Abstract

This study presents a novel technology to manipulate micro-particles with the assistance from flexible polymer-based optically-induced dielectrophoretic (ODEP) devices. Bending the flexible ODEP devices downwards or upwards to create convex or concave curvatures, respectively, enables the more effective separation or collection of micro-particles with different diameters. The travel distances of the polystyrene beads of 40 μm diameter, as induced by the projected light in a given time period was increased by ~100%, which were 43.0 ± 5.0 and 84.6 ± 4.0 μm for flat and convex ODEP devices, respectively. A rapid separation or collection of micro-particles can be achieved with the assistance of gravity because the falling polystyrene beads followed the inclination of the downward and upward bent ODEP devices.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. X. B. Wang, Y. Huang, F. F. Becker, and P. R. C. Gascoyne, “A unified theory of dielectrophoresis and travelling wave dielectrophoresis,” J. Phys. D Appl. Phys. 27(7), 1571–1574 (1994).
    [CrossRef]
  2. R. Pethig and G. H. Markx, “Applications of dielectrophoresis in biotechnology,” Trends Biotechnol. 15(10), 426–432 (1997).
    [CrossRef] [PubMed]
  3. R. Krupke, S. Linden, M. Rapp, and F. Hennrich, “Thin films of metallic carbon nanotubes prepared by dielectrophoresis,” Adv. Mater. (Deerfield Beach Fla.) 18(11), 1468–1470 (2006).
    [CrossRef]
  4. A. J. de Mello and N. Beard, “Dealing with real samples: sample pre-treatment in microfluidic systems,” Lab Chip 3(1), 11N–19N (2003).
    [CrossRef] [PubMed]
  5. E. W. H. Jager, O. Inganäs, and I. Lundström, “Microrobots for micrometer-size objects in aqueous media: potential tools for single-cell manipulation,” Science 288(5475), 2335–2338 (2000).
    [CrossRef] [PubMed]
  6. J. Voldman, “Electrical forces for microscale cell manipulation,” Annu. Rev. Biomed. Eng. 8(1), 425–454 (2006).
    [CrossRef] [PubMed]
  7. P. Gascoyne, J. Satayavivad, and M. Ruchirawat, “Microfluidic approaches to malaria detection,” Acta Trop. 89(3), 357–369 (2004).
    [CrossRef] [PubMed]
  8. C. Mio and D. W. M. Marr, “Optical trapping for the manipulation of colloidal particles,” Adv. Mater. (Deerfield Beach Fla.) 12(12), 917–920 (2000).
    [CrossRef]
  9. P. Y. Chiou, A. T. Ohta, and M. C. Wu, “Massively parallel manipulation of single cells and microparticles using optical images,” Nature 436(7049), 370–372 (2005).
    [CrossRef] [PubMed]
  10. M. P. Hughes, “Strategies for dielectrophoretic separation in laboratory-on-a-chip systems,” Electrophoresis 23(16), 2569–2582 (2002).
    [CrossRef] [PubMed]
  11. W. Y. Lin, Y. H. Lin, and G. B. Lee, “Separation of micro-particles utilizing spatial difference of optically induced dielectrophoretic forces,” Microfluid. Nanofluid. 8(2), 217–229 (2010).
    [CrossRef]
  12. A. T. Ohta, P. Y. Chiou, T. H. Han, J. C. Liao, U. Bhardwaj, E. R. B. McCabe, F. Q. Yu, R. Sun, and M. C. Wu, “Dynamic cell and microparticle control via optoelectronic tweezers,” J. Microelectromech. Syst. 16(3), 491–499 (2007).
    [CrossRef]
  13. F. Padinger, R. S. Rittberger, and N. S. Sariciftci, “Effects of postproduction treatment on plastic solar cells,” Adv. Funct. Mater. 13(1), 85–88 (2003).
    [CrossRef]
  14. H. Sirringhaus, N. Tessler, and R. H. Friend, “Integrated optoelectronic devices based on conjugated polymers,” Science 280(5370), 1741–1744 (1998).
    [CrossRef] [PubMed]
  15. W. Wang, Y. H. Lin, R. S. Guan, T. C. Wen, T. F. Guo, and G. B. Lee, “Bulk-heterojunction polymers in optically-induced dielectrophoretic devices for the manipulation of microparticles,” Opt. Express 17(20), 17603–17613 (2009).
    [CrossRef] [PubMed]
  16. Y. Kim, S. A. Choulis, J. Nelson, D. D. C. Bradley, S. Cook, and J. R. Durrant, “Device annealing effect in organic solar cells with blends of regioregular poly(3-hexylthiophene) and soluble fullerene,” Appl. Phys. Lett. 86, 063502 (2005).
  17. T. B. Jones, Electromechanics of Particles (Cambridge University Press, 1975).
  18. T. Guo, T. Wen, G. Lvovichpakhomov, X. Chin, S. Liou, P. Yeh, and C. Yang, “Effects of film treatment on the performance of poly(3-hexylthiophene)/soluble fullerene-based organic solar cells,” Thin Solid Films 516(10), 3138–3142 (2008).
    [CrossRef]
  19. W. Wang, Y. H. Lin, T. C. Wen, T. F. Guo, and G. B. Lee, “Selective manipulation of microparticles using polymer-based optically induced dielectrophoretic devices,” Appl. Phys. Lett. 96, 113302 (2010).
  20. D. J. Lipomi, B. C. K. Tee, M. Vosgueritchian, and Z. N. Bao, “Stretchable organic solar cells,” Adv. Mater. (Deerfield Beach Fla.) 23(15), 1771–1775 (2011).
    [CrossRef] [PubMed]
  21. C. H. Tai, S. K. Hsiung, C. Y. Chen, M. L. Tsai, and G. B. Lee, “Automatic microfluidic platform for cell separation and nucleus collection,” Biomed. Microdevices 9(4), 533–543 (2007).
    [CrossRef] [PubMed]
  22. G. Heywang and F. Jonas, “Poly(alkylenedioxythiophene)s - new, very stable conducting polymers,” Adv. Mater. (Deerfield Beach Fla.) 4(2), 116–118 (1992).
    [CrossRef]
  23. T. M. Brown, J. S. Kim, R. H. Friend, F. Cacialli, R. Daik, and W. J. Feast, “Built-in field electroabsorption spectroscopy of polymer light-emitting diodes incorporating a doped poly(3,4-ethylene dioxythiophene) hole injection layer,” Appl. Phys. Lett. 75(12), 1679–1681 (1999).
    [CrossRef]
  24. J. S. Huang, G. Li, and Y. Yang, “A semi-transparent plastic solar cell fabricated by a lamination process,” Adv. Mater. (Deerfield Beach Fla.) 20(3), 415–419 (2008).
    [CrossRef]
  25. V. Dyakonov, “Mechanisms controlling the efficiency of polymer solar cells,” Appl. Phys. A-Mater. 79, 21–25 (2004).
  26. G. Li, V. Shrotriya, J. S. Huang, Y. Yao, T. Moriarty, K. Emery, and Y. Yang, “High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends,” Nat. Mater. 4(11), 864–868 (2005).
    [CrossRef]
  27. H. A. Pohl, Dielectrophoresis (Cambridge University, 1978).
  28. J. L. Billeter and R. A. Pelcovits, “Defect configurations and dynamical behavior in a gay-berne nematic emulsion,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 62(11 Pt A), 711–717 (2000).
    [CrossRef] [PubMed]

