. Assanto, D. Fulgoni, and L. Nash, “Low dark-current germanium-on-silicon near-infrared detectors,” IEEE Photon. Technol. Lett. 19(22), 1813–1815 (2007).
[CrossRef]

Newey, J.

C. H. Tan, J. C. Clark, J. P. R. David, G. J. Rees, S. A. Plimmer, R. C. Tozer, D. C. Herbert, D. J. Robbins, W. Y. Leong, and J. Newey, “Avalanche noise measurement in thin Si p+-i –n+ diodes,” Appl. Phys. Lett. 76(26), 3926–3928 (2000).
[CrossRef]

Ng, B. K.

B. K. Ng, J. P. R. David, R. C. Tozer, M. Hopkinson, G. Hill, and G. J. Rees, “Excess noise Characteristics of Al0.8Ga0.2As avalanche photodiodes,” IEEE Photon. Technol. Lett. 14(4), 522–524 (2002).
[CrossRef]

O’Reilly, E. P.

P. W. Fry, I. E. Itskevich, D. J. Mowbray, M. S. Skolnick, J. J. Finley, J. A. Barker, E. P. O’Reilly, L. R. Wilson, I. A. Larkin, P. A. Maksym, M. Hopkinson, M. Al-Khafaji, J. P. R. David, A. G. Cullis, G. Hill, and J. C. Clark, “Inverted electron-hole alignment in InAs-GaAs self-assembled quantum dots,” Phys. Rev. Lett. 84(4), 733–736 (2000).
[CrossRef] [PubMed]

Oehme, M.

M. Jutzi, M. Berroth, G. Wohl, M. Oehme, and E. Kasper, “Zero biased Ge-on-Si photodetector on a thin buffer with a bandwidth of 3.2GHz at 1300nm,” Mater. Sci. Semicond. Process. 8(1-3), 423–427 (2005).
[CrossRef]

Ong, D. S.

K. F. Li, D. S. Ong, J. P. R. David, G. J. Rees, R. C. Tozer, P. N. Robson, and R. Grey, “Avalanche multiplication noise characteristics in thin GaAs p+-i-n+ diodes,” IEEE Trans. Electron. Dev. 45(10), 2102–2107 (1998).

Plimmer, S. A.

C. H. Tan, J. C. Clark, J. P. R. David, G. J. Rees, S. A. Plimmer, R. C. Tozer, D. C. Herbert, D. J. Robbins, W. Y. Leong, and J. Newey, “Avalanche noise measurement in thin Si p+-i –n+ diodes,” Appl. Phys. Lett. 76(26), 3926–3928 (2000).
[CrossRef]

C. K. Chia, J. P. R. David, G. J. Rees, S. A. Plimmer, R. Grey, and P. N. Robson, “Impact ionization in AlxGa1-xAs/GaAs single heterostructures,” J. Appl. Phys. 84(8), 4363–4369 (1998).
[CrossRef]

C. K. Chia, J. P. R. David, G. J. Rees, P. N. Robson, S. A. Plimmer, and R. Grey, “Electon multiplication in AlxGa1-xAs /GaAs hetrostructures,” Appl. Phys. Lett. 71(26), 3877–3879 (1997).
[CrossRef]

S. A. Plimmer, J. P. R. David, D. C. Herbert, T. W. Lee, G. J. Rees, P. A. Houston, R. Grey, P. N. Robson, A. W. Higgs, and D. R. Wight, “Investigation of impact ionization in thin GaAs diodes,” IEEE Trans. Electron. Dev. 43(7), 1066–1072 (1996).
[CrossRef]

Pozzi, F.

H. Y. Liu, T. Wang, Q. Jiang, R. Hogg, F. Tutu, F. Pozzi, and A. Seeds, “Long-wavelength InAs/GaAs quantum-dot laser diode monolithically grown on Ge substrate,” Nat. Photonics 5(7), 416–419 (2011).
[CrossRef]

T. Wang, H. Liu, A. Lee, F. Pozzi, and A. Seeds, “1.3-μm InAs/GaAs quantum-dot lasers monolithically grown on Si substrates,” Opt. Express 19(12), 11381–11386 (2011).
[CrossRef] [PubMed]

Pradhan, S.

