Abstract

We describe an ultrabroadband IR-visible sum-frequency (SF) setup that allows simultaneous acquisition of the entire vibrational spectrum of water molecules at mineral surfaces in the OH stretching region without ever tuning the IR laser pulses. Our newly developed 800-nm pumped noncollinear optical parametric amplifier (NOPA) generates broadband mid-IR pulses (~1800-3500 nm, or ~2900 – 6000 cm−1) with bandwidths >600 cm−1 at half-maximum at near 3500 cm−1. Using the ultra-broadband IR NOPA, we constructed a sum-frequency vibrational spectrometer that allowed the acquisition of spectra of the OH stretches of water at hydrophilic and hydrophobic silica surfaces, over the frequency range ~2900 – 3800 cm−1, within 60 s, much shorter than with scanning SFG spectrometers. The ultra-broadband SFG spectrometer reported here can be potentially applied to time-resolved measurements of kinetics at interfaces.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. R. Shen and V. Ostroverkhov, “Sum-frequency vibrational spectroscopy on water interfaces: polar orientation of water molecules at interfaces,” Chem. Rev. 106(4), 1140–1154 (2006).
  2. G. L. Richmond, “Molecular bonding and interactions at aqueous surfaces as probed by vibrational sum frequency spectroscopy,” Chem. Rev. 102(8), 2693–2724 (2002).
  3. F. Vidal and A. Tadjeddine, “Sum-firequency generation spectroscopy of interfaces,” Rep. Prog. Phys. 68(5), 1095–1127 (2005).
  4. M. S. Yeganeh, S. M. Dougal, and H. S. Pink, “Vibrational spectroscopy of water at liquid/solid interfaces: Crossing the isoelectric point of a solid surface,” Phys. Rev. Lett. 83(6), 1179–1182 (1999).
  5. L. Zhang, C. Tian, G. A. Waychunas, and Y. R. Shen, “Structures and charging of alpha-alumina (0001)/water interfaces studied by sum-frequency vibrational spectroscopy,” J. Am. Chem. Soc. 130(24), 7686–7694 (2008).
  6. M. Flörsheimer, K. Kruse, R. Polly, A. Abdelmonem, B. Schimmelpfennig, R. Klenze, and T. Fanghänel, “Hydration of mineral surfaces probed at the molecular level,” Langmuir 24(23), 13434–13439 (2008).
  7. K. A. Becraft and G. L. Richmond, “In situ vibrational spectroscopic studies of the CaF2/H2O interface,” Langmuir 17(25), 7721–7724 (2001).
  8. A. J. Hopkins, S. Schrödle, and G. L. Richmond, “Specific ion effects of salt solutions at the CaF2/water interface,” Langmuir 26(13), 10784–10790 (2010).
  9. Q. Du, E. Freysz, and Y. R. Shen, “Vibrational spectra of water molecules at quartz/water interfaces,” Phys. Rev. Lett. 72(2), 238–241 (1994).
  10. K. C. Jena and D. K. Hore, “Variation of ionic strength reveals the interfacial water structure at a charged mineral surface,” J. Phys. Chem. C 113(34), 15364–15372 (2009).
  11. S. W. Ong, X. L. Zhao, and K. B. Eisenthal, “Polarization of water-molecules at a charged interface: second harmonic studies of the silica/water interface,” Chem. Phys. Lett. 191(3-4), 327–335 (1992).
  12. K. C. Jena, P. A. Covert, and D. K. Hore, “The effect of salt on the water structure at a charged solid surface: differentiating second- and third-order nonlinear contributions,” J. Phys. Chem. Lett. 2(9), 1056–1061 (2011).
  13. Z. Yang, Q. F. Li, M. R. Gray, and K. C. Chou, “Structures of water molecules at solvent/silica interfaces,” Langmuir 26(21), 16397–16400 (2010).
  14. S. Ye, S. Nihonyanagi, and K. Uosaki, “Sum frequency generation (SFG) study of the pH-dependent water structure on a fused quartz surface modified by an octadecyltrichlorosilane (OTS) monolayer,” Phys. Chem. Chem. Phys. 3(16), 3463–3469 (2001).
  15. C. S. Tian and Y. R. Shen, “Structure and charging of hydrophobic material/water interfaces studied by phase-sensitive sum-frequency vibrational spectroscopy,” Proc. Natl. Acad. Sci. U.S.A. 106(36), 15148–15153 (2009).
  16. S. Schrödle and G. L. Richmond, “Sequential wavelength tuning: dynamics at interfaces investigated by vibrational sum-frequency spectroscopy,” Appl. Spectrosc. 62(4), 389–393 (2008).
  17. L. J. Richter, T. P. Petralli-Mallow, and J. C. Stephenson, “Vibrationally resolved sum-frequency generation with broad-bandwidth infrared pulses,” Opt. Lett. 23(20), 1594–1596 (1998).
  18. A. Lagutchev, A. Lozano, P. Mukherjee, S. A. Hambir, and D. D. Dlott, “Compact broadband vibrational sum-frequency generation spectrometer with nonresonant suppression,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 75(4), 1289–1296 (2010).
  19. S. Nihonyanagi, A. Eftekhari-Bafrooei, and E. Borguet, “Ultrafast vibrational dynamics and spectroscopy of a siloxane self-assembled monolayer,” J. Chem. Phys. 134(8), 084701 (2011).
  20. A. B. Voges, G. Y. Stokes, J. M. Gibbs-Davis, R. B. Lettan, P. A. Bertin, R. C. Pike, S. T. Nguyen, K. A. Scheidt, and F. M. Geiger, “Insights into heterogeneous atmospheric oxidation chemistry: Development of a tailor-made synthetic model for studying tropospheric surface chemistry,” J. Phys. Chem. C 111(4), 1567–1578 (2007).
  21. A. Eftekhari-Bafrooei and E. Borguet, “Effect of hydrogen-bond strength on the vibrational relaxation of interfacial water,” J. Am. Chem. Soc. 132(11), 3756–3761 (2010).
  22. G. Ma, J. Liu, L. Fu, and E. C. Y. Yan, “Probing water and biomolecules at the air-water interface with a broad bandwidth vibrational sum frequency generation spectrometer from 3800 to 900 cm-1,” Appl. Spectrosc. 63(5), 528–537 (2009).
  23. S. Nihonyanagi, S. Yamaguchi, and T. Tahara, “Direct evidence for orientational flip-flop of water molecules at charged interfaces: a heterodyne-detected vibrational sum frequency generation study,” J. Chem. Phys. 130(20), 204704 (2009).
  24. S. Nihonyanagi, S. Ye, and K. Uosaki, “Sum frequency generation study on the molecular structures at the interfaces between quartz modified with amino-terminated self-assembled monolayer and electrolyte solutions of various pH and ionic strengths,” Electrochim. Acta 46(20-21), 3057–3061 (2001).
  25. R. L. York, Y. M. Li, G. J. Holinga, and G. A. Somorjai, “Sum frequency generation vibrational spectra: the influence of experimental geometry for an absorptive medium or media,” J. Phys. Chem. A 113(12), 2768–2774 (2009).
  26. E. Riedle, M. Beutter, S. Lochbrunner, J. Piel, S. Schenkl, S. Sporlein, and W. Zinth, “Generation of 10 to 50 fs pulses tunable through all of the visible and the NIR,” Appl. Phys. B 71, 457–465 (2000).
  27. D. Brida, C. Manzoni, G. Cirmi, M. Marangoni, S. Bonora, P. Villoresi, S. De Silvestri, and G. Cerullo, “Few-optical-cycle pulses tunable from the visible to the mid-infrared by optical parametric amplifiers,” J. Opt. 12(1), 013001 (2010).
  28. T. Kobayashi and A. Shirakawa, “Tunable visible and near-infrared pulse generator in a 5 fs regime,” Appl. Phys. B 70, S239–S246 (2000).
  29. C. J. Fecko, J. J. Loparo, and A. Tokmakoff, “Generation of 45 femtosecond pulses at 3 μm with a KNbO3 optical parametric amplifier,” Opt. Commun. 241(4-6), 521–528 (2004).
  30. I. Nikolov, A. Gaydardzhiev, I. Buchvarov, P. Tzankov, F. Noack, and V. Petrov, “Ultrabroadband continuum amplification in the near infrared using BiB3O6 nonlinear crystals pumped at 800 nm,” Opt. Lett. 32(22), 3342–3344 (2007).
  31. D. Brida, C. Manzoni, G. Cirmi, M. Marangoni, S. De Silvestri, and G. Cerullo, “Generation of broadband mid-infrared pulses from an optical parametric amplifier,” Opt. Express 15(23), 15035–15040 (2007).
  32. D. Brida, M. Marangoni, C. Manzoni, S. D. Silvestri, and G. Cerullo, “Two-optical-cycle pulses in the mid-infrared from an optical parametric amplifier,” Opt. Lett. 33(24), 2901–2903 (2008).
  33. T. Fuji and T. Suzuki, “Generation of sub-two-cycle mid-infrared pulses by four-wave mixing through filamentation in air,” Opt. Lett. 32(22), 3330–3332 (2007).
  34. P. B. Petersen and A. Tokmakoff, “Source for ultrafast continuum infrared and terahertz radiation,” Opt. Lett. 35(12), 1962–1964 (2010).
  35. E. Rubino, J. Darginavicius, D. Faccio, P. Di Trapani, A. Piskarskas, and A. Dubietis, “Generation of broadly tunable sub-30-fs infrared pulses by four-wave optical parametric amplification,” Opt. Lett. 36(3), 382–384 (2011).
  36. S. Cussat-Blanc, A. Ivanov, D. Lupinski, and E. Freysz, “KTiOPO4, KTiOAsO4, and KNbO3 crystals for mid-infrared femtosecond optical parametric amplifiers: analysis and comparison,” Appl. Phys. B 70, S247–S252 (2000).
  37. O. Isaienko and E. Borguet, “Generation of ultra-broadband pulses in the near-IR by non-collinear optical parametric amplification in potassium titanyl phosphate,” Opt. Express 16(6), 3949–3954 (2008).
  38. O. Isaienko and E. Borguet, “Pulse-front matching of ultrabroadband near-infrared noncollinear optical parametric amplified pulses,” J. Opt. Soc. Am. B 26(5), 965–972 (2009).
  39. O. Isaienko and E. Borguet, “Ultra-broadband infrared pulses from a potassium-titanyl phosphate optical parametric amplifier for VIS-IR-SFG spectroscopy,” in Ultrafast Phenomena XVI (Springer Series in Chemical Physics), P. Corkum, S. Silvestri, K. A. Nelson, E. Riedle, and R. W. Schoenlein, eds. (Springer Berlin Heidelberg, 2009), pp. 777–779.
  40. O. Isaienko and E. Borguet, “Ultra-broadband near-IR non-collinear optical parametric amplification in potassium niobate and lithium niobate,” in Conference on Lasers and Electro-Optics/International Quantum Electronics Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paper CFC7. http://www.opticsinfobase.org/abstract.cfm?URI=CLEO-2009-CFC7
  41. O. Isaienko, E. Borguet, and P. Vöhringer, “High-repetition-rate near-infrared noncollinear ultrabroadband optical parametric amplification in KTiOPO4.,” Opt. Lett. 35(22), 3832–3834 (2010).
  42. M. Tiihonen, V. Pasiskevicius, A. Fragemann, C. Canalias, and F. Laurell, “Ultrabroad gain in an optical parametric generator with periodically poled KTiOPO4,” Appl. Phys. B 85(1), 73–77 (2006).
  43. V. Petrov, F. Rotermund, and F. Noack, “Generation of high-power femtosecond light pulses at 1 kHz in the mid-infrared spectral range between 3 and 12 μm by second-order nonlinear processes in optical crystals,” J. Opt. A, Pure Appl. Opt. 3(3), R1–R19 (2001).
  44. F. Rotermund, V. Petrov, and F. Noack, “Femtosecond noncollinear parametric amplification in the mid-infrared,” Opt. Commun. 169(1-6), 183–188 (1999).
  45. D. Bodlaki and E. Borguet, “Picosecond infrared optical parametric amplifier for nonlinear interface spectroscopy,” Rev. Sci. Instrum. 71(11), 4050–4056 (2000).
  46. A. Eftekhari-Bafrooei and E. Borguet, “Effect of surface charge on the vibrational dynamics of interfacial water,” J. Am. Chem. Soc. 131(34), 12034–12035 (2009).
  47. W. J. Tropf, M. E. Thomas, and T. J. Harris, “Properties of crystals and glasses,” in Handbook of Optics, 2nd ed., M. Bass, ed. (McGraw-Hill, New York, 1995), pp. 33.33–33.83.
  48. T. J. Wang, Z. Major, I. Ahmad, S. A. Trushin, F. Krausz, and S. Karsch, “Ultra-broadband near-infrared pulse generation by noncollinear OPA with angular dispersion compensation,” Appl. Phys. B 100(1), 207–214 (2010).
  49. G. Pretzler, A. Kasper, and K. J. Witte, “Angular chirp and tilted light pulses in CPA lasers,” Appl. Phys. B 70(1), 1–9 (2000).
  50. N. Demirdöven, M. Khalil, O. Golonzka, and A. Tokmakoff, “Dispersion compensation with optical materials for compression of intense sub-100-fs mid-infrared pulses,” Opt. Lett. 27(6), 433–435 (2002).
  51. C. Heese, L. Gallmann, U. Keller, C. R. Phillips, and M. M. Fejer, “Ultrabroadband, highly flexible amplifier for ultrashort midinfrared laser pulses based on aperiodically poled Mg:LiNbO3.,” Opt. Lett. 35(14), 2340–2342 (2010).