2011 (1)

D. J. Lipomi, B. C. K. Tee, M. Vosgueritchian, and Z. N. Bao, “Stretchable organic solar cells,” Adv. Mater. (Deerfield Beach Fla.) 23(15), 1771–1775 (2011).
[CrossRef] [PubMed]

2010 (2)

W. Y. Lin, Y. H. Lin, and G. B. Lee, “Separation of micro-particles utilizing spatial difference of optically induced dielectrophoretic forces,” Microfluid. Nanofluid. 8(2), 217–229 (2010).
[CrossRef]

W. Wang, Y. H. Lin, T. C. Wen, T. F. Guo, and G. B. Lee, “Selective manipulation of microparticles using polymer-based optically induced dielectrophoretic devices,” Appl. Phys. Lett. 96, 113302 (2010).

2009 (1)

2008 (2)

T. Guo, T. Wen, G. Lvovichpakhomov, X. Chin, S. Liou, P. Yeh, and C. Yang, “Effects of film treatment on the performance of poly(3-hexylthiophene)/soluble fullerene-based organic solar cells,” Thin Solid Films 516(10), 3138–3142 (2008).
[CrossRef]

J. S. Huang, G. Li, and Y. Yang, “A semi-transparent plastic solar cell fabricated by a lamination process,” Adv. Mater. (Deerfield Beach Fla.) 20(3), 415–419 (2008).
[CrossRef]

2007 (2)

C. H. Tai, S. K. Hsiung, C. Y. Chen, M. L. Tsai, and G. B. Lee, “Automatic microfluidic platform for cell separation and nucleus collection,” Biomed. Microdevices 9(4), 533–543 (2007).
[CrossRef] [PubMed]

A. T. Ohta, P. Y. Chiou, T. H. Han, J. C. Liao, U. Bhardwaj, E. R. B. McCabe, F. Q. Yu, R. Sun, and M. C. Wu, “Dynamic cell and microparticle control via optoelectronic tweezers,” J. Microelectromech. Syst. 16(3), 491–499 (2007).
[CrossRef]

2006 (2)

R. Krupke, S. Linden, M. Rapp, and F. Hennrich, “Thin films of metallic carbon nanotubes prepared by dielectrophoresis,” Adv. Mater. (Deerfield Beach Fla.) 18(11), 1468–1470 (2006).
[CrossRef]

J. Voldman, “Electrical forces for microscale cell manipulation,” Annu. Rev. Biomed. Eng. 8(1), 425–454 (2006).
[CrossRef] [PubMed]

2005 (3)

P. Y. Chiou, A. T. Ohta, and M. C. Wu, “Massively parallel manipulation of single cells and microparticles using optical images,” Nature 436(7049), 370–372 (2005).
[CrossRef] [PubMed]

Y. Kim, S. A. Choulis, J. Nelson, D. D. C. Bradley, S. Cook, and J. R. Durrant, “Device annealing effect in organic solar cells with blends of regioregular poly(3-hexylthiophene) and soluble fullerene,” Appl. Phys. Lett. 86, 063502 (2005).

G. Li, V. Shrotriya, J. S. Huang, Y. Yao, T. Moriarty, K. Emery, and Y. Yang, “High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends,” Nat. Mater. 4(11), 864–868 (2005).
[CrossRef]

2004 (2)

V. Dyakonov, “Mechanisms controlling the efficiency of polymer solar cells,” Appl. Phys. A-Mater. 79, 21–25 (2004).

P. Gascoyne, J. Satayavivad, and M. Ruchirawat, “Microfluidic approaches to malaria detection,” Acta Trop. 89(3), 357–369 (2004).
[CrossRef] [PubMed]

2003 (2)

A. J. de Mello and N. Beard, “Dealing with real samples: sample pre-treatment in microfluidic systems,” Lab Chip 3(1), 11N–19N (2003).
[CrossRef] [PubMed]

F. Padinger, R. S. Rittberger, and N. S. Sariciftci, “Effects of postproduction treatment on plastic solar cells,” Adv. Funct. Mater. 13(1), 85–88 (2003).
[CrossRef]

2002 (1)

M. P. Hughes, “Strategies for dielectrophoretic separation in laboratory-on-a-chip systems,” Electrophoresis 23(16), 2569–2582 (2002).
[CrossRef] [PubMed]

2000 (3)

C. Mio and D. W. M. Marr, “Optical trapping for the manipulation of colloidal particles,” Adv. Mater. (Deerfield Beach Fla.) 12(12), 917–920 (2000).
[CrossRef]

E. W. H. Jager, O. Inganäs, and I. Lundström, “Microrobots for micrometer-size objects in aqueous media: potential tools for single-cell manipulation,” Science 288(5475), 2335–2338 (2000).
[CrossRef] [PubMed]

J. L. Billeter and R. A. Pelcovits, “Defect configurations and dynamical behavior in a gay-berne nematic emulsion,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 62(11 Pt A), 711–717 (2000).
[CrossRef] [PubMed]

1999 (1)

