Abstract

A simple and low cost method for wavelength control of economical random non-preselected independent ONU sources is shown to increase the number of users in an OFDMA-PON. The method is based on OLT monitoring and thermal tuning control; it has been validated through Monte-Carlo simulations and a probabilistic model. The minimum optical spectral gap between the ONUs wavelengths that guarantees a tolerable amount of optical beat interference has been determined through an experiment.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Wei, L. Zong, and D. Qian, “Wavelength-based sub-carrier multiplexing and grooming for optical networks bandwidth virtualization,” in Proceedings OFC 2008, paper PDP35 (2008).
  2. D. Qian, N. Cvijetic, J. Hu, and T. Wang, “A novel OFDMA-PON architecture with source-free ONUs for next-generation optical access networks,” IEEE Photon. Technol. Lett. 21(17), 1265–1267 (2009).
    [CrossRef]
  3. S. Soerensen, “Optical beat noise suppression and power equalization in subcarrier multiple access passive optical networks by downstream feedback,” J. Lightwave Technol. 18(10), 1337–1347 (2000).
    [CrossRef]
  4. I. Cano, M. C. Santos, V. Polo, and J. Prat, “Dimensioning of OFDMA PON with non-preselected independent ONUs sources and wavelength-control,” in Proceedings ECOC 2011, paper Tu.5.C.2 (2011).
  5. S. L. Jansen, B. Spinnler, I. Morita, S. Randel, and H. Tanaka, “100 GbE: QPSK versus OFDM,” Opt. Fiber Technol. 15(5-6), 407–413 (2009).
    [CrossRef]
  6. C. Desem, “Optical interference in subcarrier multiplexed systems with multiple optical carriers,” IEEE J. Sel. Areas Comm. 8(7), 1290–1295 (1990).
    [CrossRef]
  7. C. H. Chang, “Interference of multiple optical carriers in subcarrier-multiplexed systems,” IEEE Photon. Technol. Lett. 5(7), 848–850 (1993).
    [CrossRef]
  8. A. Papoulis, Probability, Random Variables and Stochastic Processes (McGraw-Hill, New York, 1965).
  9. S. Uchiyama, N. Yokouchi, and T. Ninomiya, “Continuous-wave operation up to 36°C of 1.3-μm GaInAsP-InP vertical-cavity surface-emitting lasers,” IEEE Photon. Technol. Lett. 9(2), 141–142 (1997).
    [CrossRef]
  10. S. Heubach and T. Mansour, Combinatorics of Compositions and Words (CRC Press, Boca Raton, FL, 2009).

2009 (2)

D. Qian, N. Cvijetic, J. Hu, and T. Wang, “A novel OFDMA-PON architecture with source-free ONUs for next-generation optical access networks,” IEEE Photon. Technol. Lett. 21(17), 1265–1267 (2009).
[CrossRef]

S. L. Jansen, B. Spinnler, I. Morita, S. Randel, and H. Tanaka, “100 GbE: QPSK versus OFDM,” Opt. Fiber Technol. 15(5-6), 407–413 (2009).
[CrossRef]

2000 (1)

1997 (1)

S. Uchiyama, N. Yokouchi, and T. Ninomiya, “Continuous-wave operation up to 36°C of 1.3-μm GaInAsP-InP vertical-cavity surface-emitting lasers,” IEEE Photon. Technol. Lett. 9(2), 141–142 (1997).
[CrossRef]

1993 (1)

C. H. Chang, “Interference of multiple optical carriers in subcarrier-multiplexed systems,” IEEE Photon. Technol. Lett. 5(7), 848–850 (1993).
[CrossRef]

1990 (1)

C. Desem, “Optical interference in subcarrier multiplexed systems with multiple optical carriers,” IEEE J. Sel. Areas Comm. 8(7), 1290–1295 (1990).
[CrossRef]

Chang, C. H.

C. H. Chang, “Interference of multiple optical carriers in subcarrier-multiplexed systems,” IEEE Photon. Technol. Lett. 5(7), 848–850 (1993).
[CrossRef]

Cvijetic, N.

D. Qian, N. Cvijetic, J. Hu, and T. Wang, “A novel OFDMA-PON architecture with source-free ONUs for next-generation optical access networks,” IEEE Photon. Technol. Lett. 21(17), 1265–1267 (2009).
[CrossRef]

Desem, C.

C. Desem, “Optical interference in subcarrier multiplexed systems with multiple optical carriers,” IEEE J. Sel. Areas Comm. 8(7), 1290–1295 (1990).
[CrossRef]

Hu, J.

D. Qian, N. Cvijetic, J. Hu, and T. Wang, “A novel OFDMA-PON architecture with source-free ONUs for next-generation optical access networks,” IEEE Photon. Technol. Lett. 21(17), 1265–1267 (2009).
[CrossRef]

Jansen, S. L.

S. L. Jansen, B. Spinnler, I. Morita, S. Randel, and H. Tanaka, “100 GbE: QPSK versus OFDM,” Opt. Fiber Technol. 15(5-6), 407–413 (2009).
[CrossRef]

Morita, I.

S. L. Jansen, B. Spinnler, I. Morita, S. Randel, and H. Tanaka, “100 GbE: QPSK versus OFDM,” Opt. Fiber Technol. 15(5-6), 407–413 (2009).
[CrossRef]

Ninomiya, T.

S. Uchiyama, N. Yokouchi, and T. Ninomiya, “Continuous-wave operation up to 36°C of 1.3-μm GaInAsP-InP vertical-cavity surface-emitting lasers,” IEEE Photon. Technol. Lett. 9(2), 141–142 (1997).
[CrossRef]

Qian, D.