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005).
[CrossRef] [PubMed]

Rafailov, E. U.

D. B. Malins, A. Gomez-Iglesias, E. U. Rafailov, W. Sibbett, and A. Miller, “Electroabsorption and electrorefraction in an InAs quantum dot waveguide modulator,” IEEE Photon. Technol. Lett. 19(15), 1118–1120 (2007).
[CrossRef]

Rees, G. J.

B. K. Ng, J. P. R. David, R. C. Tozer, M. Hopkinson, G. Hill, and G. J. Rees, “Excess noise Characteristics of Al0.8Ga0.2As avalanche photodiodes,” IEEE Photon. Technol. Lett. 14(4), 522–524 (2002).
[CrossRef]

C. H. Tan, J. C. Clark, J. P. R. David, G. J. Rees, S. A. Plimmer, R. C. Tozer, D. C. Herbert, D. J. Robbins, W. Y. Leong, and J. Newey, “Avalanche noise measurement in thin Si p+-i –n+ diodes,” Appl. Phys. Lett. 76(26), 3926–3928 (2000).
[CrossRef]

K. F. Li, D. S. Ong, J. P. R. David, G. J. Rees, R. C. Tozer, P. N. Robson, and R. Grey, “Avalanche multiplication noise characteristics in thin GaAs p+-i-n+ diodes,” IEEE Trans. Electron. Dev. 45(10), 2102–2107 (1998).

C. K. Chia, J. P. R. David, G. J. Rees, S. A. Plimmer, R. Grey, and P. N. Robson, “Impact ionization in AlxGa1-xAs/GaAs single heterostructures,” J. Appl. Phys. 84(8), 4363–4369 (1998).
[CrossRef]

C. K. Chia, J. P. R. David, G. J. Rees, P. N. Robson, S. A. Plimmer, and R. Grey, “Electon multiplication in AlxGa1-xAs /GaAs hetrostructures,” Appl. Phys. Lett. 71(26), 3877–3879 (1997).
[CrossRef]

S. A. Plimmer, J. P. R. David, D. C. Herbert, T. W. Lee, G. J. Rees, P. A. Houston, R. Grey, P. N. Robson, A. W. Higgs, and D. R. Wight, “Investigation of impact ionization in thin GaAs diodes,” IEEE Trans. Electron. Dev. 43(7), 1066–1072 (1996).
[CrossRef]

Robbins, D. J.

C. H. Tan, J. C. Clark, J. P. R. David, G. J. Rees, S. A. Plimmer, R. C. Tozer, D. C. Herbert, D. J. Robbins, W. Y. Leong, and J. Newey, “Avalanche noise measurement in thin Si p+-i –n+ diodes,” Appl. Phys. Lett. 76(26), 3926–3928 (2000).
[CrossRef]

Robson, P. N.

K. F. Li, D. S. Ong, J. P. R. David, G. J. Rees, R. C. Tozer, P. N. Robson, and R. Grey, “Avalanche multiplication noise characteristics in thin GaAs p+-i-n+ diodes,” IEEE Trans. Electron. Dev. 45(10), 2102–2107 (1998).

C. K. Chia, J. P. R. David, G. J. Rees, S. A. Plimmer, R. Grey, and P. N. Robson, “Impact ionization in AlxGa1-xAs/GaAs single heterostructures,” J. Appl. Phys. 84(8), 4363–4369 (1998).
[CrossRef]

C. K. Chia, J. P. R. David, G. J. Rees, P. N. Robson, S. A. Plimmer, and R. Grey, “Electon multiplication in AlxGa1-xAs /GaAs hetrostructures,” Appl. Phys. Lett. 71(26), 3877–3879 (1997).
[CrossRef]

S. A. Plimmer, J. P. R. David, D. C. Herbert, T. W. Lee, G. J. Rees, P. A. Houston, R. Grey, P. N. Robson, A. W. Higgs, and D. R. Wight, “Investigation of impact ionization in thin GaAs diodes,” IEEE Trans. Electron. Dev. 43(7), 1066–1072 (1996).
[CrossRef]

Schmidt, B.

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005).
[CrossRef] [PubMed]

Seeds, A.

