Abstract

Conditioning effect on HfO2 single-layer film by quasi-cw laser was investigated. The conditioning process was monitored with laser calorimeter. Experimental results revealed that the HfO2 film absorption decreased as a function of the irradiation dose. Higher laser power accelerated the conditioning process. The conditioning effect could not be explained by water annihilation. AFM pictures of the film surface showed that the structural information in the conditioned region was different from the unconditioned region. Monitoring the in situ absorption, laser calorimeter is a promising tool to investigate the laser conditioning process.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. J. Stolz, C. L. Weinzapfel, A. L. Rigatti, J. B. Oliver, J. Taniguchi, R. P. Bevis, and J. S. Rajasansi, “Fabrication of meter-scale laser-resistant mirrors for the National Ignition Facility, a fusion laser,” Proc. SPIE 5193, 50–58 (2004).
    [CrossRef]
  2. L. Sheehan, M. Kozlowski, F. Rainer, and M. Staggs, “Large-area conditioning of optics for high-power laser systems,” Proc. SPIE 2114, 559–568 (1994).
    [CrossRef]
  3. C. J. Stolz, L. M. Sheehan, S. M. Maricle, S. Schwartz, M. R. Kozlowski, R. T. Jennings, and J. Hue, “Laser conditioning methods in hafnia silica multilayer mirrors,” Proc. SPIE 3264, 105–112 (1998).
    [CrossRef]
  4. Y. A. Zhao, G. H. Hu, J. D. Shao, X. F. Liu, H. B. He, and Z. X. Fan, “Laser conditioning process combining N/1 and S/1 programs to improve the damage resistance of KDP crystals,” Proc. SPIE 7504, 75041L (2009).
    [CrossRef]
  5. A. B. Papandrew, C. J. Stolz, Z. L. Wu, G. E. Loomis, and S. Falabella, “Laser conditioning characterization and damage threshold prediction of hafnia/silica multilayer mirrors by photothermal microscopy,” Proc. SPIE 4347, 53–61 (2001).
    [CrossRef]
  6. H. Bercegol, “What is laser conditioning? a review focused on dielectric multilayers,” Proc. SPIE 3578, 421–426 (1999).
    [CrossRef]
  7. M. R. Kozlowski, M. Staggs, and F. Rainer, “Laser conditioning and electronic defects of HfO2 and SiO2 thin films,” Proc. SPIE 1441, 269–282 (1991).
    [CrossRef]
  8. R. Wolf, G. Zscherpe, E. Welsch, V. Goepner, and D. Schafer, “Absorption influenced laser damage resistance of Ta2O5 coatings,” Opt. Acta (Lond.) 33(7), 919–924 (1986).
    [CrossRef]
  9. R. Wolf, G. Zscherpe, E. Welsch, V. Goepner, and D. Schafer, “Ageing influence on the absorption and laser damage resistance of Ta2O5 thin films,” J. Mod. Opt. 34(12), 1585–1588 (1987).
    [CrossRef]
  10. A. During, M. Commandre, C. Fossati, B. Bertussi, J. Y. Natoli, J. L. Rullier, H. Bercegol, and P. Bouchut, “Integrated photothermal microscope and laser damage test facility for in-situ investigation of nanodefect induced damage,” Opt. Express 11(20), 2497–2501 (2003).
    [CrossRef] [PubMed]
  11. Z. L. Wu, C. J. Stolz, S. C. Weakley, J. D. Hughes, and Q. Zhao, “Damage threshold prediction of hafnia-silica multilayer coatings by nondestructive evaluation of fluence-limiting defects,” Appl. Opt. 40(12), 1897–1906 (2001).
    [CrossRef] [PubMed]
  12. S. Papernov, A. Tait, W. Bittle, A. W. Schmid, J. B. Oliver, and P. Kupinski, “Near-ultraviolet absorption and nanosecond-pulse-laser damage in HfO2 monolayers studied by submicrometer-resolution photothermal heterodyne imaging and atomic force microscopy,” J. Appl. Phys. 109(11), 113106 (2011).
    [CrossRef]
  13. E. Eva, K. Mann, N. Kaiser, B. Anton, R. Henking, D. Ristau, P. Weissbrodt, D. Mademann, L. Raupach, and E. Hacker, “Laser conditioning of LaF3/MgF2 dielectric coatings at 248 nm,” Appl. Opt. 35(28), 5613–5619 (1996).
    [CrossRef] [PubMed]
  14. ISO 11551: “Optics and optical instruments-Lasers and laser-related equipment-Test method for absorptance of optical laser components” (2003).
  15. U. Willamowski, D. Ristau, and E. Welsch, “Measuring the absolute absorptance of optical laser components,” Appl. Opt. 37(36), 8362–8370 (1998).
    [CrossRef] [PubMed]
  16. L. O. Jensen, I. Balasa, H. Blaschke, and D. Ristau, “Novel technique for the determination of hydroxyl distributions in fused silica,” Opt. Express 17(19), 17144–17149 (2009).
    [CrossRef] [PubMed]
  17. G. Duchateau, “Modeling laser conditioning of KDP crystals,” Proc. SPIE 7504, 75041K (2009).

