Abstract

We report an experimental analysis of the capabilities of scattering-type scanning near-field optical microscopy for mapping sub-surface features at varying depths. For the first time, we demonstrate experimentally that both the spatial resolution and depth contrast can be improved in subsurface microscopy by demodulating the measured near-field signal at higher harmonics of the probe’s tapping frequency and by operating at smaller tapping amplitudes. Our findings are qualitatively supported by a simple dipole model.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Knoll and F. Keilmann, “Near-field probing of vibrational absorption for chemical microscopy,” Nature 399, 134–137 (1999).
    [CrossRef]
  2. B. B. Akhremitchev, S. Pollack, and G. C. Walker, “Apertureless scanning near-field infrared microscopy of a rough polymeric surface,” Langmuir 17, 2774–2781 (2001).
    [CrossRef]
  3. R. Hillenbrand and F. Keilmann, “Material-specific mapping of metalsemiconductordielectric nanosystems at 10 nm resolution by backscattering near-field optical microscopy,” Appl. Phys. Lett. 80, 25–27 (2002).
    [CrossRef]
  4. Z. H. Kim, S.-H. Ahn, B. Liu, and S. R. Leone, “Nanometer-scale dielectric imaging of semiconductor nanoparticles: size-dependent dipolar coupling and contrast reversal,” Nano Lett. 7, 2258–2262 (2007).
    [CrossRef] [PubMed]
  5. A. J. Huber, F. Keilmann, J. Wittborn, J. Aizpurua, and R. Hillenbrand, “Terahertz near-field nanoscopy of mobile carriers in single semiconductor nanodevices,” Nano Lett. 8, 3766–3770 (2008).
    [CrossRef] [PubMed]
  6. J. M. Stiegler, A. J. Huber, S. L. Diedenhofen, J. Gómez Rivas, R. E. Algra, E. P. A. M. Bakkers, and R. Hillenbrand, “Nanoscale free-carrier profiling of individual semiconductor nanowires by infrared near-field nanoscopy,” Nano Lett. 10, 1387–1392 (2010).
    [CrossRef] [PubMed]
  7. F. Huth, M. Schnell, J. Wittborn, N. Ocelic, and R. Hillenbrand, “Infrared-spectroscopic nanoimaging with a thermal source,” Nat Mater 10, 352–356 (2011).
    [CrossRef] [PubMed]
  8. M. B. Raschke and C. Lienau, “Apertureless near-field optical microscopy: Tip–sample coupling in elastic light scattering,” Appl. Phys. Lett. 83, 5089–5091 (2003).
    [CrossRef]
  9. T. Taubner, F. Keilmann, and R. Hillenbrand, “Nanoscale-resolved subsurface imaging by scattering-type near-field optical microscopy,” Opt. Express 13, 8893–8899 (2005).
    [CrossRef] [PubMed]
  10. T. Taubner, D. Korobkin, Y. Urzhumov, G. Shvets, and R. Hillenbrand, “Near-field microscopy through a sic superlens,” Science 313, 1595 (2006).
    [CrossRef] [PubMed]
  11. J.-S. Samson, G. Wollny, E. Brundermann, A. Bergner, A. Hecker, G. Schwaab, A. D. Wieck, and M. Havenith, “Setup of a scanning near field infrared microscope (snim): Imaging of sub-surface nano-structures in gallium-doped silicon,” Phys. Chem. Chem. Phys. 8, 753–758 (2006).
    [CrossRef] [PubMed]
  12. G. Wollny, E. Bründermann, Z. Arsov, L. Quaroni, and M. Havenith, “Nanoscale depth resolution in scanning near-field infrared microscopy,” Opt. Express 16, 7453–7459 (2008).
    [CrossRef] [PubMed]
  13. J. Sun, J. Schotland, R. Hillenbrand, and P. S. Carney, “Nanoscale optical tomography using volume-scanning near-field microscopy,” Appl. Phys. Lett. 95, 121108 (2009).
    [CrossRef]
  14. R. Jacob, S. Winnerl, H. Schneider, M. Helm, M. T. Wenzel, H.-G. von Ribbeck, L. M. Eng, and S. C. Kehr, “Quantitative determination of the charge carrier concentration of ion implanted silicon by ir-near-field spectroscopy,” Opt. Express 18, 26206–26213 (2010).
    [CrossRef] [PubMed]
  15. R. Hillenbrand and F. Keilmann, “Near-field microscopy by elastic light scattering from a tip,” Phil. Trans. R. Soc. Lond. A 362, 787–805 (2004).
    [CrossRef]
  16. L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University Press, 2006).
  17. R. Hillenbrand and F. Keilmann, “Complex optical constants on a subwavelength scale,” Phys. Rev. Lett. 85, 3029–3032 (2000).
    [CrossRef] [PubMed]
  18. T. Taubner, F. Keilmann, and R. Hillenbrand, “Effect of tip modulation on image contrast in scattering-type near-field optical microscopy,” J. Kor. Phys. Soc. 47, S213–S216 (2005).
  19. Z. Nuño, B. Hessler, J. Ochoa, Y.-S. Shon, C. Bonney, and Y. Abate, “Nanoscale subsurface- and material-specific identification of single nanoparticles,” Opt. Express 19, 20865–20875 (2011).
    [CrossRef] [PubMed]
  20. N. Ocelic, A. Huber, and R. Hillenbrand, “Pseudoheterodyne detection for background-free near-field spectroscopy,” Appl. Phys. Lett. 89, 101124 (2006).
    [CrossRef]
  21. T. Taubner, R. Hillenbrand, and F. Keilmann, “Performance of visible and mid-infrared scattering-type near-field optical microscopes,” J. Microscopy 210, 311–314 (2003).
    [CrossRef]
  22. E. Betzig and J. K. Trautman, “Near-field optics: Microscopy, spectroscopy, and surface modification beyond the diffraction limit,” Science 257, 189–195 (1992).
    [CrossRef] [PubMed]
  23. R. Esteban, R. Vogelgesang, and K. Kern, “Full simulations of the apertureless scanning near field optical microscopy signal: achievable resolution and contrast,” Opt. Express 17, 2518–2529 (2009).
    [CrossRef] [PubMed]
  24. V. A. Markel, “Coupled-dipole approach to scattering of light from a one-dimensional periodic dipole chain,” J. Mod. Opt. 40, 2281–2291 (1993).
    [CrossRef]
  25. F. Zenhausern, Y. Martin, and H. K. Wickramasinghe, “Scanning interferometric apertureless microscopy: Optical imaging at 10 angstrom resolution,” Science 269, 1083–1085 (1995).
    [CrossRef] [PubMed]
  26. B. Knoll and F. Keilmann, “Enhanced dielectric contrast in scattering-type scanning near-field optical microscopy,” Opt. Comm. 182, 321–328 (2000).
    [CrossRef]
  27. B. Knoll and F. Keilmann, “Infrared conductivity mapping for nanoelectronics,” Appl. Phys. Lett. 77, 3980–3982 (2000).
    [CrossRef]
  28. R. Hillenbrand, T. Taubner, and F. Keilmann, “Phonon-enhanced light matter interaction at the nanometre scale,” Nature 418, 159–162 (2002).
    [CrossRef] [PubMed]
  29. A. Cvitkovic, N. Ocelic, J. Aizpurua, R. Guckenberger, and R. Hillenbrand, “Infrared imaging of single nanoparticles via strong field enhancement in a scanning nanogap,” Phys. Rev. Lett. 97, 060801 (2006).
    [CrossRef] [PubMed]
  30. A. Cvitkovic, N. Ocelic, and R. Hillenbrand, “Material-specific infrared recognition of single sub-10 nm particles by substrate-enhanced scattering-type near-field microscopy,” Nano Lett. 7, 3177–3181 (2007).
    [CrossRef] [PubMed]
  31. A. Cvitkovic, N. Ocelic, and R. Hillenbrand, “Analytical model for quantitative prediction of material contrasts in scattering-type near-field optical microscopy,” Opt. Express 15, 8550–8565 (2007).
    [CrossRef] [PubMed]
  32. J. M. Stiegler, Y. Abate, A. Cvitkovic, Y. E. Romanyuk, A. J. Huber, S. R. Leone, and R. Hillenbrand, “Nanoscale infrared absorption spectroscopy of individual nanoparticles enabled by scattering-type near-field microscopy,” ACS Nano 5, 6494–6499 (2011).
    [CrossRef] [PubMed]