T. M. Brown, J. S. Kim, R. H. Friend, F. Cacialli, R. Daik, and W. J. Feast, “Built-in field electroabsorption spectroscopy of polymer light-emitting diodes incorporating a doped poly(3,4-ethylene dioxythiophene) hole injection layer,” Appl. Phys. Lett. 75(12), 1679–1681 (1999).
[CrossRef]

1998 (1)

H. Sirringhaus, N. Tessler, and R. H. Friend, “Integrated optoelectronic devices based on conjugated polymers,” Science 280(5370), 1741–1744 (1998).
[CrossRef] [PubMed]

1997 (1)

R. Pethig and G. H. Markx, “Applications of dielectrophoresis in biotechnology,” Trends Biotechnol. 15(10), 426–432 (1997).
[CrossRef] [PubMed]

1994 (1)

X. B. Wang, Y. Huang, F. F. Becker, and P. R. C. Gascoyne, “A unified theory of dielectrophoresis and travelling wave dielectrophoresis,” J. Phys. D Appl. Phys. 27(7), 1571–1574 (1994).
[CrossRef]

1992 (1)

G. Heywang and F. Jonas, “Poly(alkylenedioxythiophene)s - new, very stable conducting polymers,” Adv. Mater. (Deerfield Beach Fla.) 4(2), 116–118 (1992).
[CrossRef]

Bao, Z. N.

D. J. Lipomi, B. C. K. Tee, M. Vosgueritchian, and Z. N. Bao, “Stretchable organic solar cells,” Adv. Mater. (Deerfield Beach Fla.) 23(15), 1771–1775 (2011).
[CrossRef] [PubMed]

Beard, N.

A. J. de Mello and N. Beard, “Dealing with real samples: sample pre-treatment in microfluidic systems,” Lab Chip 3(1), 11N–19N (2003).
[CrossRef] [PubMed]

Becker, F. F.

X. B. Wang, Y. Huang, F. F. Becker, and P. R. C. Gascoyne, “A unified theory of dielectrophoresis and travelling wave dielectrophoresis,” J. Phys. D Appl. Phys. 27(7), 1571–1574 (1994).
[CrossRef]

Bhardwaj, U.

A. T. Ohta, P. Y. Chiou, T. H. Han, J. C. Liao, U. Bhardwaj, E. R. B. McCabe, F. Q. Yu, R. Sun, and M. C. Wu, “Dynamic cell and microparticle control via optoelectronic tweezers,” J. Microelectromech. Syst. 16(3), 491–499 (2007).
[CrossRef]

Billeter, J. L.

J. L. Billeter and R. A. Pelcovits, “Defect configurations and dynamical behavior in a gay-berne nematic emulsion,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 62(11 Pt A), 711–717 (2000).
[CrossRef] [PubMed]

Bradley, D. D. C.

Y. Kim, S. A. Choulis, J. Nelson, D. D. C. Bradley, S. Cook, and J. R. Durrant, “Device annealing effect in organic solar cells with blends of regioregular poly(3-hexylthiophene) and soluble fullerene,” Appl. Phys. Lett. 86, 063502 (2005).

Brown, T. M.

T. M. Brown, J. S. Kim, R. H. Friend, F. Cacialli, R. Daik, and W. J. Feast, “Built-in field electroabsorption spectroscopy of polymer light-emitting diodes incorporating a doped poly(3,4-ethylene dioxythiophene) hole injection layer,” Appl. Phys. Lett. 75(12), 1679–1681 (1999).
[CrossRef]

Cacialli, F.

T. M. Brown, J. S. Kim, R. H. Friend, F. Cacialli, R. Daik, and W. J. Feast, “Built-in field electroabsorption spectroscopy of polymer light-emitting diodes incorporating a doped poly(3,4-ethylene dioxythiophene) hole injection layer,” Appl. Phys. Lett. 75(12), 1679–1681 (1999).
[CrossRef]

Chen, C. Y.

C. H. Tai, S. K. Hsiung, C. Y. Chen, M. L. Tsai, and G. B. Lee, “Automatic microfluidic platform for cell separation and nucleus collection,” Biomed. Microdevices 9(4), 533–543 (2007).
[CrossRef] [PubMed]

Chin, X.

T. Guo, T. Wen, G. Lvovichpakhomov, X. Chin, S. Liou, P. Yeh, and C. Yang, “Effects of film treatment on the performance of poly(3-hexylthiophene)/soluble fullerene-based organic solar cells,” Thin Solid Films 516(10), 3138–3142 (2008).
[CrossRef]

Chiou, P. Y.

A. T. Ohta, P. Y. Chiou, T. H. Han, J. C. Liao, U. Bhardwaj, E. R. B. McCabe, F. Q. Yu, R. Sun, and M. C. Wu, “Dynamic cell and microparticle control via optoelectronic tweezers,” J. Microelectromech. Syst. 16(3), 491–499 (2007).
[CrossRef]

P. Y. Chiou, A. T. Ohta, and M. C. Wu, “Massively parallel manipulation of single cells and microparticles using optical images,” Nature 436(7049), 370–372 (2005).
[CrossRef] [PubMed]

Choulis, S. A.

Y. Kim, S. A. Choulis, J. Nelson, D. D. C. Bradley, S. Cook, and J. R. Durrant, “Device annealing effect in organic solar cells with blends of regioregular poly(3-hexylthiophene) and soluble fullerene,” Appl. Phys. Lett. 86, 063502 (2005).

Cook, S.

Y. Kim, S. A. Choulis, J. Nelson, D. D. C. Bradley, S. Cook, and J. R. Durrant, “Device annealing effect in organic solar cells with blends of regioregular poly(3-hexylthiophene) and soluble fullerene,” Appl. Phys. Lett. 86, 063502 (2005).

Daik, R.

T. M. Brown, J. S. Kim, R. H. Friend, F. Cacialli, R. Daik, and W. J. Feast, “Built-in field electroabsorption spectroscopy of polymer light-emitting diodes incorporating a doped poly(3,4-ethylene dioxythiophene) hole injection layer,” Appl. Phys. Lett. 75(12), 1679–1681 (1999).
[CrossRef]

de Mello, A. J.

A. J. de Mello and N. Beard, “Dealing with real samples: sample pre-treatment in microfluidic systems,” Lab Chip 3(1), 11N–19N (2003).
[CrossRef] [PubMed]

Durrant, J. R.