T. Wang, H. Liu, A. Lee, F. Pozzi, and A. Seeds, “1.3-μm InAs/GaAs quantum-dot lasers monolithically grown on Si substrates,” Opt. Express 19(12), 11381–11386 (2011).
[CrossRef] [PubMed]

H. Y. Liu, T. Wang, Q. Jiang, R. Hogg, F. Tutu, F. Pozzi, and A. Seeds, “Long-wavelength InAs/GaAs quantum-dot laser diode monolithically grown on Ge substrate,” Nat. Photonics 5(7), 416–419 (2011).
[CrossRef]

Sibbett, W.

D. B. Malins, A. Gomez-Iglesias, E. U. Rafailov, W. Sibbett, and A. Miller, “Electroabsorption and electrorefraction in an InAs quantum dot waveguide modulator,” IEEE Photon. Technol. Lett. 19(15), 1118–1120 (2007).
[CrossRef]

Skolnick, M. S.

P. W. Fry, I. E. Itskevich, D. J. Mowbray, M. S. Skolnick, J. J. Finley, J. A. Barker, E. P. O’Reilly, L. R. Wilson, I. A. Larkin, P. A. Maksym, M. Hopkinson, M. Al-Khafaji, J. P. R. David, A. G. Cullis, G. Hill, and J. C. Clark, “Inverted electron-hole alignment in InAs-GaAs self-assembled quantum dots,” Phys. Rev. Lett. 84(4), 733–736 (2000).
[CrossRef] [PubMed]

Soref, R.

R. Soref, “The past, present and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1678–1687 (2006).
[CrossRef]

Sun, X. M.

X. M. Sun, H. Zhang, H. Zhu, P. Xu, G. R. Li, J. Liu, and H. Z. Zheng, “High responsivity resonant-cavity-enhanced InGaAs/GaAs quantum-dot photodetector for wavelength of ~1 µm at room temperature,” Electron. Lett. 45(6), 329–330 (2009).
[CrossRef]

Tan, C. H.

C. H. Tan, J. C. Clark, J. P. R. David, G. J. Rees, S. A. Plimmer, R. C. Tozer, D. C. Herbert, D. J. Robbins, W. Y. Leong, and J. Newey, “Avalanche noise measurement in thin Si p+-i –n+ diodes,” Appl. Phys. Lett. 76(26), 3926–3928 (2000).
[CrossRef]

Tozer, R. C.

B. K. Ng, J. P. R. David, R. C. Tozer, M. Hopkinson, G. Hill, and G. J. Rees, “Excess noise Characteristics of Al0.8Ga0.2As avalanche photodiodes,” IEEE Photon. Technol. Lett. 14(4), 522–524 (2002).
[CrossRef]

C. H. Tan, J. C. Clark, J. P. R. David, G. J. Rees, S. A. Plimmer, R. C. Tozer, D. C. Herbert, D. J. Robbins, W. Y. Leong, and J. Newey, “Avalanche noise measurement in thin Si p+-i –n+ diodes,” Appl. Phys. Lett. 76(26), 3926–3928 (2000).
[CrossRef]

K. F. Li, D. S. Ong, J. P. R. David, G. J. Rees, R. C. Tozer, P. N. Robson, and R. Grey, “Avalanche multiplication noise characteristics in thin GaAs p+-i-n+ diodes,” IEEE Trans. Electron. Dev. 45(10), 2102–2107 (1998).

Tutu, F.

H. Y. Liu, T. Wang, Q. Jiang, R. Hogg, F. Tutu, F. Pozzi, and A. Seeds, “Long-wavelength InAs/GaAs quantum-dot laser diode monolithically grown on Ge substrate,” Nat. Photonics 5(7), 416–419 (2011).
[CrossRef]

Vlasov, Y. A.

Wang, T.

T. Wang, H. Liu, A. Lee, F. Pozzi, and A. Seeds, “1.3-μm InAs/GaAs quantum-dot lasers monolithically grown on Si substrates,” Opt. Express 19(12), 11381–11386 (2011).
[CrossRef] [PubMed]

H. Y. Liu, T. Wang, Q. Jiang, R. Hogg, F. Tutu, F. Pozzi, and A. Seeds, “Long-wavelength InAs/GaAs quantum-dot laser diode monolithically grown on Ge substrate,” Nat. Photonics 5(7), 416–419 (2011).
[CrossRef]

Wang, Z. G.