2011 (1)

S. Papernov, A. Tait, W. Bittle, A. W. Schmid, J. B. Oliver, and P. Kupinski, “Near-ultraviolet absorption and nanosecond-pulse-laser damage in HfO2 monolayers studied by submicrometer-resolution photothermal heterodyne imaging and atomic force microscopy,” J. Appl. Phys. 109(11), 113106 (2011).
[CrossRef]

2009 (3)

L. O. Jensen, I. Balasa, H. Blaschke, and D. Ristau, “Novel technique for the determination of hydroxyl distributions in fused silica,” Opt. Express 17(19), 17144–17149 (2009).
[CrossRef] [PubMed]

G. Duchateau, “Modeling laser conditioning of KDP crystals,” Proc. SPIE 7504, 75041K (2009).

Y. A. Zhao, G. H. Hu, J. D. Shao, X. F. Liu, H. B. He, and Z. X. Fan, “Laser conditioning process combining N/1 and S/1 programs to improve the damage resistance of KDP crystals,” Proc. SPIE 7504, 75041L (2009).
[CrossRef]

2004 (1)

C. J. Stolz, C. L. Weinzapfel, A. L. Rigatti, J. B. Oliver, J. Taniguchi, R. P. Bevis, and J. S. Rajasansi, “Fabrication of meter-scale laser-resistant mirrors for the National Ignition Facility, a fusion laser,” Proc. SPIE 5193, 50–58 (2004).
[CrossRef]

2003 (1)

2001 (2)

Z. L. Wu, C. J. Stolz, S. C. Weakley, J. D. Hughes, and Q. Zhao, “Damage threshold prediction of hafnia-silica multilayer coatings by nondestructive evaluation of fluence-limiting defects,” Appl. Opt. 40(12), 1897–1906 (2001).
[CrossRef] [PubMed]

A. B. Papandrew, C. J. Stolz, Z. L. Wu, G. E. Loomis, and S. Falabella, “Laser conditioning characterization and damage threshold prediction of hafnia/silica multilayer mirrors by photothermal microscopy,” Proc. SPIE 4347, 53–61 (2001).
[CrossRef]

1999 (1)

H. Bercegol, “What is laser conditioning? a review focused on dielectric multilayers,” Proc. SPIE 3578, 421–426 (1999).
[CrossRef]

1998 (2)

C. J. Stolz, L. M. Sheehan, S. M. Maricle, S. Schwartz, M. R. Kozlowski, R. T. Jennings, and J. Hue, “Laser conditioning methods in hafnia silica multilayer mirrors,” Proc. SPIE 3264, 105–112 (1998).
[CrossRef]

U. Willamowski, D. Ristau, and E. Welsch, “Measuring the absolute absorptance of optical laser components,” Appl. Opt. 37(36), 8362–8370 (1998).
[CrossRef] [PubMed]

1996 (1)

1994 (1)

L. Sheehan, M. Kozlowski, F. Rainer, and M. Staggs, “Large-area conditioning of optics for high-power laser systems,” Proc. SPIE 2114, 559–568 (1994).
[CrossRef]

1991 (1)

M. R. Kozlowski, M. Staggs, and F. Rainer, “Laser conditioning and electronic defects of HfO2 and SiO2 thin films,” Proc. SPIE 1441, 269–282 (1991).
[CrossRef]

1987 (1)

R. Wolf, G. Zscherpe, E. Welsch, V. Goepner, and D. Schafer, “Ageing influence on the absorption and laser damage resistance of Ta2O5 thin films,” J. Mod. Opt. 34(12), 1585–1588 (1987).
[CrossRef]

1986 (1)

R. Wolf, G. Zscherpe, E. Welsch, V. Goepner, and D. Schafer, “Absorption influenced laser damage resistance of Ta2O5 coatings,” Opt. Acta (Lond.) 33(7), 919–924 (1986).
[CrossRef]

Anton, B.

