Abstract

This work experimentally demonstrates the efficacy of the 2 × 2 multiple-input multiple-output (MIMO) technique for capacity improvement of a 60-GHz radio-over-fiber (RoF) system employing single-carrier modulation format. We employ frequency domain equalization (FDE) to estimate the channel response, including frequency response of the 60 GHz RoF system and the MIMO wireless channel. Using FDE and MIMO techniques, we experimentally demonstrate the doubling the of wireless data capacity of a 60 GHz RoF system to 27.15 Gb/s using 16-QAM modulation format, with transmission over 25 km of standard single-mode fiber and 3 m wireless distance.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Weiß, A. Stöhr, M. Huchard, S. Fedderwitz, B. Charbonnier, V. Rymanov, S. Babiel, and D. Jäger, “60GHz Radio-over-Fibre Wireless System for Bridging 10Gb/s z Ethernet Links,” Proc. ECOC’08, paper Tu.3.F.6 (2008).
  2. P. Smulders, “Exploiting the 60 GHz band for local wireless multimedia access: prospects and future directions,” IEEE Commun. Mag. 40(1), 140–147 (2002).
    [CrossRef]
  3. A. Ng’oma, M. Sauer, F. Annunziata, W. J. Jiang, C. T. Lin, J. Chen, P. T. Shi, and S. Chi, “Simple Multi-Gbps 60 GHZ Radio-over-Fiber Links Employing Optical and Electrical Data Up-conversion and Feed-Forward Equalization,” Proc. of OFC’ 09, OWF2 (2009).
  4. M. Weiß, M. Huchard, A. Stöhr, B. Charbonnier, S. Fedderwitz, and D. S. Jäger, “60 GHz photonic millimeter-wave link for short- to medium range wireless transmission up to 12.5 Gb/s,” J. Lightwave Technol. 26(15), 2424–2429 (2008).
    [CrossRef]
  5. W. J. Jiang, C.-T. Lin, A. Ng’oma, P.-T. Shih, J. Chen, M. Sauer, F. Annunziata, and S. Chi, “Simple 14-Gb/s Short-Range Radio-Over-Fiber System Employing a Single-Electrode MZM for 60-GHz Wireless Applications,” J. Lightwave Technol. 28(16), 2238–2246 (2010).
    [CrossRef]
  6. S. M. Alamouti, “A simple transmit diversity technique for wireless communications,” IEEE J. Sel. Areas Commun. 16(8), 1451–1458 (1998).
    [CrossRef]
  7. K. Zhu, M. J. Crisp, S. He, R. V. Penty, I. H. White, “MIMO System Capacity Improvements Using Radio-over-Fibre Distributed Antenna System Technology,” Proc. OFC’11, OTuO2 (2011).
  8. A. Caballero, S.-W. Wong, D. Zibar, L. G. Kazovsky, and I. T. Monroy, “Distributed MIMO Antenna Architecture for Wireless-over-Fiber Backhaul with Multicarrier Optical Phase Modulation,” Proc. OFC’11, OWT8 (2011).
  9. S.-H. Fan, H.-C. Chien, A. Chowdhury, C. Liu, W. Jian, Y.-T. Hsueh, and G.-K. Chang, “A Novel Radio-over-Fiber System Using the xy-MIMO Wireless Technique for Enhanced Radio Spectral Efficiency,” Proc. ECOC, paper Th.9.B.1 (2010).
  10. D. Falconer, S. L. Ariyavisitakul, A. Benyamin-Seeyar, and B. Eidson, “Frequency domain equalization for single-carrier broadband wireless systems,” IEEE Commun. Mag. 40(4), 58–66 (2002).
    [CrossRef]
  11. A. Czylwik, “Comparison between adaptive OFDM and single carrier modulation with frequency domain equalization,” Proc. Vehicular Technology Conference, 865–869 (1997).
  12. Q. H. Spencer, A. L. Swindlehurst, and M. Haardt, “Zero-Forcing Methods for Downlink Spatial Multiplexing in Multiuser MIMO Channels,” IEEE Trans. Signal Process. 52(2), 461–471 (2004).
    [CrossRef]
  13. I. Barhumi, G. Leus, and M. Moonen, “Optimal training design for MIMO OFDM systems in mobile wireless channels,” IEEE Trans. Signal Process. 51(6), 1615–1624 (2003).
    [CrossRef]

2010 (1)

2008 (1)

2004 (1)