P. Jin, C. M. Li, Z. Y. Zhang, F. Q. Liu, Y. H. Chen, X. L. Ye, B. Xu, and Z. G. Wang, “Quantum-confined Stark effect and built-in dipole moment in self-assembled InAs/GaAs quantum dots,” Appl. Phys. Lett. 85(14), 2791–2793 (2004).
[CrossRef]

Wight, D. R.

S. A. Plimmer, J. P. R. David, D. C. Herbert, T. W. Lee, G. J. Rees, P. A. Houston, R. Grey, P. N. Robson, A. W. Higgs, and D. R. Wight, “Investigation of impact ionization in thin GaAs diodes,” IEEE Trans. Electron. Dev. 43(7), 1066–1072 (1996).
[CrossRef]

Wilson, L. R.

P. W. Fry, I. E. Itskevich, D. J. Mowbray, M. S. Skolnick, J. J. Finley, J. A. Barker, E. P. O’Reilly, L. R. Wilson, I. A. Larkin, P. A. Maksym, M. Hopkinson, M. Al-Khafaji, J. P. R. David, A. G. Cullis, G. Hill, and J. C. Clark, “Inverted electron-hole alignment in InAs-GaAs self-assembled quantum dots,” Phys. Rev. Lett. 84(4), 733–736 (2000).
[CrossRef] [PubMed]

Wohl, G.

M. Jutzi, M. Berroth, G. Wohl, M. Oehme, and E. Kasper, “Zero biased Ge-on-Si photodetector on a thin buffer with a bandwidth of 3.2GHz at 1300nm,” Mater. Sci. Semicond. Process. 8(1-3), 423–427 (2005).
[CrossRef]

Woods, M. H.

M. H. Woods, W. C. Johnson, and M. A. Lampert, “Use of a schottky barrier to measure impact ionization coefficients in semiconductors,” Solid-State Electron. 16(3), 381–394 (1973).
[CrossRef]

Wu, Z.

J. Yang, P. Bhattacharya, and Z. Wu, “Monolithic Integration of InGaAs–GaAs quantum-dot laser and quantum-well electroabsorption modulator on Silicon,” IEEE Photon. Technol. Lett. 19(10), 747–749 (2007).
[CrossRef]

Xu, B.

P. Jin, C. M. Li, Z. Y. Zhang, F. Q. Liu, Y. H. Chen, X. L. Ye, B. Xu, and Z. G. Wang, “Quantum-confined Stark effect and built-in dipole moment in self-assembled InAs/GaAs quantum dots,” Appl. Phys. Lett. 85(14), 2791–2793 (2004).
[CrossRef]

Xu, P.

X. M. Sun, H. Zhang, H. Zhu, P. Xu, G. R. Li, J. Liu, and H. Z. Zheng, “High responsivity resonant-cavity-enhanced InGaAs/GaAs quantum-dot photodetector for wavelength of ~1 µm at room temperature,” Electron. Lett. 45(6), 329–330 (2009).
[CrossRef]

Xu, Q.

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005).
[CrossRef] [PubMed]

Yang, J.

J. Yang, P. Bhattacharya, and Z. Mi, “High-performance In0.5Ga0.5As/GaAs quantum-dot lasers on silicon with mulitplie-layer quantum-dot dislocation filters,” IEEE Trans. Electron. Dev. 54(11), 2849–2855 (2007).
[CrossRef]

J. Yang, P. Bhattacharya, and Z. Wu, “Monolithic Integration of InGaAs–GaAs quantum-dot laser and quantum-well electroabsorption modulator on Silicon,” IEEE Photon. Technol. Lett. 19(10), 747–749 (2007).
[CrossRef]

Ye, X. L.

P. Jin, C. M. Li, Z. Y. Zhang, F. Q. Liu, Y. H. Chen, X. L. Ye, B. Xu, and Z. G. Wang, “Quantum-confined Stark effect and built-in dipole moment in self-assembled InAs/GaAs quantum dots,” Appl. Phys. Lett. 85(14), 2791–2793 (2004).
[CrossRef]

Zhang, H.