Balasa, I.

Bercegol, H.

Bertussi, B.

Bevis, R. P.

C. J. Stolz, C. L. Weinzapfel, A. L. Rigatti, J. B. Oliver, J. Taniguchi, R. P. Bevis, and J. S. Rajasansi, “Fabrication of meter-scale laser-resistant mirrors for the National Ignition Facility, a fusion laser,” Proc. SPIE 5193, 50–58 (2004).
[CrossRef]

Bittle, W.

S. Papernov, A. Tait, W. Bittle, A. W. Schmid, J. B. Oliver, and P. Kupinski, “Near-ultraviolet absorption and nanosecond-pulse-laser damage in HfO2 monolayers studied by submicrometer-resolution photothermal heterodyne imaging and atomic force microscopy,” J. Appl. Phys. 109(11), 113106 (2011).
[CrossRef]

Blaschke, H.

Bouchut, P.

Commandre, M.

Duchateau, G.

G. Duchateau, “Modeling laser conditioning of KDP crystals,” Proc. SPIE 7504, 75041K (2009).

During, A.

Eva, E.

Falabella, S.

A. B. Papandrew, C. J. Stolz, Z. L. Wu, G. E. Loomis, and S. Falabella, “Laser conditioning characterization and damage threshold prediction of hafnia/silica multilayer mirrors by photothermal microscopy,” Proc. SPIE 4347, 53–61 (2001).
[CrossRef]

Fan, Z. X.

Y. A. Zhao, G. H. Hu, J. D. Shao, X. F. Liu, H. B. He, and Z. X. Fan, “Laser conditioning process combining N/1 and S/1 programs to improve the damage resistance of KDP crystals,” Proc. SPIE 7504, 75041L (2009).
[CrossRef]

Fossati, C.

Goepner, V.

R. Wolf, G. Zscherpe, E. Welsch, V. Goepner, and D. Schafer, “Ageing influence on the absorption and laser damage resistance of Ta2O5 thin films,” J. Mod. Opt. 34(12), 1585–1588 (1987).
[CrossRef]

R. Wolf, G. Zscherpe, E. Welsch, V. Goepner, and D. Schafer, “Absorption influenced laser damage resistance of Ta2O5 coatings,” Opt. Acta (Lond.) 33(7), 919–924 (1986).
[CrossRef]

Hacker, E.

He, H. B.

Y. A. Zhao, G. H. Hu, J. D. Shao, X. F. Liu, H. B. He, and Z. X. Fan, “Laser conditioning process combining N/1 and S/1 programs to improve the damage resistance of KDP crystals,” Proc. SPIE 7504, 75041L (2009).
[CrossRef]

Henking, R.

Hu, G. H.

Y. A. Zhao, G. H. Hu, J. D. Shao, X. F. Liu, H. B. He, and Z. X. Fan, “Laser conditioning process combining N/1 and S/1 programs to improve the damage resistance of KDP crystals,” Proc. SPIE 7504, 75041L (2009).
[CrossRef]

Hue, J.

C. J. Stolz, L. M. Sheehan, S. M. Maricle, S. Schwartz, M. R. Kozlowski, R. T. Jennings, and J. Hue, “Laser conditioning methods in hafnia silica multilayer mirrors,” Proc. SPIE 3264, 105–112 (1998).
[CrossRef]

Hughes, J. D.

Jennings, R. T.

C. J. Stolz, L. M. Sheehan, S. M. Maricle, S. Schwartz, M. R. Kozlowski, R. T. Jennings, and J. Hue, “Laser conditioning methods in hafnia silica multilayer mirrors,” Proc. SPIE 3264, 105–112 (1998).
[CrossRef]

Jensen, L. O.

Kaiser, N.

Kozlowski, M.