2011

K. C. Jena, P. A. Covert, and D. K. Hore, “The effect of salt on the water structure at a charged solid surface: differentiating second- and third-order nonlinear contributions,” J. Phys. Chem. Lett. 2(9), 1056–1061 (2011).

S. Nihonyanagi, A. Eftekhari-Bafrooei, and E. Borguet, “Ultrafast vibrational dynamics and spectroscopy of a siloxane self-assembled monolayer,” J. Chem. Phys. 134(8), 084701 (2011).

E. Rubino, J. Darginavicius, D. Faccio, P. Di Trapani, A. Piskarskas, and A. Dubietis, “Generation of broadly tunable sub-30-fs infrared pulses by four-wave optical parametric amplification,” Opt. Lett. 36(3), 382–384 (2011).

2010

P. B. Petersen and A. Tokmakoff, “Source for ultrafast continuum infrared and terahertz radiation,” Opt. Lett. 35(12), 1962–1964 (2010).

C. Heese, L. Gallmann, U. Keller, C. R. Phillips, and M. M. Fejer, “Ultrabroadband, highly flexible amplifier for ultrashort midinfrared laser pulses based on aperiodically poled Mg:LiNbO3.,” Opt. Lett. 35(14), 2340–2342 (2010).

O. Isaienko, E. Borguet, and P. Vöhringer, “High-repetition-rate near-infrared noncollinear ultrabroadband optical parametric amplification in KTiOPO4.,” Opt. Lett. 35(22), 3832–3834 (2010).

T. J. Wang, Z. Major, I. Ahmad, S. A. Trushin, F. Krausz, and S. Karsch, “Ultra-broadband near-infrared pulse generation by noncollinear OPA with angular dispersion compensation,” Appl. Phys. B 100(1), 207–214 (2010).

D. Brida, C. Manzoni, G. Cirmi, M. Marangoni, S. Bonora, P. Villoresi, S. De Silvestri, and G. Cerullo, “Few-optical-cycle pulses tunable from the visible to the mid-infrared by optical parametric amplifiers,” J. Opt. 12(1), 013001 (2010).

A. Lagutchev, A. Lozano, P. Mukherjee, S. A. Hambir, and D. D. Dlott, “Compact broadband vibrational sum-frequency generation spectrometer with nonresonant suppression,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 75(4), 1289–1296 (2010).

A. Eftekhari-Bafrooei and E. Borguet, “Effect of hydrogen-bond strength on the vibrational relaxation of interfacial water,” J. Am. Chem. Soc. 132(11), 3756–3761 (2010).

Z. Yang, Q. F. Li, M. R. Gray, and K. C. Chou, “Structures of water molecules at solvent/silica interfaces,” Langmuir 26(21), 16397–16400 (2010).

A. J. Hopkins, S. Schrödle, and G. L. Richmond, “Specific ion effects of salt solutions at the CaF2/water interface,” Langmuir 26(13), 10784–10790 (2010).

2009

K. C. Jena and D. K. Hore, “Variation of ionic strength reveals the interfacial water structure at a charged mineral surface,” J. Phys. Chem. C 113(34), 15364–15372 (2009).

C. S. Tian and Y. R. Shen, “Structure and charging of hydrophobic material/water interfaces studied by phase-sensitive sum-frequency vibrational spectroscopy,” Proc. Natl. Acad. Sci. U.S.A. 106(36), 15148–15153 (2009).

S. Nihonyanagi, S. Yamaguchi, and T. Tahara, “Direct evidence for orientational flip-flop of water molecules at charged interfaces: a heterodyne-detected vibrational sum frequency generation study,” J. Chem. Phys. 130(20), 204704 (2009).

R. L. York, Y. M. Li, G. J. Holinga, and G. A. Somorjai, “Sum frequency generation vibrational spectra: the influence of experimental geometry for an absorptive medium or media,” J. Phys. Chem. A 113(12), 2768–2774 (2009).

A. Eftekhari-Bafrooei and E. Borguet, “Effect of surface charge on the vibrational dynamics of interfacial water,” J. Am. Chem. Soc. 131(34), 12034–12035 (2009).

O. Isaienko and E. Borguet, “Pulse-front matching of ultrabroadband near-infrared noncollinear optical parametric amplified pulses,” J. Opt. Soc. Am. B 26(5), 965–972 (2009).

G. Ma, J. Liu, L. Fu, and E. C. Y. Yan, “Probing water and biomolecules at the air-water interface with a broad bandwidth vibrational sum frequency generation spectrometer from 3800 to 900 cm-1,” Appl. Spectrosc. 63(5), 528–537 (2009).

2008

O. Isaienko and E. Borguet, “Generation of ultra-broadband pulses in the near-IR by non-collinear optical parametric amplification in potassium titanyl phosphate,” Opt. Express 16(6), 3949–3954 (2008).