Y. Kim, S. A. Choulis, J. Nelson, D. D. C. Bradley, S. Cook, and J. R. Durrant, “Device annealing effect in organic solar cells with blends of regioregular poly(3-hexylthiophene) and soluble fullerene,” Appl. Phys. Lett. 86, 063502 (2005).

Dyakonov, V.

V. Dyakonov, “Mechanisms controlling the efficiency of polymer solar cells,” Appl. Phys. A-Mater. 79, 21–25 (2004).

Emery, K.

G. Li, V. Shrotriya, J. S. Huang, Y. Yao, T. Moriarty, K. Emery, and Y. Yang, “High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends,” Nat. Mater. 4(11), 864–868 (2005).
[CrossRef]

Feast, W. J.

T. M. Brown, J. S. Kim, R. H. Friend, F. Cacialli, R. Daik, and W. J. Feast, “Built-in field electroabsorption spectroscopy of polymer light-emitting diodes incorporating a doped poly(3,4-ethylene dioxythiophene) hole injection layer,” Appl. Phys. Lett. 75(12), 1679–1681 (1999).
[CrossRef]

Friend, R. H.

T. M. Brown, J. S. Kim, R. H. Friend, F. Cacialli, R. Daik, and W. J. Feast, “Built-in field electroabsorption spectroscopy of polymer light-emitting diodes incorporating a doped poly(3,4-ethylene dioxythiophene) hole injection layer,” Appl. Phys. Lett. 75(12), 1679–1681 (1999).
[CrossRef]

H. Sirringhaus, N. Tessler, and R. H. Friend, “Integrated optoelectronic devices based on conjugated polymers,” Science 280(5370), 1741–1744 (1998).
[CrossRef] [PubMed]

Gascoyne, P.

P. Gascoyne, J. Satayavivad, and M. Ruchirawat, “Microfluidic approaches to malaria detection,” Acta Trop. 89(3), 357–369 (2004).
[CrossRef] [PubMed]

Gascoyne, P. R. C.

X. B. Wang, Y. Huang, F. F. Becker, and P. R. C. Gascoyne, “A unified theory of dielectrophoresis and travelling wave dielectrophoresis,” J. Phys. D Appl. Phys. 27(7), 1571–1574 (1994).
[CrossRef]

Guan, R. S.

Guo, T.

T. Guo, T. Wen, G. Lvovichpakhomov, X. Chin, S. Liou, P. Yeh, and C. Yang, “Effects of film treatment on the performance of poly(3-hexylthiophene)/soluble fullerene-based organic solar cells,” Thin Solid Films 516(10), 3138–3142 (2008).
[CrossRef]

Guo, T. F.

W. Wang, Y. H. Lin, T. C. Wen, T. F. Guo, and G. B. Lee, “Selective manipulation of microparticles using polymer-based optically induced dielectrophoretic devices,” Appl. Phys. Lett. 96, 113302 (2010).

W. Wang, Y. H. Lin, R. S. Guan, T. C. Wen, T. F. Guo, and G. B. Lee, “Bulk-heterojunction polymers in optically-induced dielectrophoretic devices for the manipulation of microparticles,” Opt. Express 17(20), 17603–17613 (2009).
[CrossRef] [PubMed]

Han, T. H.

A. T. Ohta, P. Y. Chiou, T. H. Han, J. C. Liao, U. Bhardwaj, E. R. B. McCabe, F. Q. Yu, R. Sun, and M. C. Wu, “Dynamic cell and microparticle control via optoelectronic tweezers,” J. Microelectromech. Syst. 16(3), 491–499 (2007).
[CrossRef]

Hennrich, F.

R. Krupke, S. Linden, M. Rapp, and F. Hennrich, “Thin films of metallic carbon nanotubes prepared by dielectrophoresis,” Adv. Mater. (Deerfield Beach Fla.) 18(11), 1468–1470 (2006).
[CrossRef]

Heywang, G.

G. Heywang and F. Jonas, “Poly(alkylenedioxythiophene)s - new, very stable conducting polymers,” Adv. Mater. (Deerfield Beach Fla.) 4(2), 116–118 (1992).
[CrossRef]

Hsiung, S. K.

C. H. Tai, S. K. Hsiung, C. Y. Chen, M. L. Tsai, and G. B. Lee, “Automatic microfluidic platform for cell separation and nucleus collection,” Biomed. Microdevices 9(4), 533–543 (2007).
[CrossRef] [PubMed]

Huang, J. S.

J. S. Huang, G. Li, and Y. Yang, “A semi-transparent plastic solar cell fabricated by a lamination process,” Adv. Mater. (Deerfield Beach Fla.) 20(3), 415–419 (2008).
[CrossRef]

G. Li, V. Shrotriya, J. S. Huang, Y. Yao, T. Moriarty, K. Emery, and Y. Yang, “High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends,” Nat. Mater. 4(11), 864–868 (2005).
[CrossRef]

Huang, Y.

X. B. Wang, Y. Huang, F. F. Becker, and P. R. C. Gascoyne, “A unified theory of dielectrophoresis and travelling wave dielectrophoresis,” J. Phys. D Appl. Phys. 27(7), 1571–1574 (1994).
[CrossRef]

Hughes, M. P.

M. P. Hughes, “Strategies for dielectrophoretic separation in laboratory-on-a-chip systems,” Electrophoresis 23(16), 2569–2582 (2002).
[CrossRef] [PubMed]

Inganäs, O.

E. W. H. Jager, O. Inganäs, and I. Lundström, “Microrobots for micrometer-size objects in aqueous media: potential tools for single-cell manipulation,” Science 288(5475), 2335–2338 (2000).
[CrossRef] [PubMed]

Jager, E. W. H.

E. W. H. Jager, O. Inganäs, and I. Lundström, “Microrobots for micrometer-size objects in aqueous media: potential tools for single-cell manipulation,” Science 288(5475), 2335–2338 (2000).
[CrossRef] [PubMed]

Jonas, F.

G. Heywang and F. Jonas, “Poly(alkylenedioxythiophene)s - new, very stable conducting polymers,” Adv. Mater. (Deerfield Beach Fla.) 4(2), 116–118 (1992).
[CrossRef]

Kim, J. S.