2011

F. Huth, M. Schnell, J. Wittborn, N. Ocelic, and R. Hillenbrand, “Infrared-spectroscopic nanoimaging with a thermal source,” Nat Mater 10, 352–356 (2011).
[CrossRef] [PubMed]

J. M. Stiegler, Y. Abate, A. Cvitkovic, Y. E. Romanyuk, A. J. Huber, S. R. Leone, and R. Hillenbrand, “Nanoscale infrared absorption spectroscopy of individual nanoparticles enabled by scattering-type near-field microscopy,” ACS Nano 5, 6494–6499 (2011).
[CrossRef] [PubMed]

Z. Nuño, B. Hessler, J. Ochoa, Y.-S. Shon, C. Bonney, and Y. Abate, “Nanoscale subsurface- and material-specific identification of single nanoparticles,” Opt. Express 19, 20865–20875 (2011).
[CrossRef] [PubMed]

2010

R. Jacob, S. Winnerl, H. Schneider, M. Helm, M. T. Wenzel, H.-G. von Ribbeck, L. M. Eng, and S. C. Kehr, “Quantitative determination of the charge carrier concentration of ion implanted silicon by ir-near-field spectroscopy,” Opt. Express 18, 26206–26213 (2010).
[CrossRef] [PubMed]

J. M. Stiegler, A. J. Huber, S. L. Diedenhofen, J. Gómez Rivas, R. E. Algra, E. P. A. M. Bakkers, and R. Hillenbrand, “Nanoscale free-carrier profiling of individual semiconductor nanowires by infrared near-field nanoscopy,” Nano Lett. 10, 1387–1392 (2010).
[CrossRef] [PubMed]

2009

J. Sun, J. Schotland, R. Hillenbrand, and P. S. Carney, “Nanoscale optical tomography using volume-scanning near-field microscopy,” Appl. Phys. Lett. 95, 121108 (2009).
[CrossRef]

R. Esteban, R. Vogelgesang, and K. Kern, “Full simulations of the apertureless scanning near field optical microscopy signal: achievable resolution and contrast,” Opt. Express 17, 2518–2529 (2009).
[CrossRef] [PubMed]

2008

G. Wollny, E. Bründermann, Z. Arsov, L. Quaroni, and M. Havenith, “Nanoscale depth resolution in scanning near-field infrared microscopy,” Opt. Express 16, 7453–7459 (2008).
[CrossRef] [PubMed]

A. J. Huber, F. Keilmann, J. Wittborn, J. Aizpurua, and R. Hillenbrand, “Terahertz near-field nanoscopy of mobile carriers in single semiconductor nanodevices,” Nano Lett. 8, 3766–3770 (2008).
[CrossRef] [PubMed]

2007

Z. H. Kim, S.-H. Ahn, B. Liu, and S. R. Leone, “Nanometer-scale dielectric imaging of semiconductor nanoparticles: size-dependent dipolar coupling and contrast reversal,” Nano Lett. 7, 2258–2262 (2007).
[CrossRef] [PubMed]

A. Cvitkovic, N. Ocelic, and R. Hillenbrand, “Analytical model for quantitative prediction of material contrasts in scattering-type near-field optical microscopy,” Opt. Express 15, 8550–8565 (2007).
[CrossRef] [PubMed]

A. Cvitkovic, N. Ocelic, and R. Hillenbrand, “Material-specific infrared recognition of single sub-10 nm particles by substrate-enhanced scattering-type near-field microscopy,” Nano Lett. 7, 3177–3181 (2007).
[CrossRef] [PubMed]

2006

N. Ocelic, A. Huber, and R. Hillenbrand, “Pseudoheterodyne detection for background-free near-field spectroscopy,” Appl. Phys. Lett. 89, 101124 (2006).
[CrossRef]

A. Cvitkovic, N. Ocelic, J. Aizpurua, R. Guckenberger, and R. Hillenbrand, “Infrared imaging of single nanoparticles via strong field enhancement in a scanning nanogap,” Phys. Rev. Lett. 97, 060801 (2006).
[CrossRef] [PubMed]

T. Taubner, D. Korobkin, Y. Urzhumov, G. Shvets, and R. Hillenbrand, “Near-field microscopy through a sic superlens,” Science 313, 1595 (2006).
[CrossRef] [PubMed]

J.-S. Samson, G. Wollny, E. Brundermann, A. Bergner, A. Hecker, G. Schwaab, A. D. Wieck, and M. Havenith, “Setup of a scanning near field infrared microscope (snim): Imaging of sub-surface nano-structures in gallium-doped silicon,” Phys. Chem. Chem. Phys. 8, 753–758 (2006).
[CrossRef] [PubMed]

2005

T. Taubner, F. Keilmann, and R. Hillenbrand, “Effect of tip modulation on image contrast in scattering-type near-field optical microscopy,” J. Kor. Phys. Soc. 47, S213–S216 (2005).

