Abstract

A simple and low cost method for wavelength control of economical random non-preselected independent ONU sources is shown to increase the number of users in an OFDMA-PON. The method is based on OLT monitoring and thermal tuning control; it has been validated through Monte-Carlo simulations and a probabilistic model. The minimum optical spectral gap between the ONUs wavelengths that guarantees a tolerable amount of optical beat interference has been determined through an experiment.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Wei, L. Zong, and D. Qian, “Wavelength-based sub-carrier multiplexing and grooming for optical networks bandwidth virtualization,” in Proceedings OFC 2008, paper PDP35 (2008).
  2. D. Qian, N. Cvijetic, J. Hu, and T. Wang, “A novel OFDMA-PON architecture with source-free ONUs for next-generation optical access networks,” IEEE Photon. Technol. Lett. 21(17), 1265–1267 (2009).
    [CrossRef]
  3. S. Soerensen, “Optical beat noise suppression and power equalization in subcarrier multiple access passive optical networks by downstream feedback,” J. Lightwave Technol. 18(10), 1337–1347 (2000).
    [CrossRef]
  4. I. Cano, M. C. Santos, V. Polo, and J. Prat, “Dimensioning of OFDMA PON with non-preselected independent ONUs sources and wavelength-control,” in Proceedings ECOC 2011, paper Tu.5.C.2 (2011).
  5. S. L. Jansen, B. Spinnler, I. Morita, S. Randel, and H. Tanaka, “100 GbE: QPSK versus OFDM,” Opt. Fiber Technol. 15(5-6), 407–413 (2009).
    [CrossRef]
  6. C. Desem, “Optical interference in subcarrier multiplexed systems with multiple optical carriers,” IEEE J. Sel. Areas Comm. 8(7), 1290–1295 (1990).
    [CrossRef]
  7. C. H. Chang, “Interference of multiple optical carriers in subcarrier-multiplexed systems,” IEEE Photon. Technol. Lett. 5(7), 848–850 (1993).
    [CrossRef]
  8. A. Papoulis, Probability, Random Variables and Stochastic Processes (McGraw-Hill, New York, 1965).
  9. S. Uchiyama, N. Yokouchi, and T. Ninomiya, “Continuous-wave operation up to 36°C of 1.3-μm GaInAsP-InP vertical-cavity surface-emitting lasers,” IEEE Photon. Technol. Lett. 9(2), 141–142 (1997).
    [CrossRef]
  10. S. Heubach and T. Mansour, Combinatorics of Compositions and Words (CRC Press, Boca Raton, FL, 2009).

2009

S. L. Jansen, B. Spinnler, I. Morita, S. Randel, and H. Tanaka, “100 GbE: QPSK versus OFDM,” Opt. Fiber Technol. 15(5-6), 407–413 (2009).
[CrossRef]

D. Qian, N. Cvijetic, J. Hu, and T. Wang, “A novel OFDMA-PON architecture with source-free ONUs for next-generation optical access networks,” IEEE Photon. Technol. Lett. 21(17), 1265–1267 (2009).
[CrossRef]

2000

1997

S. Uchiyama, N. Yokouchi, and T. Ninomiya, “Continuous-wave operation up to 36°C of 1.3-μm GaInAsP-InP vertical-cavity surface-emitting lasers,” IEEE Photon. Technol. Lett. 9(2), 141–142 (1997).
[CrossRef]

1993

C. H. Chang, “Interference of multiple optical carriers in subcarrier-multiplexed systems,” IEEE Photon. Technol. Lett. 5(7), 848–850 (1993).
[CrossRef]

1990

C. Desem, “Optical interference in subcarrier multiplexed systems with multiple optical carriers,” IEEE J. Sel. Areas Comm. 8(7), 1290–1295 (1990).
[CrossRef]

Chang, C. H.

C. H. Chang, “Interference of multiple optical carriers in subcarrier-multiplexed systems,” IEEE Photon. Technol. Lett. 5(7), 848–850 (1993).
[CrossRef]

Cvijetic, N.

D. Qian, N. Cvijetic, J. Hu, and T. Wang, “A novel OFDMA-PON architecture with source-free ONUs for next-generation optical access networks,” IEEE Photon. Technol. Lett. 21(17), 1265–1267 (2009).
[CrossRef]

Desem, C.

C. Desem, “Optical interference in subcarrier multiplexed systems with multiple optical carriers,” IEEE J. Sel. Areas Comm. 8(7), 1290–1295 (1990).
[CrossRef]

Hu, J.

D. Qian, N. Cvijetic, J. Hu, and T. Wang, “A novel OFDMA-PON architecture with source-free ONUs for next-generation optical access networks,” IEEE Photon. Technol. Lett. 21(17), 1265–1267 (2009).
[CrossRef]

Jansen, S. L.

S. L. Jansen, B. Spinnler, I. Morita, S. Randel, and H. Tanaka, “100 GbE: QPSK versus OFDM,” Opt. Fiber Technol. 15(5-6), 407–413 (2009).
[CrossRef]

Morita, I.

S. L. Jansen, B. Spinnler, I. Morita, S. Randel, and H. Tanaka, “100 GbE: QPSK versus OFDM,” Opt. Fiber Technol. 15(5-6), 407–413 (2009).
[CrossRef]

Ninomiya, T.

S. Uchiyama, N. Yokouchi, and T. Ninomiya, “Continuous-wave operation up to 36°C of 1.3-μm GaInAsP-InP vertical-cavity surface-emitting lasers,” IEEE Photon. Technol. Lett. 9(2), 141–142 (1997).
[CrossRef]

Qian, D.