S. Schrödle and G. L. Richmond, “Sequential wavelength tuning: dynamics at interfaces investigated by vibrational sum-frequency spectroscopy,” Appl. Spectrosc. 62(4), 389–393 (2008).

D. Brida, M. Marangoni, C. Manzoni, S. D. Silvestri, and G. Cerullo, “Two-optical-cycle pulses in the mid-infrared from an optical parametric amplifier,” Opt. Lett. 33(24), 2901–2903 (2008).

L. Zhang, C. Tian, G. A. Waychunas, and Y. R. Shen, “Structures and charging of alpha-alumina (0001)/water interfaces studied by sum-frequency vibrational spectroscopy,” J. Am. Chem. Soc. 130(24), 7686–7694 (2008).

M. Flörsheimer, K. Kruse, R. Polly, A. Abdelmonem, B. Schimmelpfennig, R. Klenze, and T. Fanghänel, “Hydration of mineral surfaces probed at the molecular level,” Langmuir 24(23), 13434–13439 (2008).

2007

2006

M. Tiihonen, V. Pasiskevicius, A. Fragemann, C. Canalias, and F. Laurell, “Ultrabroad gain in an optical parametric generator with periodically poled KTiOPO4,” Appl. Phys. B 85(1), 73–77 (2006).

Y. R. Shen and V. Ostroverkhov, “Sum-frequency vibrational spectroscopy on water interfaces: polar orientation of water molecules at interfaces,” Chem. Rev. 106(4), 1140–1154 (2006).

2005

F. Vidal and A. Tadjeddine, “Sum-firequency generation spectroscopy of interfaces,” Rep. Prog. Phys. 68(5), 1095–1127 (2005).

2004

C. J. Fecko, J. J. Loparo, and A. Tokmakoff, “Generation of 45 femtosecond pulses at 3 μm with a KNbO3 optical parametric amplifier,” Opt. Commun. 241(4-6), 521–528 (2004).

2002

N. Demirdöven, M. Khalil, O. Golonzka, and A. Tokmakoff, “Dispersion compensation with optical materials for compression of intense sub-100-fs mid-infrared pulses,” Opt. Lett. 27(6), 433–435 (2002).

G. L. Richmond, “Molecular bonding and interactions at aqueous surfaces as probed by vibrational sum frequency spectroscopy,” Chem. Rev. 102(8), 2693–2724 (2002).

2001

K. A. Becraft and G. L. Richmond, “In situ vibrational spectroscopic studies of the CaF2/H2O interface,” Langmuir 17(25), 7721–7724 (2001).

S. Nihonyanagi, S. Ye, and K. Uosaki, “Sum frequency generation study on the molecular structures at the interfaces between quartz modified with amino-terminated self-assembled monolayer and electrolyte solutions of various pH and ionic strengths,” Electrochim. Acta 46(20-21), 3057–3061 (2001).

S. Ye, S. Nihonyanagi, and K. Uosaki, “Sum frequency generation (SFG) study of the pH-dependent water structure on a fused quartz surface modified by an octadecyltrichlorosilane (OTS) monolayer,” Phys. Chem. Chem. Phys. 3(16), 3463–3469 (2001).

V. Petrov, F. Rotermund, and F. Noack, “Generation of high-power femtosecond light pulses at 1 kHz in the mid-infrared spectral range between 3 and 12 μm by second-order nonlinear processes in optical crystals,” J. Opt. A, Pure Appl. Opt. 3(3), R1–R19 (2001).

2000

D. Bodlaki and E. Borguet, “Picosecond infrared optical parametric amplifier for nonlinear interface spectroscopy,” Rev. Sci. Instrum. 71(11), 4050–4056 (2000).

T. Kobayashi and A. Shirakawa, “Tunable visible and near-infrared pulse generator in a 5 fs regime,” Appl. Phys. B 70, S239–S246 (2000).

G. Pretzler, A. Kasper, and K. J. Witte, “Angular chirp and tilted light pulses in CPA lasers,” Appl. Phys. B 70(1), 1–9 (2000).

S. Cussat-Blanc, A. Ivanov, D. Lupinski, and E. Freysz, “KTiOPO4, KTiOAsO4, and KNbO3 crystals for mid-infrared femtosecond optical parametric amplifiers: analysis and comparison,” Appl. Phys. B 70, S247–S252 (2000).

E. Riedle, M. Beutter, S. Lochbrunner, J. Piel, S. Schenkl, S. Sporlein, and W. Zinth, “Generation of 10 to 50 fs pulses tunable through all of the visible and the NIR,” Appl. Phys. B 71, 457–465 (2000).

1999

M. S. Yeganeh, S. M. Dougal, and H. S. Pink, “Vibrational spectroscopy of water at liquid/solid interfaces: Crossing the isoelectric point of a solid surface,” Phys. Rev. Lett. 83(6), 1179–1182 (1999).

1998

1994

Q. Du, E. Freysz, and Y. R. Shen, “Vibrational spectra of water molecules at quartz/water interfaces,” Phys. Rev. Lett. 72(2), 238–241 (1994).

1992

S. W. Ong, X. L. Zhao, and K. B. Eisenthal, “Polarization of water-molecules at a charged interface: second harmonic studies of the silica/water interface,” Chem. Phys. Lett. 191(3-4), 327–335 (1992).

Abdelmonem, A.

M. Flörsheimer, K. Kruse, R. Polly, A. Abdelmonem, B. Schimmelpfennig, R. Klenze, and T. Fanghänel, “Hydration of mineral surfaces probed at the molecular level,” Langmuir 24(23), 13434–13439 (2008).

Ahmad, I.

T. J. Wang, Z. Major, I. Ahmad, S. A. Trushin, F. Krausz, and S. Karsch, “Ultra-broadband near-infrared pulse generation by noncollinear OPA with angular dispersion compensation,” Appl. Phys. B 100(1), 207–214 (2010).

Becraft, K. A.

K. A. Becraft and G. L. Richmond, “In situ vibrational spectroscopic studies of the CaF2/H2O interface,” Langmuir 17(25), 7721–7724 (2001).

Bertin, P. A.

A. B. Voges, G. Y. Stokes, J. M. Gibbs-Davis, R. B. Lettan, P. A. Bertin, R. C. Pike, S. T. Nguyen, K. A. Scheidt, and F. M. Geiger, “Insights into heterogeneous atmospheric oxidation chemistry: Development of a tailor-made synthetic model for studying tropospheric surface chemistry,” J. Phys. Chem. C 111(4), 1567–1578 (2007).

Beutter, M.

E. Riedle, M. Beutter, S. Lochbrunner, J. Piel, S. Schenkl, S. Sporlein, and W. Zinth, “Generation of 10 to 50 fs pulses tunable through all of the visible and the NIR,” Appl. Phys. B 71, 457–465 (2000).

Bodlaki, D.

D. Bodlaki and E. Borguet, “Picosecond infrared optical parametric amplifier for nonlinear interface spectroscopy,” Rev. Sci. Instrum. 71(11), 4050–4056 (2000).

Bonora, S.

D. Brida, C. Manzoni, G. Cirmi, M. Marangoni, S. Bonora, P. Villoresi, S. De Silvestri, and G. Cerullo, “Few-optical-cycle pulses tunable from the visible to the mid-infrared by optical parametric amplifiers,” J. Opt. 12(1), 013001 (2010).

Borguet, E.

S. Nihonyanagi, A. Eftekhari-Bafrooei, and E. Borguet, “Ultrafast vibrational dynamics and spectroscopy of a siloxane self-assembled monolayer,” J. Chem. Phys. 134(8), 084701 (2011).

O. Isaienko, E. Borguet, and P. Vöhringer, “High-repetition-rate near-infrared noncollinear ultrabroadband optical parametric amplification in KTiOPO4.,” Opt. Lett. 35(22), 3832–3834 (2010).

A. Eftekhari-Bafrooei and E. Borguet, “Effect of hydrogen-bond strength on the vibrational relaxation of interfacial water,” J. Am. Chem. Soc. 132(11), 3756–3761 (2010).

A. Eftekhari-Bafrooei and E. Borguet, “Effect of surface charge on the vibrational dynamics of interfacial water,” J. Am. Chem. Soc. 131(34), 12034–12035 (2009).

O. Isaienko and E. Borguet, “Pulse-front matching of ultrabroadband near-infrared noncollinear optical parametric amplified pulses,” J. Opt. Soc. Am. B 26(5), 965–972 (2009).

O. Isaienko and E. Borguet, “Generation of ultra-broadband pulses in the near-IR by non-collinear optical parametric amplification in potassium titanyl phosphate,” Opt. Express 16(6), 3949–3954 (2008).

D. Bodlaki and E. Borguet, “Picosecond infrared optical parametric amplifier for nonlinear interface spectroscopy,” Rev. Sci. Instrum. 71(11), 4050–4056 (2000).

Brida, D.

Buchvarov, I.

Canalias, C.

M. Tiihonen, V. Pasiskevicius, A. Fragemann, C. Canalias, and F. Laurell, “Ultrabroad gain in an optical parametric generator with periodically poled KTiOPO4,” Appl. Phys. B 85(1), 73–77 (2006).

Cerullo, G.

Chou, K. C.

Z. Yang, Q. F. Li, M. R. Gray, and K. C. Chou, “Structures of water molecules at solvent/silica interfaces,” Langmuir 26(21), 16397–16400 (2010).

Cirmi, G.