D. Qian, N. Cvijetic, J. Hu, and T. Wang, “A novel OFDMA-PON architecture with source-free ONUs for next-generation optical access networks,” IEEE Photon. Technol. Lett. 21(17), 1265–1267 (2009).
[CrossRef]

Randel, S.

S. L. Jansen, B. Spinnler, I. Morita, S. Randel, and H. Tanaka, “100 GbE: QPSK versus OFDM,” Opt. Fiber Technol. 15(5-6), 407–413 (2009).
[CrossRef]

Soerensen, S.

Spinnler, B.

S. L. Jansen, B. Spinnler, I. Morita, S. Randel, and H. Tanaka, “100 GbE: QPSK versus OFDM,” Opt. Fiber Technol. 15(5-6), 407–413 (2009).
[CrossRef]

Tanaka, H.

S. L. Jansen, B. Spinnler, I. Morita, S. Randel, and H. Tanaka, “100 GbE: QPSK versus OFDM,” Opt. Fiber Technol. 15(5-6), 407–413 (2009).
[CrossRef]

Uchiyama, S.

S. Uchiyama, N. Yokouchi, and T. Ninomiya, “Continuous-wave operation up to 36°C of 1.3-μm GaInAsP-InP vertical-cavity surface-emitting lasers,” IEEE Photon. Technol. Lett. 9(2), 141–142 (1997).
[CrossRef]

Wang, T.

D. Qian, N. Cvijetic, J. Hu, and T. Wang, “A novel OFDMA-PON architecture with source-free ONUs for next-generation optical access networks,” IEEE Photon. Technol. Lett. 21(17), 1265–1267 (2009).
[CrossRef]

Yokouchi, N.

S. Uchiyama, N. Yokouchi, and T. Ninomiya, “Continuous-wave operation up to 36°C of 1.3-μm GaInAsP-InP vertical-cavity surface-emitting lasers,” IEEE Photon. Technol. Lett. 9(2), 141–142 (1997).
[CrossRef]

IEEE J. Sel. Areas Comm. (1)

C. Desem, “Optical interference in subcarrier multiplexed systems with multiple optical carriers,” IEEE J. Sel. Areas Comm. 8(7), 1290–1295 (1990).
[CrossRef]

IEEE Photon. Technol. Lett. (3)

C. H. Chang, “Interference of multiple optical carriers in subcarrier-multiplexed systems,” IEEE Photon. Technol. Lett. 5(7), 848–850 (1993).
[CrossRef]

S. Uchiyama, N. Yokouchi, and T. Ninomiya, “Continuous-wave operation up to 36°C of 1.3-μm GaInAsP-InP vertical-cavity surface-emitting lasers,” IEEE Photon. Technol. Lett. 9(2), 141–142 (1997).
[CrossRef]

D. Qian, N. Cvijetic, J. Hu, and T. Wang, “A novel OFDMA-PON architecture with source-free ONUs for next-generation optical access networks,” IEEE Photon. Technol. Lett. 21(17), 1265–1267 (2009).
[CrossRef]

J. Lightwave Technol. (1)

Opt. Fiber Technol. (1)

S. L. Jansen, B. Spinnler, I. Morita, S. Randel, and H. Tanaka, “100 GbE: QPSK versus OFDM,” Opt. Fiber Technol. 15(5-6), 407–413 (2009).
[CrossRef]

Other (4)

W. Wei, L. Zong, and D. Qian, “Wavelength-based sub-carrier multiplexing and grooming for optical networks bandwidth virtualization,” in Proceedings OFC 2008, paper PDP35 (2008).

I. Cano, M. C. Santos, V. Polo, and J. Prat, “Dimensioning of OFDMA PON with non-preselected independent ONUs sources and wavelength-control,” in Proceedings ECOC 2011, paper Tu.5.C.2 (2011).

S. Heubach and T. Mansour, Combinatorics of Compositions and Words (CRC Press, Boca Raton, FL, 2009).

A. Papoulis, Probability, Random Variables and Stochastic Processes (McGraw-Hill, New York, 1965).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(left) Experimental setup schematics, (right) users’ electrical spectrum.

Fig. 2
Fig. 2

OBI BER against wavelength separation experimental results along with the constellations and optical spectra of the points indicated.

Fig. 3
Fig. 3

(left) Algorithm flow diagram, (right) example of user emission frequency allocation after the proposed λ-control algorithm. The trapezoids indicate each ONU BW, when the base of the trapezoid is larger it means it went through more tuning.

Fig. 4
Fig. 4

(left) Theoretical results from the simplified probability equation, (right) Monte Carlo results when 64 lasers are generated in a band with a maximum allocation for 64 users.

Fig. 5
Fig. 5

(left) Monte Carlo results when 128 lasers are generated in a band with a maximum allocation of 128 users for several tuning BW; (right) Monte Carlo results when 32, 64, 128, and 256 lasers are produced in a band with a maximum allocation of 256 users for several tuning BW.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

f(y)= y! w 1 ! w 2 ! w k ! ( 1 y ) y
f(x;y)={ y! (yx)! y! w 1 ! w 2 !... w k ! ( 1 y ) y xy y! w 1 ! w 2 !... w k ! ( 1 y ) y x=y
f(x;y)= W y! (yx)! y! w 1 ! w 2 !... w k ! ( 1 y ) y
f(x;y)={ ( k y ) W y! (yx)! y! w 1 ! w 2 !... w k ! ( 1 y ) y xy y! w 1 ! w 2 !... w k ! ( 1 y ) y x=y
f tun (x;y)= ( k y ) W tun y! (yx)! y! w 1tun ! w 2tun !... w ktun ! ( 1 y ) y ;xy

Metrics