T. Taubner, F. Keilmann, and R. Hillenbrand, “Nanoscale-resolved subsurface imaging by scattering-type near-field optical microscopy,” Opt. Express 13, 8893–8899 (2005).
[CrossRef] [PubMed]

2004

R. Hillenbrand and F. Keilmann, “Near-field microscopy by elastic light scattering from a tip,” Phil. Trans. R. Soc. Lond. A 362, 787–805 (2004).
[CrossRef]

2003

M. B. Raschke and C. Lienau, “Apertureless near-field optical microscopy: Tip–sample coupling in elastic light scattering,” Appl. Phys. Lett. 83, 5089–5091 (2003).
[CrossRef]

T. Taubner, R. Hillenbrand, and F. Keilmann, “Performance of visible and mid-infrared scattering-type near-field optical microscopes,” J. Microscopy 210, 311–314 (2003).
[CrossRef]

2002

R. Hillenbrand, T. Taubner, and F. Keilmann, “Phonon-enhanced light matter interaction at the nanometre scale,” Nature 418, 159–162 (2002).
[CrossRef] [PubMed]

R. Hillenbrand and F. Keilmann, “Material-specific mapping of metalsemiconductordielectric nanosystems at 10 nm resolution by backscattering near-field optical microscopy,” Appl. Phys. Lett. 80, 25–27 (2002).
[CrossRef]

2001

B. B. Akhremitchev, S. Pollack, and G. C. Walker, “Apertureless scanning near-field infrared microscopy of a rough polymeric surface,” Langmuir 17, 2774–2781 (2001).
[CrossRef]

2000

R. Hillenbrand and F. Keilmann, “Complex optical constants on a subwavelength scale,” Phys. Rev. Lett. 85, 3029–3032 (2000).
[CrossRef] [PubMed]

B. Knoll and F. Keilmann, “Enhanced dielectric contrast in scattering-type scanning near-field optical microscopy,” Opt. Comm. 182, 321–328 (2000).
[CrossRef]

B. Knoll and F. Keilmann, “Infrared conductivity mapping for nanoelectronics,” Appl. Phys. Lett. 77, 3980–3982 (2000).
[CrossRef]

1999

B. Knoll and F. Keilmann, “Near-field probing of vibrational absorption for chemical microscopy,” Nature 399, 134–137 (1999).
[CrossRef]

1995

F. Zenhausern, Y. Martin, and H. K. Wickramasinghe, “Scanning interferometric apertureless microscopy: Optical imaging at 10 angstrom resolution,” Science 269, 1083–1085 (1995).
[CrossRef] [PubMed]

1993

V. A. Markel, “Coupled-dipole approach to scattering of light from a one-dimensional periodic dipole chain,” J. Mod. Opt. 40, 2281–2291 (1993).
[CrossRef]

1992

E. Betzig and J. K. Trautman, “Near-field optics: Microscopy, spectroscopy, and surface modification beyond the diffraction limit,” Science 257, 189–195 (1992).
[CrossRef] [PubMed]

Abate, Y.

J. M. Stiegler, Y. Abate, A. Cvitkovic, Y. E. Romanyuk, A. J. Huber, S. R. Leone, and R. Hillenbrand, “Nanoscale infrared absorption spectroscopy of individual nanoparticles enabled by scattering-type near-field microscopy,” ACS Nano 5, 6494–6499 (2011).
[CrossRef] [PubMed]

Z. Nuño, B. Hessler, J. Ochoa, Y.-S. Shon, C. Bonney, and Y. Abate, “Nanoscale subsurface- and material-specific identification of single nanoparticles,” Opt. Express 19, 20865–20875 (2011).
[CrossRef] [PubMed]

Ahn, S.-H.

Z. H. Kim, S.-H. Ahn, B. Liu, and S. R. Leone, “Nanometer-scale dielectric imaging of semiconductor nanoparticles: size-dependent dipolar coupling and contrast reversal,” Nano Lett. 7, 2258–2262 (2007).
[CrossRef] [PubMed]

Aizpurua, J.

A. J. Huber, F. Keilmann, J. Wittborn, J. Aizpurua, and R. Hillenbrand, “Terahertz near-field nanoscopy of mobile carriers in single semiconductor nanodevices,” Nano Lett. 8, 3766–3770 (2008).
[CrossRef] [PubMed]

A. Cvitkovic, N. Ocelic, J. Aizpurua, R. Guckenberger, and R. Hillenbrand, “Infrared imaging of single nanoparticles via strong field enhancement in a scanning nanogap,” Phys. Rev. Lett. 97, 060801 (2006).
[CrossRef] [PubMed]

Akhremitchev, B. B.

B. B. Akhremitchev, S. Pollack, and G. C. Walker, “Apertureless scanning near-field infrared microscopy of a rough polymeric surface,” Langmuir 17, 2774–2781 (2001).
[CrossRef]

Algra, R. E.

J. M. Stiegler, A. J. Huber, S. L. Diedenhofen, J. Gómez Rivas, R. E. Algra, E. P. A. M. Bakkers, and R. Hillenbrand, “Nanoscale free-carrier profiling of individual semiconductor nanowires by infrared near-field nanoscopy,” Nano Lett. 10, 1387–1392 (2010).
[CrossRef] [PubMed]

Arsov, Z.

Bakkers, E. P. A. M.

J. M. Stiegler, A. J. Huber, S. L. Diedenhofen, J. Gómez Rivas, R. E. Algra, E. P. A. M. Bakkers, and R. Hillenbrand, “Nanoscale free-carrier profiling of individual semiconductor nanowires by infrared near-field nanoscopy,” Nano Lett. 10, 1387–1392 (2010).
[CrossRef] [PubMed]

Bergner, A.

J.-S. Samson, G. Wollny, E. Brundermann, A. Bergner, A. Hecker, G. Schwaab, A. D. Wieck, and M. Havenith, “Setup of a scanning near field infrared microscope (snim): Imaging of sub-surface nano-structures in gallium-doped silicon,” Phys. Chem. Chem. Phys. 8, 753–758 (2006).
[CrossRef] [PubMed]

Betzig, E.

E. Betzig and J. K. Trautman, “Near-field optics: Microscopy, spectroscopy, and surface modification beyond the diffraction limit,” Science 257, 189–195 (1992).
[CrossRef] [PubMed]

Bonney, C.

Brundermann, E.