D. Brida, C. Manzoni, G. Cirmi, M. Marangoni, S. Bonora, P. Villoresi, S. De Silvestri, and G. Cerullo, “Few-optical-cycle pulses tunable from the visible to the mid-infrared by optical parametric amplifiers,” J. Opt. 12(1), 013001 (2010).

D. Brida, C. Manzoni, G. Cirmi, M. Marangoni, S. De Silvestri, and G. Cerullo, “Generation of broadband mid-infrared pulses from an optical parametric amplifier,” Opt. Express 15(23), 15035–15040 (2007).

Covert, P. A.

K. C. Jena, P. A. Covert, and D. K. Hore, “The effect of salt on the water structure at a charged solid surface: differentiating second- and third-order nonlinear contributions,” J. Phys. Chem. Lett. 2(9), 1056–1061 (2011).

Cussat-Blanc, S.

S. Cussat-Blanc, A. Ivanov, D. Lupinski, and E. Freysz, “KTiOPO4, KTiOAsO4, and KNbO3 crystals for mid-infrared femtosecond optical parametric amplifiers: analysis and comparison,” Appl. Phys. B 70, S247–S252 (2000).

Darginavicius, J.

De Silvestri, S.

D. Brida, C. Manzoni, G. Cirmi, M. Marangoni, S. Bonora, P. Villoresi, S. De Silvestri, and G. Cerullo, “Few-optical-cycle pulses tunable from the visible to the mid-infrared by optical parametric amplifiers,” J. Opt. 12(1), 013001 (2010).

D. Brida, C. Manzoni, G. Cirmi, M. Marangoni, S. De Silvestri, and G. Cerullo, “Generation of broadband mid-infrared pulses from an optical parametric amplifier,” Opt. Express 15(23), 15035–15040 (2007).

Demirdöven, N.

Di Trapani, P.

Dlott, D. D.

A. Lagutchev, A. Lozano, P. Mukherjee, S. A. Hambir, and D. D. Dlott, “Compact broadband vibrational sum-frequency generation spectrometer with nonresonant suppression,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 75(4), 1289–1296 (2010).

Dougal, S. M.

M. S. Yeganeh, S. M. Dougal, and H. S. Pink, “Vibrational spectroscopy of water at liquid/solid interfaces: Crossing the isoelectric point of a solid surface,” Phys. Rev. Lett. 83(6), 1179–1182 (1999).

Du, Q.

Q. Du, E. Freysz, and Y. R. Shen, “Vibrational spectra of water molecules at quartz/water interfaces,” Phys. Rev. Lett. 72(2), 238–241 (1994).

Dubietis, A.

Eftekhari-Bafrooei, A.

S. Nihonyanagi, A. Eftekhari-Bafrooei, and E. Borguet, “Ultrafast vibrational dynamics and spectroscopy of a siloxane self-assembled monolayer,” J. Chem. Phys. 134(8), 084701 (2011).

A. Eftekhari-Bafrooei and E. Borguet, “Effect of hydrogen-bond strength on the vibrational relaxation of interfacial water,” J. Am. Chem. Soc. 132(11), 3756–3761 (2010).

A. Eftekhari-Bafrooei and E. Borguet, “Effect of surface charge on the vibrational dynamics of interfacial water,” J. Am. Chem. Soc. 131(34), 12034–12035 (2009).

Eisenthal, K. B.

S. W. Ong, X. L. Zhao, and K. B. Eisenthal, “Polarization of water-molecules at a charged interface: second harmonic studies of the silica/water interface,” Chem. Phys. Lett. 191(3-4), 327–335 (1992).

Faccio, D.

Fanghänel, T.

M. Flörsheimer, K. Kruse, R. Polly, A. Abdelmonem, B. Schimmelpfennig, R. Klenze, and T. Fanghänel, “Hydration of mineral surfaces probed at the molecular level,” Langmuir 24(23), 13434–13439 (2008).

Fecko, C. J.

C. J. Fecko, J. J. Loparo, and A. Tokmakoff, “Generation of 45 femtosecond pulses at 3 μm with a KNbO3 optical parametric amplifier,” Opt. Commun. 241(4-6), 521–528 (2004).

Fejer, M. M.

Flörsheimer, M.

M. Flörsheimer, K. Kruse, R. Polly, A. Abdelmonem, B. Schimmelpfennig, R. Klenze, and T. Fanghänel, “Hydration of mineral surfaces probed at the molecular level,” Langmuir 24(23), 13434–13439 (2008).

Fragemann, A.

M. Tiihonen, V. Pasiskevicius, A. Fragemann, C. Canalias, and F. Laurell, “Ultrabroad gain in an optical parametric generator with periodically poled KTiOPO4,” Appl. Phys. B 85(1), 73–77 (2006).

Freysz, E.

S. Cussat-Blanc, A. Ivanov, D. Lupinski, and E. Freysz, “KTiOPO4, KTiOAsO4, and KNbO3 crystals for mid-infrared femtosecond optical parametric amplifiers: analysis and comparison,” Appl. Phys. B 70, S247–S252 (2000).

Q. Du, E. Freysz, and Y. R. Shen, “Vibrational spectra of water molecules at quartz/water interfaces,” Phys. Rev. Lett. 72(2), 238–241 (1994).

Fu, L.

Fuji, T.

Gallmann, L.

Gaydardzhiev, A.

Geiger, F. M.

A. B. Voges, G. Y. Stokes, J. M. Gibbs-Davis, R. B. Lettan, P. A. Bertin, R. C. Pike, S. T. Nguyen, K. A. Scheidt, and F. M. Geiger, “Insights into heterogeneous atmospheric oxidation chemistry: Development of a tailor-made synthetic model for studying tropospheric surface chemistry,” J. Phys. Chem. C 111(4), 1567–1578 (2007).

Gibbs-Davis, J. M.

A. B. Voges, G. Y. Stokes, J. M. Gibbs-Davis, R. B. Lettan, P. A. Bertin, R. C. Pike, S. T. Nguyen, K. A. Scheidt, and F. M. Geiger, “Insights into heterogeneous atmospheric oxidation chemistry: Development of a tailor-made synthetic model for studying tropospheric surface chemistry,” J. Phys. Chem. C 111(4), 1567–1578 (2007).

Golonzka, O.

Gray, M. R.

Z. Yang, Q. F. Li, M. R. Gray, and K. C. Chou, “Structures of water molecules at solvent/silica interfaces,” Langmuir 26(21), 16397–16400 (2010).

Hambir, S. A.

A. Lagutchev, A. Lozano, P. Mukherjee, S. A. Hambir, and D. D. Dlott, “Compact broadband vibrational sum-frequency generation spectrometer with nonresonant suppression,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 75(4), 1289–1296 (2010).

Heese, C.

Holinga, G. J.

R. L. York, Y. M. Li, G. J. Holinga, and G. A. Somorjai, “Sum frequency generation vibrational spectra: the influence of experimental geometry for an absorptive medium or media,” J. Phys. Chem. A 113(12), 2768–2774 (2009).

Hopkins, A. J.

A. J. Hopkins, S. Schrödle, and G. L. Richmond, “Specific ion effects of salt solutions at the CaF2/water interface,” Langmuir 26(13), 10784–10790 (2010).

Hore, D. K.

K. C. Jena, P. A. Covert, and D. K. Hore, “The effect of salt on the water structure at a charged solid surface: differentiating second- and third-order nonlinear contributions,” J. Phys. Chem. Lett. 2(9), 1056–1061 (2011).

K. C. Jena and D. K. Hore, “Variation of ionic strength reveals the interfacial water structure at a charged mineral surface,” J. Phys. Chem. C 113(34), 15364–15372 (2009).

Isaienko, O.

Ivanov, A.

S. Cussat-Blanc, A. Ivanov, D. Lupinski, and E. Freysz, “KTiOPO4, KTiOAsO4, and KNbO3 crystals for mid-infrared femtosecond optical parametric amplifiers: analysis and comparison,” Appl. Phys. B 70, S247–S252 (2000).

Jena, K. C.

K. C. Jena, P. A. Covert, and D. K. Hore, “The effect of salt on the water structure at a charged solid surface: differentiating second- and third-order nonlinear contributions,” J. Phys. Chem. Lett. 2(9), 1056–1061 (2011).

K. C. Jena and D. K. Hore, “Variation of ionic strength reveals the interfacial water structure at a charged mineral surface,” J. Phys. Chem. C 113(34), 15364–15372 (2009).

Karsch, S.

T. J. Wang, Z. Major, I. Ahmad, S. A. Trushin, F. Krausz, and S. Karsch, “Ultra-broadband near-infrared pulse generation by noncollinear OPA with angular dispersion compensation,” Appl. Phys. B 100(1), 207–214 (2010).

Kasper, A.

G. Pretzler, A. Kasper, and K. J. Witte, “Angular chirp and tilted light pulses in CPA lasers,” Appl. Phys. B 70(1), 1–9 (2000).

Keller, U.

Khalil, M.

Klenze, R.

M. Flörsheimer, K. Kruse, R. Polly, A. Abdelmonem, B. Schimmelpfennig, R. Klenze, and T. Fanghänel, “Hydration of mineral surfaces probed at the molecular level,” Langmuir 24(23), 13434–13439 (2008).

Kobayashi, T.