X. M. Sun, H. Zhang, H. Zhu, P. Xu, G. R. Li, J. Liu, and H. Z. Zheng, “High responsivity resonant-cavity-enhanced InGaAs/GaAs quantum-dot photodetector for wavelength of ~1 µm at room temperature,” Electron. Lett. 45(6), 329–330 (2009).
[CrossRef]

Zhang, Z. Y.

P. Jin, C. M. Li, Z. Y. Zhang, F. Q. Liu, Y. H. Chen, X. L. Ye, B. Xu, and Z. G. Wang, “Quantum-confined Stark effect and built-in dipole moment in self-assembled InAs/GaAs quantum dots,” Appl. Phys. Lett. 85(14), 2791–2793 (2004).
[CrossRef]

Zheng, H. Z.

X. M. Sun, H. Zhang, H. Zhu, P. Xu, G. R. Li, J. Liu, and H. Z. Zheng, “High responsivity resonant-cavity-enhanced InGaAs/GaAs quantum-dot photodetector for wavelength of ~1 µm at room temperature,” Electron. Lett. 45(6), 329–330 (2009).
[CrossRef]

Zhu, H.

X. M. Sun, H. Zhang, H. Zhu, P. Xu, G. R. Li, J. Liu, and H. Z. Zheng, “High responsivity resonant-cavity-enhanced InGaAs/GaAs quantum-dot photodetector for wavelength of ~1 µm at room temperature,” Electron. Lett. 45(6), 329–330 (2009).
[CrossRef]

Appl. Phys. Lett. (3)

P. Jin, C. M. Li, Z. Y. Zhang, F. Q. Liu, Y. H. Chen, X. L. Ye, B. Xu, and Z. G. Wang, “Quantum-confined Stark effect and built-in dipole moment in self-assembled InAs/GaAs quantum dots,” Appl. Phys. Lett. 85(14), 2791–2793 (2004).
[CrossRef]

C. K. Chia, J. P. R. David, G. J. Rees, P. N. Robson, S. A. Plimmer, and R. Grey, “Electon multiplication in AlxGa1-xAs /GaAs hetrostructures,” Appl. Phys. Lett. 71(26), 3877–3879 (1997).
[CrossRef]

C. H. Tan, J. C. Clark, J. P. R. David, G. J. Rees, S. A. Plimmer, R. C. Tozer, D. C. Herbert, D. J. Robbins, W. Y. Leong, and J. Newey, “Avalanche noise measurement in thin Si p+-i –n+ diodes,” Appl. Phys. Lett. 76(26), 3926–3928 (2000).
[CrossRef]

Electron. Lett. (1)

X. M. Sun, H. Zhang, H. Zhu, P. Xu, G. R. Li, J. Liu, and H. Z. Zheng, “High responsivity resonant-cavity-enhanced InGaAs/GaAs quantum-dot photodetector for wavelength of ~1 µm at room temperature,” Electron. Lett. 45(6), 329–330 (2009).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (2)

D. Miller, “Optical interconnects to silicon,” IEEE J. Sel. Top. Quantum Electron. 6(6), 1312–1317 (2000).
[CrossRef]

R. Soref, “The past, present and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1678–1687 (2006).
[CrossRef]

IEEE Photon. Technol. Lett. (4)

L. Colace, P. Ferrara, G. Assanto, D. Fulgoni, and L. Nash, “Low dark-current germanium-on-silicon near-infrared detectors,” IEEE Photon. Technol. Lett. 19(22), 1813–1815 (2007).
[CrossRef]

D. B. Malins, A. Gomez-Iglesias, E. U. Rafailov, W. Sibbett, and A. Miller, “Electroabsorption and electrorefraction in an InAs quantum dot waveguide modulator,” IEEE Photon. Technol. Lett. 19(15), 1118–1120 (2007).
[CrossRef]

J. Yang, P. Bhattacharya, and Z. Wu, “Monolithic Integration of InGaAs–GaAs quantum-dot laser and quantum-well electroabsorption modulator on Silicon,” IEEE Photon. Technol. Lett. 19(10), 747–749 (2007).
[CrossRef]