L. Sheehan, M. Kozlowski, F. Rainer, and M. Staggs, “Large-area conditioning of optics for high-power laser systems,” Proc. SPIE 2114, 559–568 (1994).
[CrossRef]

Kozlowski, M. R.

C. J. Stolz, L. M. Sheehan, S. M. Maricle, S. Schwartz, M. R. Kozlowski, R. T. Jennings, and J. Hue, “Laser conditioning methods in hafnia silica multilayer mirrors,” Proc. SPIE 3264, 105–112 (1998).
[CrossRef]

M. R. Kozlowski, M. Staggs, and F. Rainer, “Laser conditioning and electronic defects of HfO2 and SiO2 thin films,” Proc. SPIE 1441, 269–282 (1991).
[CrossRef]

Kupinski, P.

S. Papernov, A. Tait, W. Bittle, A. W. Schmid, J. B. Oliver, and P. Kupinski, “Near-ultraviolet absorption and nanosecond-pulse-laser damage in HfO2 monolayers studied by submicrometer-resolution photothermal heterodyne imaging and atomic force microscopy,” J. Appl. Phys. 109(11), 113106 (2011).
[CrossRef]

Liu, X. F.

Y. A. Zhao, G. H. Hu, J. D. Shao, X. F. Liu, H. B. He, and Z. X. Fan, “Laser conditioning process combining N/1 and S/1 programs to improve the damage resistance of KDP crystals,” Proc. SPIE 7504, 75041L (2009).
[CrossRef]

Loomis, G. E.

A. B. Papandrew, C. J. Stolz, Z. L. Wu, G. E. Loomis, and S. Falabella, “Laser conditioning characterization and damage threshold prediction of hafnia/silica multilayer mirrors by photothermal microscopy,” Proc. SPIE 4347, 53–61 (2001).
[CrossRef]

Mademann, D.

Mann, K.

Maricle, S. M.

C. J. Stolz, L. M. Sheehan, S. M. Maricle, S. Schwartz, M. R. Kozlowski, R. T. Jennings, and J. Hue, “Laser conditioning methods in hafnia silica multilayer mirrors,” Proc. SPIE 3264, 105–112 (1998).
[CrossRef]

Natoli, J. Y.

Oliver, J. B.

S. Papernov, A. Tait, W. Bittle, A. W. Schmid, J. B. Oliver, and P. Kupinski, “Near-ultraviolet absorption and nanosecond-pulse-laser damage in HfO2 monolayers studied by submicrometer-resolution photothermal heterodyne imaging and atomic force microscopy,” J. Appl. Phys. 109(11), 113106 (2011).
[CrossRef]

C. J. Stolz, C. L. Weinzapfel, A. L. Rigatti, J. B. Oliver, J. Taniguchi, R. P. Bevis, and J. S. Rajasansi, “Fabrication of meter-scale laser-resistant mirrors for the National Ignition Facility, a fusion laser,” Proc. SPIE 5193, 50–58 (2004).
[CrossRef]

Papandrew, A. B.

A. B. Papandrew, C. J. Stolz, Z. L. Wu, G. E. Loomis, and S. Falabella, “Laser conditioning characterization and damage threshold prediction of hafnia/silica multilayer mirrors by photothermal microscopy,” Proc. SPIE 4347, 53–61 (2001).
[CrossRef]

Papernov, S.

S. Papernov, A. Tait, W. Bittle, A. W. Schmid, J. B. Oliver, and P. Kupinski, “Near-ultraviolet absorption and nanosecond-pulse-laser damage in HfO2 monolayers studied by submicrometer-resolution photothermal heterodyne imaging and atomic force microscopy,” J. Appl. Phys. 109(11), 113106 (2011).
[CrossRef]

Rainer, F.

L. Sheehan, M. Kozlowski, F. Rainer, and M. Staggs, “Large-area conditioning of optics for high-power laser systems,” Proc. SPIE 2114, 559–568 (1994).
[CrossRef]

M. R. Kozlowski, M. Staggs, and F. Rainer, “Laser conditioning and electronic defects of HfO2 and SiO2 thin films,” Proc. SPIE 1441, 269–282 (1991).
[CrossRef]

Rajasansi, J. S.

C. J. Stolz, C. L. Weinzapfel, A. L. Rigatti, J. B. Oliver, J. Taniguchi, R. P. Bevis, and J. S. Rajasansi, “Fabrication of meter-scale laser-resistant mirrors for the National Ignition Facility, a fusion laser,” Proc. SPIE 5193, 50–58 (2004).
[CrossRef]

Raupach, L.