T. Kobayashi and A. Shirakawa, “Tunable visible and near-infrared pulse generator in a 5 fs regime,” Appl. Phys. B 70, S239–S246 (2000).

Krausz, F.

T. J. Wang, Z. Major, I. Ahmad, S. A. Trushin, F. Krausz, and S. Karsch, “Ultra-broadband near-infrared pulse generation by noncollinear OPA with angular dispersion compensation,” Appl. Phys. B 100(1), 207–214 (2010).

Kruse, K.

M. Flörsheimer, K. Kruse, R. Polly, A. Abdelmonem, B. Schimmelpfennig, R. Klenze, and T. Fanghänel, “Hydration of mineral surfaces probed at the molecular level,” Langmuir 24(23), 13434–13439 (2008).

Lagutchev, A.

A. Lagutchev, A. Lozano, P. Mukherjee, S. A. Hambir, and D. D. Dlott, “Compact broadband vibrational sum-frequency generation spectrometer with nonresonant suppression,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 75(4), 1289–1296 (2010).

Laurell, F.

M. Tiihonen, V. Pasiskevicius, A. Fragemann, C. Canalias, and F. Laurell, “Ultrabroad gain in an optical parametric generator with periodically poled KTiOPO4,” Appl. Phys. B 85(1), 73–77 (2006).

Lettan, R. B.

A. B. Voges, G. Y. Stokes, J. M. Gibbs-Davis, R. B. Lettan, P. A. Bertin, R. C. Pike, S. T. Nguyen, K. A. Scheidt, and F. M. Geiger, “Insights into heterogeneous atmospheric oxidation chemistry: Development of a tailor-made synthetic model for studying tropospheric surface chemistry,” J. Phys. Chem. C 111(4), 1567–1578 (2007).

Li, Q. F.

Z. Yang, Q. F. Li, M. R. Gray, and K. C. Chou, “Structures of water molecules at solvent/silica interfaces,” Langmuir 26(21), 16397–16400 (2010).

Li, Y. M.

R. L. York, Y. M. Li, G. J. Holinga, and G. A. Somorjai, “Sum frequency generation vibrational spectra: the influence of experimental geometry for an absorptive medium or media,” J. Phys. Chem. A 113(12), 2768–2774 (2009).

Liu, J.

Lochbrunner, S.

E. Riedle, M. Beutter, S. Lochbrunner, J. Piel, S. Schenkl, S. Sporlein, and W. Zinth, “Generation of 10 to 50 fs pulses tunable through all of the visible and the NIR,” Appl. Phys. B 71, 457–465 (2000).

Loparo, J. J.

C. J. Fecko, J. J. Loparo, and A. Tokmakoff, “Generation of 45 femtosecond pulses at 3 μm with a KNbO3 optical parametric amplifier,” Opt. Commun. 241(4-6), 521–528 (2004).

Lozano, A.

A. Lagutchev, A. Lozano, P. Mukherjee, S. A. Hambir, and D. D. Dlott, “Compact broadband vibrational sum-frequency generation spectrometer with nonresonant suppression,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 75(4), 1289–1296 (2010).

Lupinski, D.

S. Cussat-Blanc, A. Ivanov, D. Lupinski, and E. Freysz, “KTiOPO4, KTiOAsO4, and KNbO3 crystals for mid-infrared femtosecond optical parametric amplifiers: analysis and comparison,” Appl. Phys. B 70, S247–S252 (2000).

Ma, G.

Major, Z.

T. J. Wang, Z. Major, I. Ahmad, S. A. Trushin, F. Krausz, and S. Karsch, “Ultra-broadband near-infrared pulse generation by noncollinear OPA with angular dispersion compensation,” Appl. Phys. B 100(1), 207–214 (2010).

Manzoni, C.

Marangoni, M.

Mukherjee, P.

A. Lagutchev, A. Lozano, P. Mukherjee, S. A. Hambir, and D. D. Dlott, “Compact broadband vibrational sum-frequency generation spectrometer with nonresonant suppression,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 75(4), 1289–1296 (2010).

Nguyen, S. T.

A. B. Voges, G. Y. Stokes, J. M. Gibbs-Davis, R. B. Lettan, P. A. Bertin, R. C. Pike, S. T. Nguyen, K. A. Scheidt, and F. M. Geiger, “Insights into heterogeneous atmospheric oxidation chemistry: Development of a tailor-made synthetic model for studying tropospheric surface chemistry,” J. Phys. Chem. C 111(4), 1567–1578 (2007).

Nihonyanagi, S.

S. Nihonyanagi, A. Eftekhari-Bafrooei, and E. Borguet, “Ultrafast vibrational dynamics and spectroscopy of a siloxane self-assembled monolayer,” J. Chem. Phys. 134(8), 084701 (2011).

S. Nihonyanagi, S. Yamaguchi, and T. Tahara, “Direct evidence for orientational flip-flop of water molecules at charged interfaces: a heterodyne-detected vibrational sum frequency generation study,” J. Chem. Phys. 130(20), 204704 (2009).

S. Nihonyanagi, S. Ye, and K. Uosaki, “Sum frequency generation study on the molecular structures at the interfaces between quartz modified with amino-terminated self-assembled monolayer and electrolyte solutions of various pH and ionic strengths,” Electrochim. Acta 46(20-21), 3057–3061 (2001).

S. Ye, S. Nihonyanagi, and K. Uosaki, “Sum frequency generation (SFG) study of the pH-dependent water structure on a fused quartz surface modified by an octadecyltrichlorosilane (OTS) monolayer,” Phys. Chem. Chem. Phys. 3(16), 3463–3469 (2001).

Nikolov, I.

Noack, F.

I. Nikolov, A. Gaydardzhiev, I. Buchvarov, P. Tzankov, F. Noack, and V. Petrov, “Ultrabroadband continuum amplification in the near infrared using BiB3O6 nonlinear crystals pumped at 800 nm,” Opt. Lett. 32(22), 3342–3344 (2007).

V. Petrov, F. Rotermund, and F. Noack, “Generation of high-power femtosecond light pulses at 1 kHz in the mid-infrared spectral range between 3 and 12 μm by second-order nonlinear processes in optical crystals,” J. Opt. A, Pure Appl. Opt. 3(3), R1–R19 (2001).

Ong, S. W.

S. W. Ong, X. L. Zhao, and K. B. Eisenthal, “Polarization of water-molecules at a charged interface: second harmonic studies of the silica/water interface,” Chem. Phys. Lett. 191(3-4), 327–335 (1992).

Ostroverkhov, V.

Y. R. Shen and V. Ostroverkhov, “Sum-frequency vibrational spectroscopy on water interfaces: polar orientation of water molecules at interfaces,” Chem. Rev. 106(4), 1140–1154 (2006).

Pasiskevicius, V.

M. Tiihonen, V. Pasiskevicius, A. Fragemann, C. Canalias, and F. Laurell, “Ultrabroad gain in an optical parametric generator with periodically poled KTiOPO4,” Appl. Phys. B 85(1), 73–77 (2006).

Petersen, P. B.

Petralli-Mallow, T. P.

Petrov, V.

I. Nikolov, A. Gaydardzhiev, I. Buchvarov, P. Tzankov, F. Noack, and V. Petrov, “Ultrabroadband continuum amplification in the near infrared using BiB3O6 nonlinear crystals pumped at 800 nm,” Opt. Lett. 32(22), 3342–3344 (2007).

V. Petrov, F. Rotermund, and F. Noack, “Generation of high-power femtosecond light pulses at 1 kHz in the mid-infrared spectral range between 3 and 12 μm by second-order nonlinear processes in optical crystals,” J. Opt. A, Pure Appl. Opt. 3(3), R1–R19 (2001).

Phillips, C. R.

Piel, J.

E. Riedle, M. Beutter, S. Lochbrunner, J. Piel, S. Schenkl, S. Sporlein, and W. Zinth, “Generation of 10 to 50 fs pulses tunable through all of the visible and the NIR,” Appl. Phys. B 71, 457–465 (2000).

Pike, R. C.

A. B. Voges, G. Y. Stokes, J. M. Gibbs-Davis, R. B. Lettan, P. A. Bertin, R. C. Pike, S. T. Nguyen, K. A. Scheidt, and F. M. Geiger, “Insights into heterogeneous atmospheric oxidation chemistry: Development of a tailor-made synthetic model for studying tropospheric surface chemistry,” J. Phys. Chem. C 111(4), 1567–1578 (2007).

Pink, H. S.

M. S. Yeganeh, S. M. Dougal, and H. S. Pink, “Vibrational spectroscopy of water at liquid/solid interfaces: Crossing the isoelectric point of a solid surface,” Phys. Rev. Lett. 83(6), 1179–1182 (1999).

Piskarskas, A.

Polly, R.

M. Flörsheimer, K. Kruse, R. Polly, A. Abdelmonem, B. Schimmelpfennig, R. Klenze, and T. Fanghänel, “Hydration of mineral surfaces probed at the molecular level,” Langmuir 24(23), 13434–13439 (2008).

Pretzler, G.

G. Pretzler, A. Kasper, and K. J. Witte, “Angular chirp and tilted light pulses in CPA lasers,” Appl. Phys. B 70(1), 1–9 (2000).

Richmond, G. L.

A. J. Hopkins, S. Schrödle, and G. L. Richmond, “Specific ion effects of salt solutions at the CaF2/water interface,” Langmuir 26(13), 10784–10790 (2010).