T. M. Brown, J. S. Kim, R. H. Friend, F. Cacialli, R. Daik, and W. J. Feast, “Built-in field electroabsorption spectroscopy of polymer light-emitting diodes incorporating a doped poly(3,4-ethylene dioxythiophene) hole injection layer,” Appl. Phys. Lett. 75(12), 1679–1681 (1999).
[CrossRef]

Kim, Y.

Y. Kim, S. A. Choulis, J. Nelson, D. D. C. Bradley, S. Cook, and J. R. Durrant, “Device annealing effect in organic solar cells with blends of regioregular poly(3-hexylthiophene) and soluble fullerene,” Appl. Phys. Lett. 86, 063502 (2005).

Krupke, R.

R. Krupke, S. Linden, M. Rapp, and F. Hennrich, “Thin films of metallic carbon nanotubes prepared by dielectrophoresis,” Adv. Mater. (Deerfield Beach Fla.) 18(11), 1468–1470 (2006).
[CrossRef]

Lee, G. B.

W. Y. Lin, Y. H. Lin, and G. B. Lee, “Separation of micro-particles utilizing spatial difference of optically induced dielectrophoretic forces,” Microfluid. Nanofluid. 8(2), 217–229 (2010).
[CrossRef]

W. Wang, Y. H. Lin, T. C. Wen, T. F. Guo, and G. B. Lee, “Selective manipulation of microparticles using polymer-based optically induced dielectrophoretic devices,” Appl. Phys. Lett. 96, 113302 (2010).

W. Wang, Y. H. Lin, R. S. Guan, T. C. Wen, T. F. Guo, and G. B. Lee, “Bulk-heterojunction polymers in optically-induced dielectrophoretic devices for the manipulation of microparticles,” Opt. Express 17(20), 17603–17613 (2009).
[CrossRef] [PubMed]

C. H. Tai, S. K. Hsiung, C. Y. Chen, M. L. Tsai, and G. B. Lee, “Automatic microfluidic platform for cell separation and nucleus collection,” Biomed. Microdevices 9(4), 533–543 (2007).
[CrossRef] [PubMed]

Li, G.

J. S. Huang, G. Li, and Y. Yang, “A semi-transparent plastic solar cell fabricated by a lamination process,” Adv. Mater. (Deerfield Beach Fla.) 20(3), 415–419 (2008).
[CrossRef]

G. Li, V. Shrotriya, J. S. Huang, Y. Yao, T. Moriarty, K. Emery, and Y. Yang, “High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends,” Nat. Mater. 4(11), 864–868 (2005).
[CrossRef]

Liao, J. C.

A. T. Ohta, P. Y. Chiou, T. H. Han, J. C. Liao, U. Bhardwaj, E. R. B. McCabe, F. Q. Yu, R. Sun, and M. C. Wu, “Dynamic cell and microparticle control via optoelectronic tweezers,” J. Microelectromech. Syst. 16(3), 491–499 (2007).
[CrossRef]

Lin, W. Y.

W. Y. Lin, Y. H. Lin, and G. B. Lee, “Separation of micro-particles utilizing spatial difference of optically induced dielectrophoretic forces,” Microfluid. Nanofluid. 8(2), 217–229 (2010).
[CrossRef]

Lin, Y. H.

W. Y. Lin, Y. H. Lin, and G. B. Lee, “Separation of micro-particles utilizing spatial difference of optically induced dielectrophoretic forces,” Microfluid. Nanofluid. 8(2), 217–229 (2010).
[CrossRef]

W. Wang, Y. H. Lin, T. C. Wen, T. F. Guo, and G. B. Lee, “Selective manipulation of microparticles using polymer-based optically induced dielectrophoretic devices,” Appl. Phys. Lett. 96, 113302 (2010).

W. Wang, Y. H. Lin, R. S. Guan, T. C. Wen, T. F. Guo, and G. B. Lee, “Bulk-heterojunction polymers in optically-induced dielectrophoretic devices for the manipulation of microparticles,” Opt. Express 17(20), 17603–17613 (2009).
[CrossRef] [PubMed]

Linden, S.

R. Krupke, S. Linden, M. Rapp, and F. Hennrich, “Thin films of metallic carbon nanotubes prepared by dielectrophoresis,” Adv. Mater. (Deerfield Beach Fla.) 18(11), 1468–1470 (2006).
[CrossRef]

Liou, S.

T. Guo, T. Wen, G. Lvovichpakhomov, X. Chin, S. Liou, P. Yeh, and C. Yang, “Effects of film treatment on the performance of poly(3-hexylthiophene)/soluble fullerene-based organic solar cells,” Thin Solid Films 516(10), 3138–3142 (2008).
[CrossRef]

Lipomi, D. J.

D. J. Lipomi, B. C. K. Tee, M. Vosgueritchian, and Z. N. Bao, “Stretchable organic solar cells,” Adv. Mater. (Deerfield Beach Fla.) 23(15), 1771–1775 (2011).
[CrossRef] [PubMed]

Lundström, I.

E. W. H. Jager, O. Inganäs, and I. Lundström, “Microrobots for micrometer-size objects in aqueous media: potential tools for single-cell manipulation,” Science 288(5475), 2335–2338 (2000).
[CrossRef] [PubMed]

Lvovichpakhomov, G.

T. Guo, T. Wen, G. Lvovichpakhomov, X. Chin, S. Liou, P. Yeh, and C. Yang, “Effects of film treatment on the performance of poly(3-hexylthiophene)/soluble fullerene-based organic solar cells,” Thin Solid Films 516(10), 3138–3142 (2008).
[CrossRef]

Markx, G. H.

R. Pethig and G. H. Markx, “Applications of dielectrophoresis in biotechnology,” Trends Biotechnol. 15(10), 426–432 (1997).
[CrossRef] [PubMed]

Marr, D. W. M.

C. Mio and D. W. M. Marr, “Optical trapping for the manipulation of colloidal particles,” Adv. Mater. (Deerfield Beach Fla.) 12(12), 917–920 (2000).
[CrossRef]

McCabe, E. R. B.

A. T. Ohta, P. Y. Chiou, T. H. Han, J. C. Liao, U. Bhardwaj, E. R. B. McCabe, F. Q. Yu, R. Sun, and M. C. Wu, “Dynamic cell and microparticle control via optoelectronic tweezers,” J. Microelectromech. Syst. 16(3), 491–499 (2007).
[CrossRef]

Mio, C.