J.-S. Samson, G. Wollny, E. Brundermann, A. Bergner, A. Hecker, G. Schwaab, A. D. Wieck, and M. Havenith, “Setup of a scanning near field infrared microscope (snim): Imaging of sub-surface nano-structures in gallium-doped silicon,” Phys. Chem. Chem. Phys. 8, 753–758 (2006).
[CrossRef] [PubMed]

Bründermann, E.

Carney, P. S.

J. Sun, J. Schotland, R. Hillenbrand, and P. S. Carney, “Nanoscale optical tomography using volume-scanning near-field microscopy,” Appl. Phys. Lett. 95, 121108 (2009).
[CrossRef]

Cvitkovic, A.

J. M. Stiegler, Y. Abate, A. Cvitkovic, Y. E. Romanyuk, A. J. Huber, S. R. Leone, and R. Hillenbrand, “Nanoscale infrared absorption spectroscopy of individual nanoparticles enabled by scattering-type near-field microscopy,” ACS Nano 5, 6494–6499 (2011).
[CrossRef] [PubMed]

A. Cvitkovic, N. Ocelic, and R. Hillenbrand, “Analytical model for quantitative prediction of material contrasts in scattering-type near-field optical microscopy,” Opt. Express 15, 8550–8565 (2007).
[CrossRef] [PubMed]

A. Cvitkovic, N. Ocelic, and R. Hillenbrand, “Material-specific infrared recognition of single sub-10 nm particles by substrate-enhanced scattering-type near-field microscopy,” Nano Lett. 7, 3177–3181 (2007).
[CrossRef] [PubMed]

A. Cvitkovic, N. Ocelic, J. Aizpurua, R. Guckenberger, and R. Hillenbrand, “Infrared imaging of single nanoparticles via strong field enhancement in a scanning nanogap,” Phys. Rev. Lett. 97, 060801 (2006).
[CrossRef] [PubMed]

Diedenhofen, S. L.

J. M. Stiegler, A. J. Huber, S. L. Diedenhofen, J. Gómez Rivas, R. E. Algra, E. P. A. M. Bakkers, and R. Hillenbrand, “Nanoscale free-carrier profiling of individual semiconductor nanowires by infrared near-field nanoscopy,” Nano Lett. 10, 1387–1392 (2010).
[CrossRef] [PubMed]

Eng, L. M.

Esteban, R.

Gómez Rivas, J.

J. M. Stiegler, A. J. Huber, S. L. Diedenhofen, J. Gómez Rivas, R. E. Algra, E. P. A. M. Bakkers, and R. Hillenbrand, “Nanoscale free-carrier profiling of individual semiconductor nanowires by infrared near-field nanoscopy,” Nano Lett. 10, 1387–1392 (2010).
[CrossRef] [PubMed]

Guckenberger, R.

A. Cvitkovic, N. Ocelic, J. Aizpurua, R. Guckenberger, and R. Hillenbrand, “Infrared imaging of single nanoparticles via strong field enhancement in a scanning nanogap,” Phys. Rev. Lett. 97, 060801 (2006).
[CrossRef] [PubMed]

Havenith, M.

G. Wollny, E. Bründermann, Z. Arsov, L. Quaroni, and M. Havenith, “Nanoscale depth resolution in scanning near-field infrared microscopy,” Opt. Express 16, 7453–7459 (2008).
[CrossRef] [PubMed]

J.-S. Samson, G. Wollny, E. Brundermann, A. Bergner, A. Hecker, G. Schwaab, A. D. Wieck, and M. Havenith, “Setup of a scanning near field infrared microscope (snim): Imaging of sub-surface nano-structures in gallium-doped silicon,” Phys. Chem. Chem. Phys. 8, 753–758 (2006).
[CrossRef] [PubMed]

Hecht, B.

L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University Press, 2006).

Hecker, A.

J.-S. Samson, G. Wollny, E. Brundermann, A. Bergner, A. Hecker, G. Schwaab, A. D. Wieck, and M. Havenith, “Setup of a scanning near field infrared microscope (snim): Imaging of sub-surface nano-structures in gallium-doped silicon,” Phys. Chem. Chem. Phys. 8, 753–758 (2006).
[CrossRef] [PubMed]

Helm, M.

Hessler, B.

Hillenbrand, R.

J. M. Stiegler, Y. Abate, A. Cvitkovic, Y. E. Romanyuk, A. J. Huber, S. R. Leone, and R. Hillenbrand, “Nanoscale infrared absorption spectroscopy of individual nanoparticles enabled by scattering-type near-field microscopy,” ACS Nano 5, 6494–6499 (2011).
[CrossRef] [PubMed]

F. Huth, M. Schnell, J. Wittborn, N. Ocelic, and R. Hillenbrand, “Infrared-spectroscopic nanoimaging with a thermal source,” Nat Mater 10, 352–356 (2011).
[CrossRef] [PubMed]

J. M. Stiegler, A. J. Huber, S. L. Diedenhofen, J. Gómez Rivas, R. E. Algra, E. P. A. M. Bakkers, and R. Hillenbrand, “Nanoscale free-carrier profiling of individual semiconductor nanowires by infrared near-field nanoscopy,” Nano Lett. 10, 1387–1392 (2010).
[CrossRef] [PubMed]

J. Sun, J. Schotland, R. Hillenbrand, and P. S. Carney, “Nanoscale optical tomography using volume-scanning near-field microscopy,” Appl. Phys. Lett. 95, 121108 (2009).
[CrossRef]

A. J. Huber, F. Keilmann, J. Wittborn, J. Aizpurua, and R. Hillenbrand, “Terahertz near-field nanoscopy of mobile carriers in single semiconductor nanodevices,” Nano Lett. 8, 3766–3770 (2008).
[CrossRef] [PubMed]

A. Cvitkovic, N. Ocelic, and R. Hillenbrand, “Material-specific infrared recognition of single sub-10 nm particles by substrate-enhanced scattering-type near-field microscopy,” Nano Lett. 7, 3177–3181 (2007).
[CrossRef] [PubMed]

A. Cvitkovic, N. Ocelic, and R. Hillenbrand, “Analytical model for quantitative prediction of material contrasts in scattering-type near-field optical microscopy,” Opt. Express 15, 8550–8565 (2007).
[CrossRef] [PubMed]

N. Ocelic, A. Huber, and R. Hillenbrand, “Pseudoheterodyne detection for background-free near-field spectroscopy,” Appl. Phys. Lett. 89, 101124 (2006).
[CrossRef]

T. Taubner, D. Korobkin, Y. Urzhumov, G. Shvets, and R. Hillenbrand, “Near-field microscopy through a sic superlens,” Science 313, 1595 (2006).
[CrossRef] [PubMed]

A. Cvitkovic, N. Ocelic, J. Aizpurua, R. Guckenberger, and R. Hillenbrand, “Infrared imaging of single nanoparticles via strong field enhancement in a scanning nanogap,” Phys. Rev. Lett. 97, 060801 (2006).
[CrossRef] [PubMed]

T. Taubner, F. Keilmann, and R. Hillenbrand, “Effect of tip modulation on image contrast in scattering-type near-field optical microscopy,” J. Kor. Phys. Soc. 47, S213–S216 (2005).