S. Schrödle and G. L. Richmond, “Sequential wavelength tuning: dynamics at interfaces investigated by vibrational sum-frequency spectroscopy,” Appl. Spectrosc. 62(4), 389–393 (2008).

G. L. Richmond, “Molecular bonding and interactions at aqueous surfaces as probed by vibrational sum frequency spectroscopy,” Chem. Rev. 102(8), 2693–2724 (2002).

K. A. Becraft and G. L. Richmond, “In situ vibrational spectroscopic studies of the CaF2/H2O interface,” Langmuir 17(25), 7721–7724 (2001).

Richter, L. J.

Riedle, E.

E. Riedle, M. Beutter, S. Lochbrunner, J. Piel, S. Schenkl, S. Sporlein, and W. Zinth, “Generation of 10 to 50 fs pulses tunable through all of the visible and the NIR,” Appl. Phys. B 71, 457–465 (2000).

Rotermund, F.

V. Petrov, F. Rotermund, and F. Noack, “Generation of high-power femtosecond light pulses at 1 kHz in the mid-infrared spectral range between 3 and 12 μm by second-order nonlinear processes in optical crystals,” J. Opt. A, Pure Appl. Opt. 3(3), R1–R19 (2001).

Rubino, E.

Scheidt, K. A.

A. B. Voges, G. Y. Stokes, J. M. Gibbs-Davis, R. B. Lettan, P. A. Bertin, R. C. Pike, S. T. Nguyen, K. A. Scheidt, and F. M. Geiger, “Insights into heterogeneous atmospheric oxidation chemistry: Development of a tailor-made synthetic model for studying tropospheric surface chemistry,” J. Phys. Chem. C 111(4), 1567–1578 (2007).

Schenkl, S.

E. Riedle, M. Beutter, S. Lochbrunner, J. Piel, S. Schenkl, S. Sporlein, and W. Zinth, “Generation of 10 to 50 fs pulses tunable through all of the visible and the NIR,” Appl. Phys. B 71, 457–465 (2000).

Schimmelpfennig, B.

M. Flörsheimer, K. Kruse, R. Polly, A. Abdelmonem, B. Schimmelpfennig, R. Klenze, and T. Fanghänel, “Hydration of mineral surfaces probed at the molecular level,” Langmuir 24(23), 13434–13439 (2008).

Schrödle, S.

A. J. Hopkins, S. Schrödle, and G. L. Richmond, “Specific ion effects of salt solutions at the CaF2/water interface,” Langmuir 26(13), 10784–10790 (2010).

S. Schrödle and G. L. Richmond, “Sequential wavelength tuning: dynamics at interfaces investigated by vibrational sum-frequency spectroscopy,” Appl. Spectrosc. 62(4), 389–393 (2008).

Shen, Y. R.

C. S. Tian and Y. R. Shen, “Structure and charging of hydrophobic material/water interfaces studied by phase-sensitive sum-frequency vibrational spectroscopy,” Proc. Natl. Acad. Sci. U.S.A. 106(36), 15148–15153 (2009).

L. Zhang, C. Tian, G. A. Waychunas, and Y. R. Shen, “Structures and charging of alpha-alumina (0001)/water interfaces studied by sum-frequency vibrational spectroscopy,” J. Am. Chem. Soc. 130(24), 7686–7694 (2008).

Y. R. Shen and V. Ostroverkhov, “Sum-frequency vibrational spectroscopy on water interfaces: polar orientation of water molecules at interfaces,” Chem. Rev. 106(4), 1140–1154 (2006).

Q. Du, E. Freysz, and Y. R. Shen, “Vibrational spectra of water molecules at quartz/water interfaces,” Phys. Rev. Lett. 72(2), 238–241 (1994).

Shirakawa, A.

T. Kobayashi and A. Shirakawa, “Tunable visible and near-infrared pulse generator in a 5 fs regime,” Appl. Phys. B 70, S239–S246 (2000).

Silvestri, S. D.

Somorjai, G. A.

R. L. York, Y. M. Li, G. J. Holinga, and G. A. Somorjai, “Sum frequency generation vibrational spectra: the influence of experimental geometry for an absorptive medium or media,” J. Phys. Chem. A 113(12), 2768–2774 (2009).

Sporlein, S.

E. Riedle, M. Beutter, S. Lochbrunner, J. Piel, S. Schenkl, S. Sporlein, and W. Zinth, “Generation of 10 to 50 fs pulses tunable through all of the visible and the NIR,” Appl. Phys. B 71, 457–465 (2000).

Stephenson, J. C.

Stokes, G. Y.

A. B. Voges, G. Y. Stokes, J. M. Gibbs-Davis, R. B. Lettan, P. A. Bertin, R. C. Pike, S. T. Nguyen, K. A. Scheidt, and F. M. Geiger, “Insights into heterogeneous atmospheric oxidation chemistry: Development of a tailor-made synthetic model for studying tropospheric surface chemistry,” J. Phys. Chem. C 111(4), 1567–1578 (2007).

Suzuki, T.

Tadjeddine, A.

F. Vidal and A. Tadjeddine, “Sum-firequency generation spectroscopy of interfaces,” Rep. Prog. Phys. 68(5), 1095–1127 (2005).

Tahara, T.

S. Nihonyanagi, S. Yamaguchi, and T. Tahara, “Direct evidence for orientational flip-flop of water molecules at charged interfaces: a heterodyne-detected vibrational sum frequency generation study,” J. Chem. Phys. 130(20), 204704 (2009).

Tian, C.

L. Zhang, C. Tian, G. A. Waychunas, and Y. R. Shen, “Structures and charging of alpha-alumina (0001)/water interfaces studied by sum-frequency vibrational spectroscopy,” J. Am. Chem. Soc. 130(24), 7686–7694 (2008).

Tian, C. S.

C. S. Tian and Y. R. Shen, “Structure and charging of hydrophobic material/water interfaces studied by phase-sensitive sum-frequency vibrational spectroscopy,” Proc. Natl. Acad. Sci. U.S.A. 106(36), 15148–15153 (2009).

Tiihonen, M.

M. Tiihonen, V. Pasiskevicius, A. Fragemann, C. Canalias, and F. Laurell, “Ultrabroad gain in an optical parametric generator with periodically poled KTiOPO4,” Appl. Phys. B 85(1), 73–77 (2006).

Tokmakoff, A.

Trushin, S. A.

T. J. Wang, Z. Major, I. Ahmad, S. A. Trushin, F. Krausz, and S. Karsch, “Ultra-broadband near-infrared pulse generation by noncollinear OPA with angular dispersion compensation,” Appl. Phys. B 100(1), 207–214 (2010).

Tzankov, P.

Uosaki, K.

S. Nihonyanagi, S. Ye, and K. Uosaki, “Sum frequency generation study on the molecular structures at the interfaces between quartz modified with amino-terminated self-assembled monolayer and electrolyte solutions of various pH and ionic strengths,” Electrochim. Acta 46(20-21), 3057–3061 (2001).

S. Ye, S. Nihonyanagi, and K. Uosaki, “Sum frequency generation (SFG) study of the pH-dependent water structure on a fused quartz surface modified by an octadecyltrichlorosilane (OTS) monolayer,” Phys. Chem. Chem. Phys. 3(16), 3463–3469 (2001).

Vidal, F.

F. Vidal and A. Tadjeddine, “Sum-firequency generation spectroscopy of interfaces,” Rep. Prog. Phys. 68(5), 1095–1127 (2005).

Villoresi, P.

D. Brida, C. Manzoni, G. Cirmi, M. Marangoni, S. Bonora, P. Villoresi, S. De Silvestri, and G. Cerullo, “Few-optical-cycle pulses tunable from the visible to the mid-infrared by optical parametric amplifiers,” J. Opt. 12(1), 013001 (2010).

Voges, A. B.

A. B. Voges, G. Y. Stokes, J. M. Gibbs-Davis, R. B. Lettan, P. A. Bertin, R. C. Pike, S. T. Nguyen, K. A. Scheidt, and F. M. Geiger, “Insights into heterogeneous atmospheric oxidation chemistry: Development of a tailor-made synthetic model for studying tropospheric surface chemistry,” J. Phys. Chem. C 111(4), 1567–1578 (2007).

Vöhringer, P.

Wang, T. J.

T. J. Wang, Z. Major, I. Ahmad, S. A. Trushin, F. Krausz, and S. Karsch, “Ultra-broadband near-infrared pulse generation by noncollinear OPA with angular dispersion compensation,” Appl. Phys. B 100(1), 207–214 (2010).

Waychunas, G. A.

L. Zhang, C. Tian, G. A. Waychunas, and Y. R. Shen, “Structures and charging of alpha-alumina (0001)/water interfaces studied by sum-frequency vibrational spectroscopy,” J. Am. Chem. Soc. 130(24), 7686–7694 (2008).

Witte, K. J.

G. Pretzler, A. Kasper, and K. J. Witte, “Angular chirp and tilted light pulses in CPA lasers,” Appl. Phys. B 70(1), 1–9 (2000).

Yamaguchi, S.

S. Nihonyanagi, S. Yamaguchi, and T. Tahara, “Direct evidence for orientational flip-flop of water molecules at charged interfaces: a heterodyne-detected vibrational sum frequency generation study,” J. Chem. Phys. 130(20), 204704 (2009).