Rigatti, A. L.

C. J. Stolz, C. L. Weinzapfel, A. L. Rigatti, J. B. Oliver, J. Taniguchi, R. P. Bevis, and J. S. Rajasansi, “Fabrication of meter-scale laser-resistant mirrors for the National Ignition Facility, a fusion laser,” Proc. SPIE 5193, 50–58 (2004).
[CrossRef]

Ristau, D.

Rullier, J. L.

Schafer, D.

R. Wolf, G. Zscherpe, E. Welsch, V. Goepner, and D. Schafer, “Ageing influence on the absorption and laser damage resistance of Ta2O5 thin films,” J. Mod. Opt. 34(12), 1585–1588 (1987).
[CrossRef]

R. Wolf, G. Zscherpe, E. Welsch, V. Goepner, and D. Schafer, “Absorption influenced laser damage resistance of Ta2O5 coatings,” Opt. Acta (Lond.) 33(7), 919–924 (1986).
[CrossRef]

Schmid, A. W.

S. Papernov, A. Tait, W. Bittle, A. W. Schmid, J. B. Oliver, and P. Kupinski, “Near-ultraviolet absorption and nanosecond-pulse-laser damage in HfO2 monolayers studied by submicrometer-resolution photothermal heterodyne imaging and atomic force microscopy,” J. Appl. Phys. 109(11), 113106 (2011).
[CrossRef]

Schwartz, S.

C. J. Stolz, L. M. Sheehan, S. M. Maricle, S. Schwartz, M. R. Kozlowski, R. T. Jennings, and J. Hue, “Laser conditioning methods in hafnia silica multilayer mirrors,” Proc. SPIE 3264, 105–112 (1998).
[CrossRef]

Shao, J. D.

Y. A. Zhao, G. H. Hu, J. D. Shao, X. F. Liu, H. B. He, and Z. X. Fan, “Laser conditioning process combining N/1 and S/1 programs to improve the damage resistance of KDP crystals,” Proc. SPIE 7504, 75041L (2009).
[CrossRef]

Sheehan, L.

L. Sheehan, M. Kozlowski, F. Rainer, and M. Staggs, “Large-area conditioning of optics for high-power laser systems,” Proc. SPIE 2114, 559–568 (1994).
[CrossRef]

Sheehan, L. M.

C. J. Stolz, L. M. Sheehan, S. M. Maricle, S. Schwartz, M. R. Kozlowski, R. T. Jennings, and J. Hue, “Laser conditioning methods in hafnia silica multilayer mirrors,” Proc. SPIE 3264, 105–112 (1998).
[CrossRef]

Staggs, M.

L. Sheehan, M. Kozlowski, F. Rainer, and M. Staggs, “Large-area conditioning of optics for high-power laser systems,” Proc. SPIE 2114, 559–568 (1994).
[CrossRef]

M. R. Kozlowski, M. Staggs, and F. Rainer, “Laser conditioning and electronic defects of HfO2 and SiO2 thin films,” Proc. SPIE 1441, 269–282 (1991).
[CrossRef]

Stolz, C. J.

C. J. Stolz, C. L. Weinzapfel, A. L. Rigatti, J. B. Oliver, J. Taniguchi, R. P. Bevis, and J. S. Rajasansi, “Fabrication of meter-scale laser-resistant mirrors for the National Ignition Facility, a fusion laser,” Proc. SPIE 5193, 50–58 (2004).
[CrossRef]

A. B. Papandrew, C. J. Stolz, Z. L. Wu, G. E. Loomis, and S. Falabella, “Laser conditioning characterization and damage threshold prediction of hafnia/silica multilayer mirrors by photothermal microscopy,” Proc. SPIE 4347, 53–61 (2001).
[CrossRef]

Z. L. Wu, C. J. Stolz, S. C. Weakley, J. D. Hughes, and Q. Zhao, “Damage threshold prediction of hafnia-silica multilayer coatings by nondestructive evaluation of fluence-limiting defects,” Appl. Opt. 40(12), 1897–1906 (2001).
[CrossRef] [PubMed]

C. J. Stolz, L. M. Sheehan, S. M. Maricle, S. Schwartz, M. R. Kozlowski, R. T. Jennings, and J. Hue, “Laser conditioning methods in hafnia silica multilayer mirrors,” Proc. SPIE 3264, 105–112 (1998).
[CrossRef]

Tait, A.