T. Taubner, F. Keilmann, and R. Hillenbrand, “Nanoscale-resolved subsurface imaging by scattering-type near-field optical microscopy,” Opt. Express 13, 8893–8899 (2005).
[CrossRef] [PubMed]

R. Hillenbrand and F. Keilmann, “Near-field microscopy by elastic light scattering from a tip,” Phil. Trans. R. Soc. Lond. A 362, 787–805 (2004).
[CrossRef]

T. Taubner, R. Hillenbrand, and F. Keilmann, “Performance of visible and mid-infrared scattering-type near-field optical microscopes,” J. Microscopy 210, 311–314 (2003).
[CrossRef]

R. Hillenbrand, T. Taubner, and F. Keilmann, “Phonon-enhanced light matter interaction at the nanometre scale,” Nature 418, 159–162 (2002).
[CrossRef] [PubMed]

R. Hillenbrand and F. Keilmann, “Material-specific mapping of metalsemiconductordielectric nanosystems at 10 nm resolution by backscattering near-field optical microscopy,” Appl. Phys. Lett. 80, 25–27 (2002).
[CrossRef]

R. Hillenbrand and F. Keilmann, “Complex optical constants on a subwavelength scale,” Phys. Rev. Lett. 85, 3029–3032 (2000).
[CrossRef] [PubMed]

Huber, A.

N. Ocelic, A. Huber, and R. Hillenbrand, “Pseudoheterodyne detection for background-free near-field spectroscopy,” Appl. Phys. Lett. 89, 101124 (2006).
[CrossRef]

Huber, A. J.

J. M. Stiegler, Y. Abate, A. Cvitkovic, Y. E. Romanyuk, A. J. Huber, S. R. Leone, and R. Hillenbrand, “Nanoscale infrared absorption spectroscopy of individual nanoparticles enabled by scattering-type near-field microscopy,” ACS Nano 5, 6494–6499 (2011).
[CrossRef] [PubMed]

J. M. Stiegler, A. J. Huber, S. L. Diedenhofen, J. Gómez Rivas, R. E. Algra, E. P. A. M. Bakkers, and R. Hillenbrand, “Nanoscale free-carrier profiling of individual semiconductor nanowires by infrared near-field nanoscopy,” Nano Lett. 10, 1387–1392 (2010).
[CrossRef] [PubMed]

A. J. Huber, F. Keilmann, J. Wittborn, J. Aizpurua, and R. Hillenbrand, “Terahertz near-field nanoscopy of mobile carriers in single semiconductor nanodevices,” Nano Lett. 8, 3766–3770 (2008).
[CrossRef] [PubMed]

Huth, F.

F. Huth, M. Schnell, J. Wittborn, N. Ocelic, and R. Hillenbrand, “Infrared-spectroscopic nanoimaging with a thermal source,” Nat Mater 10, 352–356 (2011).
[CrossRef] [PubMed]

Jacob, R.

Kehr, S. C.

Keilmann, F.

A. J. Huber, F. Keilmann, J. Wittborn, J. Aizpurua, and R. Hillenbrand, “Terahertz near-field nanoscopy of mobile carriers in single semiconductor nanodevices,” Nano Lett. 8, 3766–3770 (2008).
[CrossRef] [PubMed]

T. Taubner, F. Keilmann, and R. Hillenbrand, “Effect of tip modulation on image contrast in scattering-type near-field optical microscopy,” J. Kor. Phys. Soc. 47, S213–S216 (2005).

T. Taubner, F. Keilmann, and R. Hillenbrand, “Nanoscale-resolved subsurface imaging by scattering-type near-field optical microscopy,” Opt. Express 13, 8893–8899 (2005).
[CrossRef] [PubMed]

R. Hillenbrand and F. Keilmann, “Near-field microscopy by elastic light scattering from a tip,” Phil. Trans. R. Soc. Lond. A 362, 787–805 (2004).
[CrossRef]

T. Taubner, R. Hillenbrand, and F. Keilmann, “Performance of visible and mid-infrared scattering-type near-field optical microscopes,” J. Microscopy 210, 311–314 (2003).
[CrossRef]

R. Hillenbrand, T. Taubner, and F. Keilmann, “Phonon-enhanced light matter interaction at the nanometre scale,” Nature 418, 159–162 (2002).
[CrossRef] [PubMed]

R. Hillenbrand and F. Keilmann, “Material-specific mapping of metalsemiconductordielectric nanosystems at 10 nm resolution by backscattering near-field optical microscopy,” Appl. Phys. Lett. 80, 25–27 (2002).
[CrossRef]

R. Hillenbrand and F. Keilmann, “Complex optical constants on a subwavelength scale,” Phys. Rev. Lett. 85, 3029–3032 (2000).
[CrossRef] [PubMed]

B. Knoll and F. Keilmann, “Enhanced dielectric contrast in scattering-type scanning near-field optical microscopy,” Opt. Comm. 182, 321–328 (2000).
[CrossRef]

B. Knoll and F. Keilmann, “Infrared conductivity mapping for nanoelectronics,” Appl. Phys. Lett. 77, 3980–3982 (2000).
[CrossRef]

B. Knoll and F. Keilmann, “Near-field probing of vibrational absorption for chemical microscopy,” Nature 399, 134–137 (1999).
[CrossRef]

Kern, K.

Kim, Z. H.

Z. H. Kim, S.-H. Ahn, B. Liu, and S. R. Leone, “Nanometer-scale dielectric imaging of semiconductor nanoparticles: size-dependent dipolar coupling and contrast reversal,” Nano Lett. 7, 2258–2262 (2007).
[CrossRef] [PubMed]

Knoll, B.