Yan, E. C. Y.

Yang, Z.

Z. Yang, Q. F. Li, M. R. Gray, and K. C. Chou, “Structures of water molecules at solvent/silica interfaces,” Langmuir 26(21), 16397–16400 (2010).

Ye, S.

S. Nihonyanagi, S. Ye, and K. Uosaki, “Sum frequency generation study on the molecular structures at the interfaces between quartz modified with amino-terminated self-assembled monolayer and electrolyte solutions of various pH and ionic strengths,” Electrochim. Acta 46(20-21), 3057–3061 (2001).

S. Ye, S. Nihonyanagi, and K. Uosaki, “Sum frequency generation (SFG) study of the pH-dependent water structure on a fused quartz surface modified by an octadecyltrichlorosilane (OTS) monolayer,” Phys. Chem. Chem. Phys. 3(16), 3463–3469 (2001).

Yeganeh, M. S.

M. S. Yeganeh, S. M. Dougal, and H. S. Pink, “Vibrational spectroscopy of water at liquid/solid interfaces: Crossing the isoelectric point of a solid surface,” Phys. Rev. Lett. 83(6), 1179–1182 (1999).

York, R. L.

R. L. York, Y. M. Li, G. J. Holinga, and G. A. Somorjai, “Sum frequency generation vibrational spectra: the influence of experimental geometry for an absorptive medium or media,” J. Phys. Chem. A 113(12), 2768–2774 (2009).

Zhang, L.

L. Zhang, C. Tian, G. A. Waychunas, and Y. R. Shen, “Structures and charging of alpha-alumina (0001)/water interfaces studied by sum-frequency vibrational spectroscopy,” J. Am. Chem. Soc. 130(24), 7686–7694 (2008).

Zhao, X. L.

S. W. Ong, X. L. Zhao, and K. B. Eisenthal, “Polarization of water-molecules at a charged interface: second harmonic studies of the silica/water interface,” Chem. Phys. Lett. 191(3-4), 327–335 (1992).

Zinth, W.

E. Riedle, M. Beutter, S. Lochbrunner, J. Piel, S. Schenkl, S. Sporlein, and W. Zinth, “Generation of 10 to 50 fs pulses tunable through all of the visible and the NIR,” Appl. Phys. B 71, 457–465 (2000).

Appl. Phys. B

E. Riedle, M. Beutter, S. Lochbrunner, J. Piel, S. Schenkl, S. Sporlein, and W. Zinth, “Generation of 10 to 50 fs pulses tunable through all of the visible and the NIR,” Appl. Phys. B 71, 457–465 (2000).

T. Kobayashi and A. Shirakawa, “Tunable visible and near-infrared pulse generator in a 5 fs regime,” Appl. Phys. B 70, S239–S246 (2000).

M. Tiihonen, V. Pasiskevicius, A. Fragemann, C. Canalias, and F. Laurell, “Ultrabroad gain in an optical parametric generator with periodically poled KTiOPO4,” Appl. Phys. B 85(1), 73–77 (2006).

T. J. Wang, Z. Major, I. Ahmad, S. A. Trushin, F. Krausz, and S. Karsch, “Ultra-broadband near-infrared pulse generation by noncollinear OPA with angular dispersion compensation,” Appl. Phys. B 100(1), 207–214 (2010).

G. Pretzler, A. Kasper, and K. J. Witte, “Angular chirp and tilted light pulses in CPA lasers,” Appl. Phys. B 70(1), 1–9 (2000).

S. Cussat-Blanc, A. Ivanov, D. Lupinski, and E. Freysz, “KTiOPO4, KTiOAsO4, and KNbO3 crystals for mid-infrared femtosecond optical parametric amplifiers: analysis and comparison,” Appl. Phys. B 70, S247–S252 (2000).

Appl. Spectrosc.

Chem. Phys. Lett.

S. W. Ong, X. L. Zhao, and K. B. Eisenthal, “Polarization of water-molecules at a charged interface: second harmonic studies of the silica/water interface,” Chem. Phys. Lett. 191(3-4), 327–335 (1992).

Chem. Rev.

Y. R. Shen and V. Ostroverkhov, “Sum-frequency vibrational spectroscopy on water interfaces: polar orientation of water molecules at interfaces,” Chem. Rev. 106(4), 1140–1154 (2006).

G. L. Richmond, “Molecular bonding and interactions at aqueous surfaces as probed by vibrational sum frequency spectroscopy,” Chem. Rev. 102(8), 2693–2724 (2002).

Electrochim. Acta

S. Nihonyanagi, S. Ye, and K. Uosaki, “Sum frequency generation study on the molecular structures at the interfaces between quartz modified with amino-terminated self-assembled monolayer and electrolyte solutions of various pH and ionic strengths,” Electrochim. Acta 46(20-21), 3057–3061 (2001).

J. Am. Chem. Soc.

L. Zhang, C. Tian, G. A. Waychunas, and Y. R. Shen, “Structures and charging of alpha-alumina (0001)/water interfaces studied by sum-frequency vibrational spectroscopy,” J. Am. Chem. Soc. 130(24), 7686–7694 (2008).

A. Eftekhari-Bafrooei and E. Borguet, “Effect of surface charge on the vibrational dynamics of interfacial water,” J. Am. Chem. Soc. 131(34), 12034–12035 (2009).

A. Eftekhari-Bafrooei and E. Borguet, “Effect of hydrogen-bond strength on the vibrational relaxation of interfacial water,” J. Am. Chem. Soc. 132(11), 3756–3761 (2010).

J. Chem. Phys.

S. Nihonyanagi, S. Yamaguchi, and T. Tahara, “Direct evidence for orientational flip-flop of water molecules at charged interfaces: a heterodyne-detected vibrational sum frequency generation study,” J. Chem. Phys. 130(20), 204704 (2009).

S. Nihonyanagi, A. Eftekhari-Bafrooei, and E. Borguet, “Ultrafast vibrational dynamics and spectroscopy of a siloxane self-assembled monolayer,” J. Chem. Phys. 134(8), 084701 (2011).

J. Opt.

D. Brida, C. Manzoni, G. Cirmi, M. Marangoni, S. Bonora, P. Villoresi, S. De Silvestri, and G. Cerullo, “Few-optical-cycle pulses tunable from the visible to the mid-infrared by optical parametric amplifiers,” J. Opt. 12(1), 013001 (2010).

J. Opt. A, Pure Appl. Opt.

V. Petrov, F. Rotermund, and F. Noack, “Generation of high-power femtosecond light pulses at 1 kHz in the mid-infrared spectral range between 3 and 12 μm by second-order nonlinear processes in optical crystals,” J. Opt. A, Pure Appl. Opt. 3(3), R1–R19 (2001).

J. Opt. Soc. Am. B

J. Phys. Chem. A

R. L. York, Y. M. Li, G. J. Holinga, and G. A. Somorjai, “Sum frequency generation vibrational spectra: the influence of experimental geometry for an absorptive medium or media,” J. Phys. Chem. A 113(12), 2768–2774 (2009).

J. Phys. Chem. C

K. C. Jena and D. K. Hore, “Variation of ionic strength reveals the interfacial water structure at a charged mineral surface,” J. Phys. Chem. C 113(34), 15364–15372 (2009).

A. B. Voges, G. Y. Stokes, J. M. Gibbs-Davis, R. B. Lettan, P. A. Bertin, R. C. Pike, S. T. Nguyen, K. A. Scheidt, and F. M. Geiger, “Insights into heterogeneous atmospheric oxidation chemistry: Development of a tailor-made synthetic model for studying tropospheric surface chemistry,” J. Phys. Chem. C 111(4), 1567–1578 (2007).

J. Phys. Chem. Lett.

K. C. Jena, P. A. Covert, and D. K. Hore, “The effect of salt on the water structure at a charged solid surface: differentiating second- and third-order nonlinear contributions,” J. Phys. Chem. Lett. 2(9), 1056–1061 (2011).

Langmuir

Z. Yang, Q. F. Li, M. R. Gray, and K. C. Chou, “Structures of water molecules at solvent/silica interfaces,” Langmuir 26(21), 16397–16400 (2010).

M. Flörsheimer, K. Kruse, R. Polly, A. Abdelmonem, B. Schimmelpfennig, R. Klenze, and T. Fanghänel, “Hydration of mineral surfaces probed at the molecular level,” Langmuir 24(23), 13434–13439 (2008).

K. A. Becraft and G. L. Richmond, “In situ vibrational spectroscopic studies of the CaF2/H2O interface,” Langmuir 17(25), 7721–7724 (2001).

A. J. Hopkins, S. Schrödle, and G. L. Richmond, “Specific ion effects of salt solutions at the CaF2/water interface,” Langmuir 26(13), 10784–10790 (2010).

Opt. Commun.

C. J. Fecko, J. J. Loparo, and A. Tokmakoff, “Generation of 45 femtosecond pulses at 3 μm with a KNbO3 optical parametric amplifier,” Opt. Commun. 241(4-6), 521–528 (2004).

Opt. Express

Opt. Lett.

T. Fuji and T. Suzuki, “Generation of sub-two-cycle mid-infrared pulses by four-wave mixing through filamentation in air,” Opt. Lett. 32(22), 3330–3332 (2007).