S. Papernov, A. Tait, W. Bittle, A. W. Schmid, J. B. Oliver, and P. Kupinski, “Near-ultraviolet absorption and nanosecond-pulse-laser damage in HfO2 monolayers studied by submicrometer-resolution photothermal heterodyne imaging and atomic force microscopy,” J. Appl. Phys. 109(11), 113106 (2011).
[CrossRef]

Taniguchi, J.

C. J. Stolz, C. L. Weinzapfel, A. L. Rigatti, J. B. Oliver, J. Taniguchi, R. P. Bevis, and J. S. Rajasansi, “Fabrication of meter-scale laser-resistant mirrors for the National Ignition Facility, a fusion laser,” Proc. SPIE 5193, 50–58 (2004).
[CrossRef]

Weakley, S. C.

Weinzapfel, C. L.

C. J. Stolz, C. L. Weinzapfel, A. L. Rigatti, J. B. Oliver, J. Taniguchi, R. P. Bevis, and J. S. Rajasansi, “Fabrication of meter-scale laser-resistant mirrors for the National Ignition Facility, a fusion laser,” Proc. SPIE 5193, 50–58 (2004).
[CrossRef]

Weissbrodt, P.

Welsch, E.

U. Willamowski, D. Ristau, and E. Welsch, “Measuring the absolute absorptance of optical laser components,” Appl. Opt. 37(36), 8362–8370 (1998).
[CrossRef] [PubMed]

R. Wolf, G. Zscherpe, E. Welsch, V. Goepner, and D. Schafer, “Ageing influence on the absorption and laser damage resistance of Ta2O5 thin films,” J. Mod. Opt. 34(12), 1585–1588 (1987).
[CrossRef]

R. Wolf, G. Zscherpe, E. Welsch, V. Goepner, and D. Schafer, “Absorption influenced laser damage resistance of Ta2O5 coatings,” Opt. Acta (Lond.) 33(7), 919–924 (1986).
[CrossRef]

Willamowski, U.

Wolf, R.

R. Wolf, G. Zscherpe, E. Welsch, V. Goepner, and D. Schafer, “Ageing influence on the absorption and laser damage resistance of Ta2O5 thin films,” J. Mod. Opt. 34(12), 1585–1588 (1987).
[CrossRef]

R. Wolf, G. Zscherpe, E. Welsch, V. Goepner, and D. Schafer, “Absorption influenced laser damage resistance of Ta2O5 coatings,” Opt. Acta (Lond.) 33(7), 919–924 (1986).
[CrossRef]

Wu, Z. L.

A. B. Papandrew, C. J. Stolz, Z. L. Wu, G. E. Loomis, and S. Falabella, “Laser conditioning characterization and damage threshold prediction of hafnia/silica multilayer mirrors by photothermal microscopy,” Proc. SPIE 4347, 53–61 (2001).
[CrossRef]

Z. L. Wu, C. J. Stolz, S. C. Weakley, J. D. Hughes, and Q. Zhao, “Damage threshold prediction of hafnia-silica multilayer coatings by nondestructive evaluation of fluence-limiting defects,” Appl. Opt. 40(12), 1897–1906 (2001).
[CrossRef] [PubMed]

Zhao, Q.

Zhao, Y. A.

Y. A. Zhao, G. H. Hu, J. D. Shao, X. F. Liu, H. B. He, and Z. X. Fan, “Laser conditioning process combining N/1 and S/1 programs to improve the damage resistance of KDP crystals,” Proc. SPIE 7504, 75041L (2009).
[CrossRef]

Zscherpe, G.