Q. H. Spencer, A. L. Swindlehurst, and M. Haardt, “Zero-Forcing Methods for Downlink Spatial Multiplexing in Multiuser MIMO Channels,” IEEE Trans. Signal Process. 52(2), 461–471 (2004).
[CrossRef]

2003 (1)

I. Barhumi, G. Leus, and M. Moonen, “Optimal training design for MIMO OFDM systems in mobile wireless channels,” IEEE Trans. Signal Process. 51(6), 1615–1624 (2003).
[CrossRef]

2002 (2)

P. Smulders, “Exploiting the 60 GHz band for local wireless multimedia access: prospects and future directions,” IEEE Commun. Mag. 40(1), 140–147 (2002).
[CrossRef]

D. Falconer, S. L. Ariyavisitakul, A. Benyamin-Seeyar, and B. Eidson, “Frequency domain equalization for single-carrier broadband wireless systems,” IEEE Commun. Mag. 40(4), 58–66 (2002).
[CrossRef]

1998 (1)

S. M. Alamouti, “A simple transmit diversity technique for wireless communications,” IEEE J. Sel. Areas Commun. 16(8), 1451–1458 (1998).
[CrossRef]

Alamouti, S. M.

S. M. Alamouti, “A simple transmit diversity technique for wireless communications,” IEEE J. Sel. Areas Commun. 16(8), 1451–1458 (1998).
[CrossRef]

Annunziata, F.

Ariyavisitakul, S. L.

D. Falconer, S. L. Ariyavisitakul, A. Benyamin-Seeyar, and B. Eidson, “Frequency domain equalization for single-carrier broadband wireless systems,” IEEE Commun. Mag. 40(4), 58–66 (2002).
[CrossRef]

Barhumi, I.

I. Barhumi, G. Leus, and M. Moonen, “Optimal training design for MIMO OFDM systems in mobile wireless channels,” IEEE Trans. Signal Process. 51(6), 1615–1624 (2003).
[CrossRef]

Benyamin-Seeyar, A.

D. Falconer, S. L. Ariyavisitakul, A. Benyamin-Seeyar, and B. Eidson, “Frequency domain equalization for single-carrier broadband wireless systems,” IEEE Commun. Mag. 40(4), 58–66 (2002).
[CrossRef]

Charbonnier, B.

Chen, J.

Chi, S.

Eidson, B.

D. Falconer, S. L. Ariyavisitakul, A. Benyamin-Seeyar, and B. Eidson, “Frequency domain equalization for single-carrier broadband wireless systems,” IEEE Commun. Mag. 40(4), 58–66 (2002).
[CrossRef]

Falconer, D.

D. Falconer, S. L. Ariyavisitakul, A. Benyamin-Seeyar, and B. Eidson, “Frequency domain equalization for single-carrier broadband wireless systems,” IEEE Commun. Mag. 40(4), 58–66 (2002).
[CrossRef]

Fedderwitz, S.

Haardt, M.

Q. H. Spencer, A. L. Swindlehurst, and M. Haardt, “Zero-Forcing Methods for Downlink Spatial Multiplexing in Multiuser MIMO Channels,” IEEE Trans. Signal Process. 52(2), 461–471 (2004).
[CrossRef]

Huchard, M.

Jäger, D. S.

Jiang, W. J.

Leus, G.

I. Barhumi, G. Leus, and M. Moonen, “Optimal training design for MIMO OFDM systems in mobile wireless channels,” IEEE Trans. Signal Process. 51(6), 1615–1624 (2003).
[CrossRef]

Lin, C.-T.

Moonen, M.

I. Barhumi, G. Leus, and M. Moonen, “Optimal training design for MIMO OFDM systems in mobile wireless channels,” IEEE Trans. Signal Process. 51(6), 1615–1624 (2003).
[CrossRef]

Ng’oma, A.

Sauer, M.

Shih, P.-T.

Smulders, P.

P. Smulders, “Exploiting the 60 GHz band for local wireless multimedia access: prospects and future directions,” IEEE Commun. Mag. 40(1), 140–147 (2002).
[CrossRef]

Spencer, Q. H.

Q. H. Spencer, A. L. Swindlehurst, and M. Haardt, “Zero-Forcing Methods for Downlink Spatial Multiplexing in Multiuser MIMO Channels,” IEEE Trans. Signal Process. 52(2), 461–471 (2004).
[CrossRef]

Stöhr, A.

Swindlehurst, A. L.