B. Knoll and F. Keilmann, “Enhanced dielectric contrast in scattering-type scanning near-field optical microscopy,” Opt. Comm. 182, 321–328 (2000).
[CrossRef]

B. Knoll and F. Keilmann, “Infrared conductivity mapping for nanoelectronics,” Appl. Phys. Lett. 77, 3980–3982 (2000).
[CrossRef]

B. Knoll and F. Keilmann, “Near-field probing of vibrational absorption for chemical microscopy,” Nature 399, 134–137 (1999).
[CrossRef]

Korobkin, D.

T. Taubner, D. Korobkin, Y. Urzhumov, G. Shvets, and R. Hillenbrand, “Near-field microscopy through a sic superlens,” Science 313, 1595 (2006).
[CrossRef] [PubMed]

Leone, S. R.

J. M. Stiegler, Y. Abate, A. Cvitkovic, Y. E. Romanyuk, A. J. Huber, S. R. Leone, and R. Hillenbrand, “Nanoscale infrared absorption spectroscopy of individual nanoparticles enabled by scattering-type near-field microscopy,” ACS Nano 5, 6494–6499 (2011).
[CrossRef] [PubMed]

Z. H. Kim, S.-H. Ahn, B. Liu, and S. R. Leone, “Nanometer-scale dielectric imaging of semiconductor nanoparticles: size-dependent dipolar coupling and contrast reversal,” Nano Lett. 7, 2258–2262 (2007).
[CrossRef] [PubMed]

Lienau, C.

M. B. Raschke and C. Lienau, “Apertureless near-field optical microscopy: Tip–sample coupling in elastic light scattering,” Appl. Phys. Lett. 83, 5089–5091 (2003).
[CrossRef]

Liu, B.

Z. H. Kim, S.-H. Ahn, B. Liu, and S. R. Leone, “Nanometer-scale dielectric imaging of semiconductor nanoparticles: size-dependent dipolar coupling and contrast reversal,” Nano Lett. 7, 2258–2262 (2007).
[CrossRef] [PubMed]

Markel, V. A.

V. A. Markel, “Coupled-dipole approach to scattering of light from a one-dimensional periodic dipole chain,” J. Mod. Opt. 40, 2281–2291 (1993).
[CrossRef]

Martin, Y.

F. Zenhausern, Y. Martin, and H. K. Wickramasinghe, “Scanning interferometric apertureless microscopy: Optical imaging at 10 angstrom resolution,” Science 269, 1083–1085 (1995).
[CrossRef] [PubMed]

Novotny, L.

L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University Press, 2006).

Nuño, Z.

Ocelic, N.

F. Huth, M. Schnell, J. Wittborn, N. Ocelic, and R. Hillenbrand, “Infrared-spectroscopic nanoimaging with a thermal source,” Nat Mater 10, 352–356 (2011).
[CrossRef] [PubMed]

A. Cvitkovic, N. Ocelic, and R. Hillenbrand, “Material-specific infrared recognition of single sub-10 nm particles by substrate-enhanced scattering-type near-field microscopy,” Nano Lett. 7, 3177–3181 (2007).
[CrossRef] [PubMed]

A. Cvitkovic, N. Ocelic, and R. Hillenbrand, “Analytical model for quantitative prediction of material contrasts in scattering-type near-field optical microscopy,” Opt. Express 15, 8550–8565 (2007).
[CrossRef] [PubMed]

N. Ocelic, A. Huber, and R. Hillenbrand, “Pseudoheterodyne detection for background-free near-field spectroscopy,” Appl. Phys. Lett. 89, 101124 (2006).
[CrossRef]

A. Cvitkovic, N. Ocelic, J. Aizpurua, R. Guckenberger, and R. Hillenbrand, “Infrared imaging of single nanoparticles via strong field enhancement in a scanning nanogap,” Phys. Rev. Lett. 97, 060801 (2006).
[CrossRef] [PubMed]

Ochoa, J.

Pollack, S.

B. B. Akhremitchev, S. Pollack, and G. C. Walker, “Apertureless scanning near-field infrared microscopy of a rough polymeric surface,” Langmuir 17, 2774–2781 (2001).
[CrossRef]

Quaroni, L.

Raschke, M. B.

M. B. Raschke and C. Lienau, “Apertureless near-field optical microscopy: Tip–sample coupling in elastic light scattering,” Appl. Phys. Lett. 83, 5089–5091 (2003).
[CrossRef]

Romanyuk, Y. E.

J. M. Stiegler, Y. Abate, A. Cvitkovic, Y. E. Romanyuk, A. J. Huber, S. R. Leone, and R. Hillenbrand, “Nanoscale infrared absorption spectroscopy of individual nanoparticles enabled by scattering-type near-field microscopy,” ACS Nano 5, 6494–6499 (2011).
[CrossRef] [PubMed]

Samson, J.-S.

J.-S. Samson, G. Wollny, E. Brundermann, A. Bergner, A. Hecker, G. Schwaab, A. D. Wieck, and M. Havenith, “Setup of a scanning near field infrared microscope (snim): Imaging of sub-surface nano-structures in gallium-doped silicon,” Phys. Chem. Chem. Phys. 8, 753–758 (2006).
[CrossRef] [PubMed]

Schneider, H.

Schnell, M.

F. Huth, M. Schnell, J. Wittborn, N. Ocelic, and R. Hillenbrand, “Infrared-spectroscopic nanoimaging with a thermal source,” Nat Mater 10, 352–356 (2011).
[CrossRef] [PubMed]

Schotland, J.

J. Sun, J. Schotland, R. Hillenbrand, and P. S. Carney, “Nanoscale optical tomography using volume-scanning near-field microscopy,” Appl. Phys. Lett. 95, 121108 (2009).
[CrossRef]

Schwaab, G.

J.-S. Samson, G. Wollny, E. Brundermann, A. Bergner, A. Hecker, G. Schwaab, A. D. Wieck, and M. Havenith, “Setup of a scanning near field infrared microscope (snim): Imaging of sub-surface nano-structures in gallium-doped silicon,” Phys. Chem. Chem. Phys. 8, 753–758 (2006).
[CrossRef] [PubMed]

Shon, Y.-S.

Shvets, G.

T. Taubner, D. Korobkin, Y. Urzhumov, G. Shvets, and R. Hillenbrand, “Near-field microscopy through a sic superlens,” Science 313, 1595 (2006).
[CrossRef] [PubMed]

Stiegler, J. M.