C. Mio and D. W. M. Marr, “Optical trapping for the manipulation of colloidal particles,” Adv. Mater. (Deerfield Beach Fla.) 12(12), 917–920 (2000).
[CrossRef]

Moriarty, T.

G. Li, V. Shrotriya, J. S. Huang, Y. Yao, T. Moriarty, K. Emery, and Y. Yang, “High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends,” Nat. Mater. 4(11), 864–868 (2005).
[CrossRef]

Nelson, J.

Y. Kim, S. A. Choulis, J. Nelson, D. D. C. Bradley, S. Cook, and J. R. Durrant, “Device annealing effect in organic solar cells with blends of regioregular poly(3-hexylthiophene) and soluble fullerene,” Appl. Phys. Lett. 86, 063502 (2005).

Ohta, A. T.

A. T. Ohta, P. Y. Chiou, T. H. Han, J. C. Liao, U. Bhardwaj, E. R. B. McCabe, F. Q. Yu, R. Sun, and M. C. Wu, “Dynamic cell and microparticle control via optoelectronic tweezers,” J. Microelectromech. Syst. 16(3), 491–499 (2007).
[CrossRef]

P. Y. Chiou, A. T. Ohta, and M. C. Wu, “Massively parallel manipulation of single cells and microparticles using optical images,” Nature 436(7049), 370–372 (2005).
[CrossRef] [PubMed]

Padinger, F.

F. Padinger, R. S. Rittberger, and N. S. Sariciftci, “Effects of postproduction treatment on plastic solar cells,” Adv. Funct. Mater. 13(1), 85–88 (2003).
[CrossRef]

Pelcovits, R. A.

J. L. Billeter and R. A. Pelcovits, “Defect configurations and dynamical behavior in a gay-berne nematic emulsion,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 62(11 Pt A), 711–717 (2000).
[CrossRef] [PubMed]

Pethig, R.

R. Pethig and G. H. Markx, “Applications of dielectrophoresis in biotechnology,” Trends Biotechnol. 15(10), 426–432 (1997).
[CrossRef] [PubMed]

Rapp, M.

R. Krupke, S. Linden, M. Rapp, and F. Hennrich, “Thin films of metallic carbon nanotubes prepared by dielectrophoresis,” Adv. Mater. (Deerfield Beach Fla.) 18(11), 1468–1470 (2006).
[CrossRef]

Rittberger, R. S.

F. Padinger, R. S. Rittberger, and N. S. Sariciftci, “Effects of postproduction treatment on plastic solar cells,” Adv. Funct. Mater. 13(1), 85–88 (2003).
[CrossRef]

Ruchirawat, M.

P. Gascoyne, J. Satayavivad, and M. Ruchirawat, “Microfluidic approaches to malaria detection,” Acta Trop. 89(3), 357–369 (2004).
[CrossRef] [PubMed]

Sariciftci, N. S.

F. Padinger, R. S. Rittberger, and N. S. Sariciftci, “Effects of postproduction treatment on plastic solar cells,” Adv. Funct. Mater. 13(1), 85–88 (2003).
[CrossRef]

Satayavivad, J.

P. Gascoyne, J. Satayavivad, and M. Ruchirawat, “Microfluidic approaches to malaria detection,” Acta Trop. 89(3), 357–369 (2004).
[CrossRef] [PubMed]

Shrotriya, V.

G. Li, V. Shrotriya, J. S. Huang, Y. Yao, T. Moriarty, K. Emery, and Y. Yang, “High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends,” Nat. Mater. 4(11), 864–868 (2005).
[CrossRef]

Sirringhaus, H.

H. Sirringhaus, N. Tessler, and R. H. Friend, “Integrated optoelectronic devices based on conjugated polymers,” Science 280(5370), 1741–1744 (1998).
[CrossRef] [PubMed]

Sun, R.

A. T. Ohta, P. Y. Chiou, T. H. Han, J. C. Liao, U. Bhardwaj, E. R. B. McCabe, F. Q. Yu, R. Sun, and M. C. Wu, “Dynamic cell and microparticle control via optoelectronic tweezers,” J. Microelectromech. Syst. 16(3), 491–499 (2007).
[CrossRef]

Tai, C. H.

C. H. Tai, S. K. Hsiung, C. Y. Chen, M. L. Tsai, and G. B. Lee, “Automatic microfluidic platform for cell separation and nucleus collection,” Biomed. Microdevices 9(4), 533–543 (2007).
[CrossRef] [PubMed]

Tee, B. C. K.

D. J. Lipomi, B. C. K. Tee, M. Vosgueritchian, and Z. N. Bao, “Stretchable organic solar cells,” Adv. Mater. (Deerfield Beach Fla.) 23(15), 1771–1775 (2011).
[CrossRef] [PubMed]

Tessler, N.

H. Sirringhaus, N. Tessler, and R. H. Friend, “Integrated optoelectronic devices based on conjugated polymers,” Science 280(5370), 1741–1744 (1998).
[CrossRef] [PubMed]

Tsai, M. L.

C. H. Tai, S. K. Hsiung, C. Y. Chen, M. L. Tsai, and G. B. Lee, “Automatic microfluidic platform for cell separation and nucleus collection,” Biomed. Microdevices 9(4), 533–543 (2007).
[CrossRef] [PubMed]

Voldman, J.

J. Voldman, “Electrical forces for microscale cell manipulation,” Annu. Rev. Biomed. Eng. 8(1), 425–454 (2006).
[CrossRef] [PubMed]

Vosgueritchian, M.

D. J. Lipomi, B. C. K. Tee, M. Vosgueritchian, and Z. N. Bao, “Stretchable organic solar cells,” Adv. Mater. (Deerfield Beach Fla.) 23(15), 1771–1775 (2011).
[CrossRef] [PubMed]

Wang, W.

W. Wang, Y. H. Lin, T. C. Wen, T. F. Guo, and G. B. Lee, “Selective manipulation of microparticles using polymer-based optically induced dielectrophoretic devices,” Appl. Phys. Lett. 96, 113302 (2010).