Q. H. Spencer, A. L. Swindlehurst, and M. Haardt, “Zero-Forcing Methods for Downlink Spatial Multiplexing in Multiuser MIMO Channels,” IEEE Trans. Signal Process. 52(2), 461–471 (2004).
[CrossRef]

Weiß, M.

IEEE Commun. Mag. (2)

D. Falconer, S. L. Ariyavisitakul, A. Benyamin-Seeyar, and B. Eidson, “Frequency domain equalization for single-carrier broadband wireless systems,” IEEE Commun. Mag. 40(4), 58–66 (2002).
[CrossRef]

P. Smulders, “Exploiting the 60 GHz band for local wireless multimedia access: prospects and future directions,” IEEE Commun. Mag. 40(1), 140–147 (2002).
[CrossRef]

IEEE J. Sel. Areas Commun. (1)

S. M. Alamouti, “A simple transmit diversity technique for wireless communications,” IEEE J. Sel. Areas Commun. 16(8), 1451–1458 (1998).
[CrossRef]

IEEE Trans. Signal Process. (2)

Q. H. Spencer, A. L. Swindlehurst, and M. Haardt, “Zero-Forcing Methods for Downlink Spatial Multiplexing in Multiuser MIMO Channels,” IEEE Trans. Signal Process. 52(2), 461–471 (2004).
[CrossRef]

I. Barhumi, G. Leus, and M. Moonen, “Optimal training design for MIMO OFDM systems in mobile wireless channels,” IEEE Trans. Signal Process. 51(6), 1615–1624 (2003).
[CrossRef]

J. Lightwave Technol. (2)

Other (6)

A. Ng’oma, M. Sauer, F. Annunziata, W. J. Jiang, C. T. Lin, J. Chen, P. T. Shi, and S. Chi, “Simple Multi-Gbps 60 GHZ Radio-over-Fiber Links Employing Optical and Electrical Data Up-conversion and Feed-Forward Equalization,” Proc. of OFC’ 09, OWF2 (2009).

M. Weiß, A. Stöhr, M. Huchard, S. Fedderwitz, B. Charbonnier, V. Rymanov, S. Babiel, and D. Jäger, “60GHz Radio-over-Fibre Wireless System for Bridging 10Gb/s z Ethernet Links,” Proc. ECOC’08, paper Tu.3.F.6 (2008).

A. Czylwik, “Comparison between adaptive OFDM and single carrier modulation with frequency domain equalization,” Proc. Vehicular Technology Conference, 865–869 (1997).

K. Zhu, M. J. Crisp, S. He, R. V. Penty, I. H. White, “MIMO System Capacity Improvements Using Radio-over-Fibre Distributed Antenna System Technology,” Proc. OFC’11, OTuO2 (2011).

A. Caballero, S.-W. Wong, D. Zibar, L. G. Kazovsky, and I. T. Monroy, “Distributed MIMO Antenna Architecture for Wireless-over-Fiber Backhaul with Multicarrier Optical Phase Modulation,” Proc. OFC’11, OWT8 (2011).

S.-H. Fan, H.-C. Chien, A. Chowdhury, C. Liu, W. Jian, Y.-T. Hsueh, and G.-K. Chang, “A Novel Radio-over-Fiber System Using the xy-MIMO Wireless Technique for Enhanced Radio Spectral Efficiency,” Proc. ECOC, paper Th.9.B.1 (2010).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Radio over fiber system with MIMO technology.

Fig. 2
Fig. 2

Block diagram of a 2 × 2 MIMO system with the FDE.

Fig. 3
Fig. 3

Experimental setup of the proposed system.

Fig. 4
Fig. 4

BER curves of MIMO signals with different FFT sizes.

Fig. 5
Fig. 5

BER curves of MIMO signals with different CP lengths.

Fig. 6
Fig. 6

BER curves of 27.15Gbps MIMO signals.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

[ y 1 y 2 ]=[ h 11 h 12 h 21 h 22 ][ x 1 x 2 ]+[ w 1 w 2 ]
[ x ¯ 1 x ¯ 2 ]= [ h 11 h 12 h 21 h 22 ] 1 [ y 1 y 2 ]
[ Y 1,l Y 2,l ]=[ H 11,l H 12,l H 21,l H 22,l ][ X 1,l X 2,l ]+[ W 1 W 2 ],l=1,2,M
[ X ¯ 1,l X ¯ 2,l ]= [ H 11,l H 12,l H 21,l H 22,l ] 1 [ Y 1,l Y 2,l ]

Metrics