J. M. Stiegler, Y. Abate, A. Cvitkovic, Y. E. Romanyuk, A. J. Huber, S. R. Leone, and R. Hillenbrand, “Nanoscale infrared absorption spectroscopy of individual nanoparticles enabled by scattering-type near-field microscopy,” ACS Nano 5, 6494–6499 (2011).
[CrossRef] [PubMed]

J. M. Stiegler, A. J. Huber, S. L. Diedenhofen, J. Gómez Rivas, R. E. Algra, E. P. A. M. Bakkers, and R. Hillenbrand, “Nanoscale free-carrier profiling of individual semiconductor nanowires by infrared near-field nanoscopy,” Nano Lett. 10, 1387–1392 (2010).
[CrossRef] [PubMed]

Sun, J.

J. Sun, J. Schotland, R. Hillenbrand, and P. S. Carney, “Nanoscale optical tomography using volume-scanning near-field microscopy,” Appl. Phys. Lett. 95, 121108 (2009).
[CrossRef]

Taubner, T.

T. Taubner, D. Korobkin, Y. Urzhumov, G. Shvets, and R. Hillenbrand, “Near-field microscopy through a sic superlens,” Science 313, 1595 (2006).
[CrossRef] [PubMed]

T. Taubner, F. Keilmann, and R. Hillenbrand, “Effect of tip modulation on image contrast in scattering-type near-field optical microscopy,” J. Kor. Phys. Soc. 47, S213–S216 (2005).

T. Taubner, F. Keilmann, and R. Hillenbrand, “Nanoscale-resolved subsurface imaging by scattering-type near-field optical microscopy,” Opt. Express 13, 8893–8899 (2005).
[CrossRef] [PubMed]

T. Taubner, R. Hillenbrand, and F. Keilmann, “Performance of visible and mid-infrared scattering-type near-field optical microscopes,” J. Microscopy 210, 311–314 (2003).
[CrossRef]

R. Hillenbrand, T. Taubner, and F. Keilmann, “Phonon-enhanced light matter interaction at the nanometre scale,” Nature 418, 159–162 (2002).
[CrossRef] [PubMed]

Trautman, J. K.

E. Betzig and J. K. Trautman, “Near-field optics: Microscopy, spectroscopy, and surface modification beyond the diffraction limit,” Science 257, 189–195 (1992).
[CrossRef] [PubMed]

Urzhumov, Y.

T. Taubner, D. Korobkin, Y. Urzhumov, G. Shvets, and R. Hillenbrand, “Near-field microscopy through a sic superlens,” Science 313, 1595 (2006).
[CrossRef] [PubMed]

Vogelgesang, R.

von Ribbeck, H.-G.

Walker, G. C.

B. B. Akhremitchev, S. Pollack, and G. C. Walker, “Apertureless scanning near-field infrared microscopy of a rough polymeric surface,” Langmuir 17, 2774–2781 (2001).
[CrossRef]

Wenzel, M. T.

Wickramasinghe, H. K.

F. Zenhausern, Y. Martin, and H. K. Wickramasinghe, “Scanning interferometric apertureless microscopy: Optical imaging at 10 angstrom resolution,” Science 269, 1083–1085 (1995).
[CrossRef] [PubMed]

Wieck, A. D.

J.-S. Samson, G. Wollny, E. Brundermann, A. Bergner, A. Hecker, G. Schwaab, A. D. Wieck, and M. Havenith, “Setup of a scanning near field infrared microscope (snim): Imaging of sub-surface nano-structures in gallium-doped silicon,” Phys. Chem. Chem. Phys. 8, 753–758 (2006).
[CrossRef] [PubMed]

Winnerl, S.

Wittborn, J.

F. Huth, M. Schnell, J. Wittborn, N. Ocelic, and R. Hillenbrand, “Infrared-spectroscopic nanoimaging with a thermal source,” Nat Mater 10, 352–356 (2011).
[CrossRef] [PubMed]

A. J. Huber, F. Keilmann, J. Wittborn, J. Aizpurua, and R. Hillenbrand, “Terahertz near-field nanoscopy of mobile carriers in single semiconductor nanodevices,” Nano Lett. 8, 3766–3770 (2008).
[CrossRef] [PubMed]

Wollny, G.

G. Wollny, E. Bründermann, Z. Arsov, L. Quaroni, and M. Havenith, “Nanoscale depth resolution in scanning near-field infrared microscopy,” Opt. Express 16, 7453–7459 (2008).
[CrossRef] [PubMed]

J.-S. Samson, G. Wollny, E. Brundermann, A. Bergner, A. Hecker, G. Schwaab, A. D. Wieck, and M. Havenith, “Setup of a scanning near field infrared microscope (snim): Imaging of sub-surface nano-structures in gallium-doped silicon,” Phys. Chem. Chem. Phys. 8, 753–758 (2006).
[CrossRef] [PubMed]

Zenhausern, F.

F. Zenhausern, Y. Martin, and H. K. Wickramasinghe, “Scanning interferometric apertureless microscopy: Optical imaging at 10 angstrom resolution,” Science 269, 1083–1085 (1995).
[CrossRef] [PubMed]

ACS Nano

J. M. Stiegler, Y. Abate, A. Cvitkovic, Y. E. Romanyuk, A. J. Huber, S. R. Leone, and R. Hillenbrand, “Nanoscale infrared absorption spectroscopy of individual nanoparticles enabled by scattering-type near-field microscopy,” ACS Nano 5, 6494–6499 (2011).
[CrossRef] [PubMed]

Appl. Phys. Lett.

N. Ocelic, A. Huber, and R. Hillenbrand, “Pseudoheterodyne detection for background-free near-field spectroscopy,” Appl. Phys. Lett. 89, 101124 (2006).
[CrossRef]

R. Hillenbrand and F. Keilmann, “Material-specific mapping of metalsemiconductordielectric nanosystems at 10 nm resolution by backscattering near-field optical microscopy,” Appl. Phys. Lett. 80, 25–27 (2002).
[CrossRef]

M. B. Raschke and C. Lienau, “Apertureless near-field optical microscopy: Tip–sample coupling in elastic light scattering,” Appl. Phys. Lett. 83, 5089–5091 (2003).
[CrossRef]

J. Sun, J. Schotland, R. Hillenbrand, and P. S. Carney, “Nanoscale optical tomography using volume-scanning near-field microscopy,” Appl. Phys. Lett. 95, 121108 (2009).
[CrossRef]

B. Knoll and F. Keilmann, “Infrared conductivity mapping for nanoelectronics,” Appl. Phys. Lett. 77, 3980–3982 (2000).
[CrossRef]

J. Kor. Phys. Soc.

T. Taubner, F. Keilmann, and R. Hillenbrand, “Effect of tip modulation on image contrast in scattering-type near-field optical microscopy,” J. Kor. Phys. Soc. 47, S213–S216 (2005).