W. Wang, Y. H. Lin, R. S. Guan, T. C. Wen, T. F. Guo, and G. B. Lee, “Bulk-heterojunction polymers in optically-induced dielectrophoretic devices for the manipulation of microparticles,” Opt. Express 17(20), 17603–17613 (2009).
[CrossRef] [PubMed]

Wang, X. B.

X. B. Wang, Y. Huang, F. F. Becker, and P. R. C. Gascoyne, “A unified theory of dielectrophoresis and travelling wave dielectrophoresis,” J. Phys. D Appl. Phys. 27(7), 1571–1574 (1994).
[CrossRef]

Wen, T.

T. Guo, T. Wen, G. Lvovichpakhomov, X. Chin, S. Liou, P. Yeh, and C. Yang, “Effects of film treatment on the performance of poly(3-hexylthiophene)/soluble fullerene-based organic solar cells,” Thin Solid Films 516(10), 3138–3142 (2008).
[CrossRef]

Wen, T. C.

W. Wang, Y. H. Lin, T. C. Wen, T. F. Guo, and G. B. Lee, “Selective manipulation of microparticles using polymer-based optically induced dielectrophoretic devices,” Appl. Phys. Lett. 96, 113302 (2010).

W. Wang, Y. H. Lin, R. S. Guan, T. C. Wen, T. F. Guo, and G. B. Lee, “Bulk-heterojunction polymers in optically-induced dielectrophoretic devices for the manipulation of microparticles,” Opt. Express 17(20), 17603–17613 (2009).
[CrossRef] [PubMed]

Wu, M. C.

A. T. Ohta, P. Y. Chiou, T. H. Han, J. C. Liao, U. Bhardwaj, E. R. B. McCabe, F. Q. Yu, R. Sun, and M. C. Wu, “Dynamic cell and microparticle control via optoelectronic tweezers,” J. Microelectromech. Syst. 16(3), 491–499 (2007).
[CrossRef]

P. Y. Chiou, A. T. Ohta, and M. C. Wu, “Massively parallel manipulation of single cells and microparticles using optical images,” Nature 436(7049), 370–372 (2005).
[CrossRef] [PubMed]

Yang, C.

T. Guo, T. Wen, G. Lvovichpakhomov, X. Chin, S. Liou, P. Yeh, and C. Yang, “Effects of film treatment on the performance of poly(3-hexylthiophene)/soluble fullerene-based organic solar cells,” Thin Solid Films 516(10), 3138–3142 (2008).
[CrossRef]

Yang, Y.

J. S. Huang, G. Li, and Y. Yang, “A semi-transparent plastic solar cell fabricated by a lamination process,” Adv. Mater. (Deerfield Beach Fla.) 20(3), 415–419 (2008).
[CrossRef]

G. Li, V. Shrotriya, J. S. Huang, Y. Yao, T. Moriarty, K. Emery, and Y. Yang, “High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends,” Nat. Mater. 4(11), 864–868 (2005).
[CrossRef]

Yao, Y.

G. Li, V. Shrotriya, J. S. Huang, Y. Yao, T. Moriarty, K. Emery, and Y. Yang, “High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends,” Nat. Mater. 4(11), 864–868 (2005).
[CrossRef]

Yeh, P.

T. Guo, T. Wen, G. Lvovichpakhomov, X. Chin, S. Liou, P. Yeh, and C. Yang, “Effects of film treatment on the performance of poly(3-hexylthiophene)/soluble fullerene-based organic solar cells,” Thin Solid Films 516(10), 3138–3142 (2008).
[CrossRef]

Yu, F. Q.

A. T. Ohta, P. Y. Chiou, T. H. Han, J. C. Liao, U. Bhardwaj, E. R. B. McCabe, F. Q. Yu, R. Sun, and M. C. Wu, “Dynamic cell and microparticle control via optoelectronic tweezers,” J. Microelectromech. Syst. 16(3), 491–499 (2007).
[CrossRef]

Acta Trop. (1)

P. Gascoyne, J. Satayavivad, and M. Ruchirawat, “Microfluidic approaches to malaria detection,” Acta Trop. 89(3), 357–369 (2004).
[CrossRef] [PubMed]

Adv. Funct. Mater. (1)

F. Padinger, R. S. Rittberger, and N. S. Sariciftci, “Effects of postproduction treatment on plastic solar cells,” Adv. Funct. Mater. 13(1), 85–88 (2003).
[CrossRef]

Adv. Mater. (Deerfield Beach Fla.) (5)

C. Mio and D. W. M. Marr, “Optical trapping for the manipulation of colloidal particles,” Adv. Mater. (Deerfield Beach Fla.) 12(12), 917–920 (2000).
[CrossRef]

R. Krupke, S. Linden, M. Rapp, and F. Hennrich, “Thin films of metallic carbon nanotubes prepared by dielectrophoresis,” Adv. Mater. (Deerfield Beach Fla.) 18(11), 1468–1470 (2006).
[CrossRef]

D. J. Lipomi, B. C. K. Tee, M. Vosgueritchian, and Z. N. Bao, “Stretchable organic solar cells,” Adv. Mater. (Deerfield Beach Fla.) 23(15), 1771–1775 (2011).
[CrossRef] [PubMed]

G. Heywang and F. Jonas, “Poly(alkylenedioxythiophene)s - new, very stable conducting polymers,” Adv. Mater. (Deerfield Beach Fla.) 4(2), 116–118 (1992).
[CrossRef]

J. S. Huang, G. Li, and Y. Yang, “A semi-transparent plastic solar cell fabricated by a lamination process,” Adv. Mater. (Deerfield Beach Fla.) 20(3), 415–419 (2008).
[CrossRef]

Annu. Rev. Biomed. Eng. (1)

J. Voldman, “Electrical forces for microscale cell manipulation,” Annu. Rev. Biomed. Eng. 8(1), 425–454 (2006).
[CrossRef] [PubMed]

Appl. Phys. A-Mater. (1)

V. Dyakonov, “Mechanisms controlling the efficiency of polymer solar cells,” Appl. Phys. A-Mater. 79, 21–25 (2004).

Appl. Phys. Lett. (3)

T. M. Brown, J. S. Kim, R. H. Friend, F. Cacialli, R. Daik, and W. J. Feast, “Built-in field electroabsorption spectroscopy of polymer light-emitting diodes incorporating a doped poly(3,4-ethylene dioxythiophene) hole injection layer,” Appl. Phys. Lett. 75(12), 1679–1681 (1999).
[CrossRef]

W. Wang, Y. H. Lin, T. C. Wen, T. F. Guo, and G. B. Lee, “Selective manipulation of microparticles using polymer-based optically induced dielectrophoretic devices,” Appl. Phys. Lett. 96, 113302 (2010).