I. Nikolov, A. Gaydardzhiev, I. Buchvarov, P. Tzankov, F. Noack, and V. Petrov, “Ultrabroadband continuum amplification in the near infrared using BiB3O6 nonlinear crystals pumped at 800 nm,” Opt. Lett. 32(22), 3342–3344 (2007).

P. B. Petersen and A. Tokmakoff, “Source for ultrafast continuum infrared and terahertz radiation,” Opt. Lett. 35(12), 1962–1964 (2010).

C. Heese, L. Gallmann, U. Keller, C. R. Phillips, and M. M. Fejer, “Ultrabroadband, highly flexible amplifier for ultrashort midinfrared laser pulses based on aperiodically poled Mg:LiNbO3.,” Opt. Lett. 35(14), 2340–2342 (2010).

O. Isaienko, E. Borguet, and P. Vöhringer, “High-repetition-rate near-infrared noncollinear ultrabroadband optical parametric amplification in KTiOPO4.,” Opt. Lett. 35(22), 3832–3834 (2010).

E. Rubino, J. Darginavicius, D. Faccio, P. Di Trapani, A. Piskarskas, and A. Dubietis, “Generation of broadly tunable sub-30-fs infrared pulses by four-wave optical parametric amplification,” Opt. Lett. 36(3), 382–384 (2011).

D. Brida, M. Marangoni, C. Manzoni, S. D. Silvestri, and G. Cerullo, “Two-optical-cycle pulses in the mid-infrared from an optical parametric amplifier,” Opt. Lett. 33(24), 2901–2903 (2008).

L. J. Richter, T. P. Petralli-Mallow, and J. C. Stephenson, “Vibrationally resolved sum-frequency generation with broad-bandwidth infrared pulses,” Opt. Lett. 23(20), 1594–1596 (1998).

N. Demirdöven, M. Khalil, O. Golonzka, and A. Tokmakoff, “Dispersion compensation with optical materials for compression of intense sub-100-fs mid-infrared pulses,” Opt. Lett. 27(6), 433–435 (2002).

Phys. Chem. Chem. Phys.

S. Ye, S. Nihonyanagi, and K. Uosaki, “Sum frequency generation (SFG) study of the pH-dependent water structure on a fused quartz surface modified by an octadecyltrichlorosilane (OTS) monolayer,” Phys. Chem. Chem. Phys. 3(16), 3463–3469 (2001).

Phys. Rev. Lett.

Q. Du, E. Freysz, and Y. R. Shen, “Vibrational spectra of water molecules at quartz/water interfaces,” Phys. Rev. Lett. 72(2), 238–241 (1994).

M. S. Yeganeh, S. M. Dougal, and H. S. Pink, “Vibrational spectroscopy of water at liquid/solid interfaces: Crossing the isoelectric point of a solid surface,” Phys. Rev. Lett. 83(6), 1179–1182 (1999).

Proc. Natl. Acad. Sci. U.S.A.

C. S. Tian and Y. R. Shen, “Structure and charging of hydrophobic material/water interfaces studied by phase-sensitive sum-frequency vibrational spectroscopy,” Proc. Natl. Acad. Sci. U.S.A. 106(36), 15148–15153 (2009).

Rep. Prog. Phys.

F. Vidal and A. Tadjeddine, “Sum-firequency generation spectroscopy of interfaces,” Rep. Prog. Phys. 68(5), 1095–1127 (2005).

Rev. Sci. Instrum.

D. Bodlaki and E. Borguet, “Picosecond infrared optical parametric amplifier for nonlinear interface spectroscopy,” Rev. Sci. Instrum. 71(11), 4050–4056 (2000).

Spectrochim. Acta A Mol. Biomol. Spectrosc.

A. Lagutchev, A. Lozano, P. Mukherjee, S. A. Hambir, and D. D. Dlott, “Compact broadband vibrational sum-frequency generation spectrometer with nonresonant suppression,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 75(4), 1289–1296 (2010).

Other

F. Rotermund, V. Petrov, and F. Noack, “Femtosecond noncollinear parametric amplification in the mid-infrared,” Opt. Commun. 169(1-6), 183–188 (1999).

W. J. Tropf, M. E. Thomas, and T. J. Harris, “Properties of crystals and glasses,” in Handbook of Optics, 2nd ed., M. Bass, ed. (McGraw-Hill, New York, 1995), pp. 33.33–33.83.

O. Isaienko and E. Borguet, “Ultra-broadband infrared pulses from a potassium-titanyl phosphate optical parametric amplifier for VIS-IR-SFG spectroscopy,” in Ultrafast Phenomena XVI (Springer Series in Chemical Physics), P. Corkum, S. Silvestri, K. A. Nelson, E. Riedle, and R. W. Schoenlein, eds. (Springer Berlin Heidelberg, 2009), pp. 777–779.

O. Isaienko and E. Borguet, “Ultra-broadband near-IR non-collinear optical parametric amplification in potassium niobate and lithium niobate,” in Conference on Lasers and Electro-Optics/International Quantum Electronics Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paper CFC7. http://www.opticsinfobase.org/abstract.cfm?URI=CLEO-2009-CFC7

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Optical setup of the LNB-KNB-based double-stage NOPA (area inside of the dashed contour) integrated with the broadband vibrational SFG spectroscopy setup: HWP, half-wave plates; Sapphire, 2-mm thick plate; PBS, polarizer-beamsplitter; LPF, long-pass filters; SM, spherical mirrors (SM1, +25 mm; SM2, +200 mm); L, lenses (L1, BK7, 100 mm; L2, fused silica, 300 mm; L3, BK7, 340 mm; L4, fused silica, 250 mm; L5, BK7, 300 mm; L6, CaF2, 50 mm; L7, BK7, 200 mm; L8, BK7, 50 mm); SPF, short-pass filter; DS, delay stages; CCD, Andor integrated charge-coupled device camera with a grating spectrometer. Idler beam is showed with multicolored arrows.

Fig. 2
Fig. 2

Broadband idler spectra from the LNB-KNB-NOPA shown in Fig. 1, measured via sum-frequency generation on the polycrystalline ZnSe plate with narrowband 800 nm pulses [39].

Fig. 3
Fig. 3

Left: schematic of the beam geometry in our SFG-spectroscopy setup. Right: Measurement of the chirp in the broadband IR pulses at the sample surfaces with femtosecond 800 nm pulses. Red triangles: center-of-mass (COM) frequencies of the IR pulses measured on a GaAs plate in the SGF-setup vs IR-VIS pulse delay. Blue squares: COM’s measured on the Au-IRFS reference prism. Red solid line: calculated group delay for the case of ~3300 cm−1 centered pulses propagated through (2-mm KNbO3+5-mm CaF2). Blue solid line: calculated group delay for the case of ~3300 cm−1 centered pulses propagated through (2-mm KNbO3+5-mm CaF2+12-mm fused silica). Red and blue thin dotted lines are guides for the eye.

Fig. 4
Fig. 4

Acquisition of sum-frequency spectra from silica/water interfaces by scanning the VIS-IR delay Δτ shown on the example of water at hydrophobic octadecyltrichlorosilane-coated fused silica (OTS-IRFS) surface [15]. (a) ppp SF-spectra from Au-IRFS prism at selected VIS-IR delays (spectra are shown spaced at 267 fs); (b) ppp-SF-spectra from H2O/OTS-IRFS prism at the same selected values of Δτ as for the Au-IRFS reference prism in a).

Fig. 5
Fig. 5

(a): Normalized SFG-spectrum of the neat fused silica/neat water (pH~6) interface (blue solid line) in ppp-polarization, shown together with the reference spectrum of the ultra-broadband IR pulses (dotted grey line). The green solid line is the SFG spectrum from the neat fused silica/D2O interface shown on the same scale with the H2O/fused-silica spectrum. (b): Normalized SFG-spectrum of ODS-coated silica / neat water (pH~6) interface (blue solid line) in ppp-polarization, together with the reference spectrum of the ultra-broadband IR pulses (dotted grey line).

Fig. 6
Fig. 6

Left: raw spectra obtained at a single IR-VIS delay from the H2O/OTS-IRFS interface (“sample”, red) and the gold-coated IRFS (“ref”, black). The sample spectrum was acquired in 60 sec. Right: “single-acquisition” SFG spectrum of H2O/OTS-IRFS interface (blue) obtained by normalizing the “sample” spectrum in the left-hand side graph by the “ref” spectrum. Red dotted line in the background – SFG spectrum from water/OTS interface obtained by integrating SF-signal as the delay between IR and visible pulses was scanned. For convenience, the single-acquisition spectrum is truncated at ~3000 cm−1 due to the large noise in the C-H stretch region (grey dotted line).

Fig. 7
Fig. 7

Left: similar to Fig. 6, raw spectra obtained at a single IR-VIS delay from the H2O/bare IRFS interface (“sample”, red) and the gold-coated IRFS (“ref”, black). The sample spectrum was acquired in 60 sec. Right: “single-acquisition” SFG spectrum of H2O/bare IRFS interface (blue) obtained by normalizing the “sample” spectrum in the left-hand side graph by the “ref” spectrum. Red dotted line in the background – SFG spectrum from water/bare silica interface obtained by integrating SF-signal as the delay between IR and visible pulses was scanned.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

χ eff (2) = χ (2) NR + j B j exp(i φ j ) ω ω j +i Γ j

Metrics