J. Microscopy

T. Taubner, R. Hillenbrand, and F. Keilmann, “Performance of visible and mid-infrared scattering-type near-field optical microscopes,” J. Microscopy 210, 311–314 (2003).
[CrossRef]

J. Mod. Opt.

V. A. Markel, “Coupled-dipole approach to scattering of light from a one-dimensional periodic dipole chain,” J. Mod. Opt. 40, 2281–2291 (1993).
[CrossRef]

Langmuir

B. B. Akhremitchev, S. Pollack, and G. C. Walker, “Apertureless scanning near-field infrared microscopy of a rough polymeric surface,” Langmuir 17, 2774–2781 (2001).
[CrossRef]

Nano Lett.

Z. H. Kim, S.-H. Ahn, B. Liu, and S. R. Leone, “Nanometer-scale dielectric imaging of semiconductor nanoparticles: size-dependent dipolar coupling and contrast reversal,” Nano Lett. 7, 2258–2262 (2007).
[CrossRef] [PubMed]

A. J. Huber, F. Keilmann, J. Wittborn, J. Aizpurua, and R. Hillenbrand, “Terahertz near-field nanoscopy of mobile carriers in single semiconductor nanodevices,” Nano Lett. 8, 3766–3770 (2008).
[CrossRef] [PubMed]

J. M. Stiegler, A. J. Huber, S. L. Diedenhofen, J. Gómez Rivas, R. E. Algra, E. P. A. M. Bakkers, and R. Hillenbrand, “Nanoscale free-carrier profiling of individual semiconductor nanowires by infrared near-field nanoscopy,” Nano Lett. 10, 1387–1392 (2010).
[CrossRef] [PubMed]

A. Cvitkovic, N. Ocelic, and R. Hillenbrand, “Material-specific infrared recognition of single sub-10 nm particles by substrate-enhanced scattering-type near-field microscopy,” Nano Lett. 7, 3177–3181 (2007).
[CrossRef] [PubMed]

Nat Mater

F. Huth, M. Schnell, J. Wittborn, N. Ocelic, and R. Hillenbrand, “Infrared-spectroscopic nanoimaging with a thermal source,” Nat Mater 10, 352–356 (2011).
[CrossRef] [PubMed]

Nature

B. Knoll and F. Keilmann, “Near-field probing of vibrational absorption for chemical microscopy,” Nature 399, 134–137 (1999).
[CrossRef]

R. Hillenbrand, T. Taubner, and F. Keilmann, “Phonon-enhanced light matter interaction at the nanometre scale,” Nature 418, 159–162 (2002).
[CrossRef] [PubMed]

Opt. Comm.

B. Knoll and F. Keilmann, “Enhanced dielectric contrast in scattering-type scanning near-field optical microscopy,” Opt. Comm. 182, 321–328 (2000).
[CrossRef]

Opt. Express

Phil. Trans. R. Soc. Lond. A

R. Hillenbrand and F. Keilmann, “Near-field microscopy by elastic light scattering from a tip,” Phil. Trans. R. Soc. Lond. A 362, 787–805 (2004).
[CrossRef]

Phys. Chem. Chem. Phys.

J.-S. Samson, G. Wollny, E. Brundermann, A. Bergner, A. Hecker, G. Schwaab, A. D. Wieck, and M. Havenith, “Setup of a scanning near field infrared microscope (snim): Imaging of sub-surface nano-structures in gallium-doped silicon,” Phys. Chem. Chem. Phys. 8, 753–758 (2006).
[CrossRef] [PubMed]

Phys. Rev. Lett.

R. Hillenbrand and F. Keilmann, “Complex optical constants on a subwavelength scale,” Phys. Rev. Lett. 85, 3029–3032 (2000).
[CrossRef] [PubMed]

A. Cvitkovic, N. Ocelic, J. Aizpurua, R. Guckenberger, and R. Hillenbrand, “Infrared imaging of single nanoparticles via strong field enhancement in a scanning nanogap,” Phys. Rev. Lett. 97, 060801 (2006).
[CrossRef] [PubMed]

Science

F. Zenhausern, Y. Martin, and H. K. Wickramasinghe, “Scanning interferometric apertureless microscopy: Optical imaging at 10 angstrom resolution,” Science 269, 1083–1085 (1995).
[CrossRef] [PubMed]

T. Taubner, D. Korobkin, Y. Urzhumov, G. Shvets, and R. Hillenbrand, “Near-field microscopy through a sic superlens,” Science 313, 1595 (2006).
[CrossRef] [PubMed]

E. Betzig and J. K. Trautman, “Near-field optics: Microscopy, spectroscopy, and surface modification beyond the diffraction limit,” Science 257, 189–195 (1992).
[CrossRef] [PubMed]

Other

L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University Press, 2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Subsurface infrared near-field imaging. (a) Experimental set-up and sketch of the cross-section of the sample, containing 100 nm diameter Au disks covered by SiO2. (b) SEM image of the Au disks before SiO2 deposition. (c) AFM topography of the SiO2 surface. (d) Image of the infrared near-field amplitude s3 at A = 70 nm recorded simultaneously with topography.

Fig. 2
Fig. 2

(a) Near-field amplitude profile s3 recorded at A = 70 nm, extracted from the IR near-field image (inset) along the dashed white line. Symbols represent experimental data, the black solid line – a linear interpolation between the data points and black dots – a baseline. (b) Baseline-corrected, normalized amplitude s 3 *. Symbols represent the experimental data and the red solid line shows a Gaussian fit.

Fig. 3
Fig. 3

Comparison of s-SNOM resolution and depth contrast for different imaging parameters A and n. (a) Profiles of near-field amplitudes s 3 * (solid red) and s 4 * (dashed blue) recorded along the white dashed line in Fig. 2(a). Tapping amplitude A = 70 nm. (b) Peak maxima obtained from Gaussian fits. (c) FWHMs obtained from Gaussian fits.

Fig. 4
Fig. 4

Qualitative modeling of subsurface s-SNOM. (a) Schematics of the model where the tip and the disk are described by dipoles. (b) Calculated FWHMs for different imaging parameters A and n.

Fig. 5
Fig. 5

CDM simulations. (a, b) Schematics of the simulation showing the probe sphere (tip, radius 20 nm) scanning across two small spheres (radii 10 nm). (c, d) Calculated near-field profile Esca. (e, f) Calculated near-field profiles of 3rd (solid red line) and 4th (dashed blue line) harmonics. The top panels show the simulation with the spheres buried right below the SiO2 surface. The bottom panels show the simulation with the spheres buried at the depth of 15 nm beneath it. All signals are normalized to their own maxima.

Metrics