D. Qian, N. Cvijetic, J. Hu, and T. Wang, “A novel OFDMA-PON architecture with source-free ONUs for next-generation optical access networks,” IEEE Photon. Technol. Lett. 21(17), 1265–1267 (2009).
[CrossRef]

Randel, S.

S. L. Jansen, B. Spinnler, I. Morita, S. Randel, and H. Tanaka, “100 GbE: QPSK versus OFDM,” Opt. Fiber Technol. 15(5-6), 407–413 (2009).
[CrossRef]

Soerensen, S.

Spinnler, B.

S. L. Jansen, B. Spinnler, I. Morita, S. Randel, and H. Tanaka, “100 GbE: QPSK versus OFDM,” Opt. Fiber Technol. 15(5-6), 407–413 (2009).
[CrossRef]

Tanaka, H.

S. L. Jansen, B. Spinnler, I. Morita, S. Randel, and H. Tanaka, “100 GbE: QPSK versus OFDM,” Opt. Fiber Technol. 15(5-6), 407–413 (2009).
[CrossRef]

Uchiyama, S.

S. Uchiyama, N. Yokouchi, and T. Ninomiya, “Continuous-wave operation up to 36°C of 1.3-μm GaInAsP-InP vertical-cavity surface-emitting lasers,” IEEE Photon. Technol. Lett. 9(2), 141–142 (1997).
[CrossRef]

Wang, T.

D. Qian, N. Cvijetic, J. Hu, and T. Wang, “A novel OFDMA-PON architecture with source-free ONUs for next-generation optical access networks,” IEEE Photon. Technol. Lett. 21(17), 1265–1267 (2009).
[CrossRef]

Yokouchi, N.

S. Uchiyama, N. Yokouchi, and T. Ninomiya, “Continuous-wave operation up to 36°C of 1.3-μm GaInAsP-InP vertical-cavity surface-emitting lasers,” IEEE Photon. Technol. Lett. 9(2), 141–142 (1997).
[CrossRef]

IEEE J. Sel. Areas Comm.

C. Desem, “Optical interference in subcarrier multiplexed systems with multiple optical carriers,” IEEE J. Sel. Areas Comm. 8(7), 1290–1295 (1990).
[CrossRef]

IEEE Photon. Technol. Lett.

C. H. Chang, “Interference of multiple optical carriers in subcarrier-multiplexed systems,” IEEE Photon. Technol. Lett. 5(7), 848–850 (1993).
[CrossRef]

S. Uchiyama, N. Yokouchi, and T. Ninomiya, “Continuous-wave operation up to 36°C of 1.3-μm GaInAsP-InP vertical-cavity surface-emitting lasers,” IEEE Photon. Technol. Lett. 9(2), 141–142 (1997).
[CrossRef]

D. Qian, N. Cvijetic, J. Hu, and T. Wang, “A novel OFDMA-PON architecture with source-free ONUs for next-generation optical access networks,” IEEE Photon. Technol. Lett. 21(17), 1265–1267 (2009).
[CrossRef]

J. Lightwave Technol.

Opt. Fiber Technol.

S. L. Jansen, B. Spinnler, I. Morita, S. Randel, and H. Tanaka, “100 GbE: QPSK versus OFDM,” Opt. Fiber Technol. 15(5-6), 407–413 (2009).
[CrossRef]

Other

I. Cano, M. C. Santos, V. Polo, and J. Prat, “Dimensioning of OFDMA PON with non-preselected independent ONUs sources and wavelength-control,” in Proceedings ECOC 2011, paper Tu.5.C.2 (2011).

A. Papoulis, Probability, Random Variables and Stochastic Processes (McGraw-Hill, New York, 1965).

S. Heubach and T. Mansour, Combinatorics of Compositions and Words (CRC Press, Boca Raton, FL, 2009).

W. Wei, L. Zong, and D. Qian, “Wavelength-based sub-carrier multiplexing and grooming for optical networks bandwidth virtualization,” in Proceedings OFC 2008, paper PDP35 (2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(left) Experimental setup schematics, (right) users’ electrical spectrum.

Fig. 2
Fig. 2

OBI BER against wavelength separation experimental results along with the constellations and optical spectra of the points indicated.

Fig. 3
Fig. 3

(left) Algorithm flow diagram, (right) example of user emission frequency allocation after the proposed λ-control algorithm. The trapezoids indicate each ONU BW, when the base of the trapezoid is larger it means it went through more tuning.

Fig. 4
Fig. 4

(left) Theoretical results from the simplified probability equation, (right) Monte Carlo results when 64 lasers are generated in a band with a maximum allocation for 64 users.

Fig. 5
Fig. 5

(left) Monte Carlo results when 128 lasers are generated in a band with a maximum allocation of 128 users for several tuning BW; (right) Monte Carlo results when 32, 64, 128, and 256 lasers are produced in a band with a maximum allocation of 256 users for several tuning BW.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

f(y)= y! w 1 ! w 2 ! w k ! ( 1 y ) y
f(x;y)={ y! (yx)! y! w 1 ! w 2 !... w k ! ( 1 y ) y xy y! w 1 ! w 2 !... w k ! ( 1 y ) y x=y
f(x;y)= W y! (yx)! y! w 1 ! w 2 !... w k ! ( 1 y ) y
f(x;y)={ ( k y ) W y! (yx)! y! w 1 ! w 2 !... w k ! ( 1 y ) y xy y! w 1 ! w 2 !... w k ! ( 1 y ) y x=y
f tun (x;y)= ( k y ) W tun y! (yx)! y! w 1tun ! w 2tun !... w ktun ! ( 1 y ) y ;xy

Metrics