R. Wolf, G. Zscherpe, E. Welsch, V. Goepner, and D. Schafer, “Ageing influence on the absorption and laser damage resistance of Ta2O5 thin films,” J. Mod. Opt. 34(12), 1585–1588 (1987).
[CrossRef]

R. Wolf, G. Zscherpe, E. Welsch, V. Goepner, and D. Schafer, “Absorption influenced laser damage resistance of Ta2O5 coatings,” Opt. Acta (Lond.) 33(7), 919–924 (1986).
[CrossRef]

Appl. Opt. (3)

J. Appl. Phys. (1)

S. Papernov, A. Tait, W. Bittle, A. W. Schmid, J. B. Oliver, and P. Kupinski, “Near-ultraviolet absorption and nanosecond-pulse-laser damage in HfO2 monolayers studied by submicrometer-resolution photothermal heterodyne imaging and atomic force microscopy,” J. Appl. Phys. 109(11), 113106 (2011).
[CrossRef]

J. Mod. Opt. (1)

R. Wolf, G. Zscherpe, E. Welsch, V. Goepner, and D. Schafer, “Ageing influence on the absorption and laser damage resistance of Ta2O5 thin films,” J. Mod. Opt. 34(12), 1585–1588 (1987).
[CrossRef]

Opt. Acta (Lond.) (1)

R. Wolf, G. Zscherpe, E. Welsch, V. Goepner, and D. Schafer, “Absorption influenced laser damage resistance of Ta2O5 coatings,” Opt. Acta (Lond.) 33(7), 919–924 (1986).
[CrossRef]

Opt. Express (2)

Proc. SPIE (8)

C. J. Stolz, C. L. Weinzapfel, A. L. Rigatti, J. B. Oliver, J. Taniguchi, R. P. Bevis, and J. S. Rajasansi, “Fabrication of meter-scale laser-resistant mirrors for the National Ignition Facility, a fusion laser,” Proc. SPIE 5193, 50–58 (2004).
[CrossRef]

L. Sheehan, M. Kozlowski, F. Rainer, and M. Staggs, “Large-area conditioning of optics for high-power laser systems,” Proc. SPIE 2114, 559–568 (1994).
[CrossRef]

C. J. Stolz, L. M. Sheehan, S. M. Maricle, S. Schwartz, M. R. Kozlowski, R. T. Jennings, and J. Hue, “Laser conditioning methods in hafnia silica multilayer mirrors,” Proc. SPIE 3264, 105–112 (1998).
[CrossRef]

Y. A. Zhao, G. H. Hu, J. D. Shao, X. F. Liu, H. B. He, and Z. X. Fan, “Laser conditioning process combining N/1 and S/1 programs to improve the damage resistance of KDP crystals,” Proc. SPIE 7504, 75041L (2009).
[CrossRef]

A. B. Papandrew, C. J. Stolz, Z. L. Wu, G. E. Loomis, and S. Falabella, “Laser conditioning characterization and damage threshold prediction of hafnia/silica multilayer mirrors by photothermal microscopy,” Proc. SPIE 4347, 53–61 (2001).
[CrossRef]

H. Bercegol, “What is laser conditioning? a review focused on dielectric multilayers,” Proc. SPIE 3578, 421–426 (1999).
[CrossRef]

M. R. Kozlowski, M. Staggs, and F. Rainer, “Laser conditioning and electronic defects of HfO2 and SiO2 thin films,” Proc. SPIE 1441, 269–282 (1991).
[CrossRef]

G. Duchateau, “Modeling laser conditioning of KDP crystals,” Proc. SPIE 7504, 75041K (2009).

Other (1)

ISO 11551: “Optics and optical instruments-Lasers and laser-related equipment-Test method for absorptance of optical laser components” (2003).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

(a) Beam profile of the laser spot; (b) Shematic of the localizer.

Fig. 2
Fig. 2

Laser Calorimeter set up.

Fig. 3
Fig. 3

Absorption measurement of hollow sample.

Fig. 4
Fig. 4

Substrate and HfO2 absorption.

Fig. 5
Fig. 5

Absorption towards irradiating cycles of three HfO2 samples.

Fig. 6
Fig. 6

3-D AFM image after laser conditioning. (a).unconditioned region; (b).conditioned region.

Fig. 7
Fig. 7

2-D PSD curves of the AFM images.

Fig. 8
Fig. 8

Absorption V.S. irradiating cycles, in which each 7.4W cycle was converted to two 3.7W cycles.

Fig. 9
Fig. 9

Absorption V.S. Measuring rounds curve, in which 14 min irradiation was equivalent to 7 irradiating rounds.

Tables (1)

Tables Icon

Table 1 Parameters of the Fit Curve

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

A=a+b T c
A={ a+ b (PT) c , T1 a+ b , T=0

Metrics