Y. Kim, S. A. Choulis, J. Nelson, D. D. C. Bradley, S. Cook, and J. R. Durrant, “Device annealing effect in organic solar cells with blends of regioregular poly(3-hexylthiophene) and soluble fullerene,” Appl. Phys. Lett. 86, 063502 (2005).

Biomed. Microdevices (1)

C. H. Tai, S. K. Hsiung, C. Y. Chen, M. L. Tsai, and G. B. Lee, “Automatic microfluidic platform for cell separation and nucleus collection,” Biomed. Microdevices 9(4), 533–543 (2007).
[CrossRef] [PubMed]

Electrophoresis (1)

M. P. Hughes, “Strategies for dielectrophoretic separation in laboratory-on-a-chip systems,” Electrophoresis 23(16), 2569–2582 (2002).
[CrossRef] [PubMed]

J. Microelectromech. Syst. (1)

A. T. Ohta, P. Y. Chiou, T. H. Han, J. C. Liao, U. Bhardwaj, E. R. B. McCabe, F. Q. Yu, R. Sun, and M. C. Wu, “Dynamic cell and microparticle control via optoelectronic tweezers,” J. Microelectromech. Syst. 16(3), 491–499 (2007).
[CrossRef]

J. Phys. D Appl. Phys. (1)

X. B. Wang, Y. Huang, F. F. Becker, and P. R. C. Gascoyne, “A unified theory of dielectrophoresis and travelling wave dielectrophoresis,” J. Phys. D Appl. Phys. 27(7), 1571–1574 (1994).
[CrossRef]

Lab Chip (1)

A. J. de Mello and N. Beard, “Dealing with real samples: sample pre-treatment in microfluidic systems,” Lab Chip 3(1), 11N–19N (2003).
[CrossRef] [PubMed]

Microfluid. Nanofluid. (1)

W. Y. Lin, Y. H. Lin, and G. B. Lee, “Separation of micro-particles utilizing spatial difference of optically induced dielectrophoretic forces,” Microfluid. Nanofluid. 8(2), 217–229 (2010).
[CrossRef]

Nat. Mater. (1)

G. Li, V. Shrotriya, J. S. Huang, Y. Yao, T. Moriarty, K. Emery, and Y. Yang, “High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends,” Nat. Mater. 4(11), 864–868 (2005).
[CrossRef]

Nature (1)

P. Y. Chiou, A. T. Ohta, and M. C. Wu, “Massively parallel manipulation of single cells and microparticles using optical images,” Nature 436(7049), 370–372 (2005).
[CrossRef] [PubMed]

Opt. Express (1)

Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics (1)

J. L. Billeter and R. A. Pelcovits, “Defect configurations and dynamical behavior in a gay-berne nematic emulsion,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 62(11 Pt A), 711–717 (2000).
[CrossRef] [PubMed]

Science (2)

H. Sirringhaus, N. Tessler, and R. H. Friend, “Integrated optoelectronic devices based on conjugated polymers,” Science 280(5370), 1741–1744 (1998).
[CrossRef] [PubMed]

E. W. H. Jager, O. Inganäs, and I. Lundström, “Microrobots for micrometer-size objects in aqueous media: potential tools for single-cell manipulation,” Science 288(5475), 2335–2338 (2000).
[CrossRef] [PubMed]

Thin Solid Films (1)

T. Guo, T. Wen, G. Lvovichpakhomov, X. Chin, S. Liou, P. Yeh, and C. Yang, “Effects of film treatment on the performance of poly(3-hexylthiophene)/soluble fullerene-based organic solar cells,” Thin Solid Films 516(10), 3138–3142 (2008).
[CrossRef]

Trends Biotechnol. (1)

R. Pethig and G. H. Markx, “Applications of dielectrophoresis in biotechnology,” Trends Biotechnol. 15(10), 426–432 (1997).
[CrossRef] [PubMed]

Other (2)

T. B. Jones, Electromechanics of Particles (Cambridge University Press, 1975).

H. A. Pohl, Dielectrophoresis (Cambridge University, 1978).

Supplementary Material (1)

» Media 1: MPG (43220 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) A schematic illustration for the configuration of the polymer-based ODEP device. (b) The experimental setup and design in this study.

Fig. 2
Fig. 2

Photographs and their corresponding schematic illustrations showing and explaining the manipulation of polystyrene beads with different sizes (20 and 40 μm) in the (a) flat, (b) convex (Media 1), and (c) concave configurations for the flexible polymer ODEP chips. The flexible polymer ODEP chip can be bent with positive or negative curvatures in appropriate time sequences to facilitate the manipulation of micro-particles.

Fig. 3
Fig. 3

The results for the average travel distance and total force, after 1.5 s, of 10 μm polystyrene beads in the concave, flat, and convex-shaped flexible polymer ODEP chips.

Fig. 4
Fig. 4

Simplified model for (a) 40 μm polystyrene beads on a flat substrate. (b) 40 μm polystyrene beads on a convex substrate.

Fig. 5
Fig. 5

(a) The measured maximum drag velocity (vd) and the induced ODEP force (FODEP) for 20 μm polystyrene beads in the flat flexible polymer ODEP chips, as induced by a light beam with a width of 20 μm, for four different light beams (the colors were red, green, blue and white). Note that the four light beams have the same light intensity (0.115 μW/cm2). (b) The average travel distance for 10 μm diameter polystyrene beads, after 1.5 sec, in the concave-shaped flexible polymer ODEP chips, as induced by a light beam with widths of 15, 20, and 25 μm, respectively.

Fig. 6
Fig. 6

The average travel distance for 10 μm polystyrene beads, after 1.5 s, in the convex and concave-shaped flexible polymer ODEP chips, induced by a 20 μm wide white light beam with different optical power 0.291, 0.477, and 0.551 μW/cm2, respectively.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

F ODEP =2π ε m r 3 Re[ f cm ] E 2 rms ,

Metrics