B. K. Ng, J. P. R. David, R. C. Tozer, M. Hopkinson, G. Hill, and G. J. Rees, “Excess noise Characteristics of Al0.8Ga0.2As avalanche photodiodes,” IEEE Photon. Technol. Lett. 14(4), 522–524 (2002).
[CrossRef]

IEEE Trans. Electron. Dev. (3)

S. A. Plimmer, J. P. R. David, D. C. Herbert, T. W. Lee, G. J. Rees, P. A. Houston, R. Grey, P. N. Robson, A. W. Higgs, and D. R. Wight, “Investigation of impact ionization in thin GaAs diodes,” IEEE Trans. Electron. Dev. 43(7), 1066–1072 (1996).
[CrossRef]

J. Yang, P. Bhattacharya, and Z. Mi, “High-performance In0.5Ga0.5As/GaAs quantum-dot lasers on silicon with mulitplie-layer quantum-dot dislocation filters,” IEEE Trans. Electron. Dev. 54(11), 2849–2855 (2007).
[CrossRef]

K. F. Li, D. S. Ong, J. P. R. David, G. J. Rees, R. C. Tozer, P. N. Robson, and R. Grey, “Avalanche multiplication noise characteristics in thin GaAs p+-i-n+ diodes,” IEEE Trans. Electron. Dev. 45(10), 2102–2107 (1998).

J. Appl. Phys. (1)

C. K. Chia, J. P. R. David, G. J. Rees, S. A. Plimmer, R. Grey, and P. N. Robson, “Impact ionization in AlxGa1-xAs/GaAs single heterostructures,” J. Appl. Phys. 84(8), 4363–4369 (1998).
[CrossRef]

Mater. Sci. Semicond. Process. (1)

M. Jutzi, M. Berroth, G. Wohl, M. Oehme, and E. Kasper, “Zero biased Ge-on-Si photodetector on a thin buffer with a bandwidth of 3.2GHz at 1300nm,” Mater. Sci. Semicond. Process. 8(1-3), 423–427 (2005).
[CrossRef]

Nat. Photonics (1)

H. Y. Liu, T. Wang, Q. Jiang, R. Hogg, F. Tutu, F. Pozzi, and A. Seeds, “Long-wavelength InAs/GaAs quantum-dot laser diode monolithically grown on Ge substrate,” Nat. Photonics 5(7), 416–419 (2011).
[CrossRef]

Nature (1)

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005).
[CrossRef] [PubMed]

Opt. Express (2)

Phys. Rev. Lett. (1)

P. W. Fry, I. E. Itskevich, D. J. Mowbray, M. S. Skolnick, J. J. Finley, J. A. Barker, E. P. O’Reilly, L. R. Wilson, I. A. Larkin, P. A. Maksym, M. Hopkinson, M. Al-Khafaji, J. P. R. David, A. G. Cullis, G. Hill, and J. C. Clark, “Inverted electron-hole alignment in InAs-GaAs self-assembled quantum dots,” Phys. Rev. Lett. 84(4), 733–736 (2000).
[CrossRef] [PubMed]

Solid-State Electron. (1)

M. H. Woods, W. C. Johnson, and M. A. Lampert, “Use of a schottky barrier to measure impact ionization coefficients in semiconductors,” Solid-State Electron. 16(3), 381–394 (1973).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Schematic of wafer structure. (b) TEM image of the wafer.

Fig. 2
Fig. 2

- Room Temperature responsivity of a 200 µm radius device (left axis, solid line) and photoluminescence spectra (right axis, dashed line) of the as grown samples.

Fig. 3
Fig. 3

(a) Dark current densities for 200, 100, 50 and 25 µm radius devices. The data is compared with Ge on Si and commercial InGaAs photodiodes. (b) Forward current characteristics of a 200 µm radius mesa diode.

Fig. 4
Fig. 4

(a) Avalanche gain data of a 200 µm radius diode measured using lasers with wavelengths of 1300 nm (symbols) and 633 nm (dashed line). (b) Dependence of photocurrent as a function of excitation power.

Fig. 5
Fig. 5

Responsivity curves from a 200 µm radius device at various reverse biases.

Metrics