Abstract

We present a new approach for making interconnected hemispherical shells by stripping Au from templates of anodized aluminum, where the metal thickness can be adjusted without affecting the outer radius of curvature, film roughness and the sharpness of the hemisphere contact areas. This provides increased understanding of the surface plasmon resonances (SPRs) observed for Film-On-Nanospheres (FONs) by decoupling these parameters, which are coupled in the case of FONs. Investigating the influence of the shell thicknesses on the spectral positions of SPRs for FONs involves a dielectric core with a fixed radius encased by a metal film with adjustable thickness. By performing linear reflection spectroscopy, we demonstrate a wide tunability of the SPR by tailoring the inner hemisphere diameter, while keeping the outer diameter fixed. Deposition of extra Au on top of thick, previously stripped hemispherical shells isolates optical response contributions from Au grain- and island-mediated roughness, and unsharpening contact areas in form of decreasing LSPR quality factor. Two-photon luminescence scanning optical microscopy of shells with different thicknesses, applying several different laser wavelengths, is exploited to map local electromagnetic hot spots and correlate the high field enhancements with the linear reflection spectroscopy measurements.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Nielsen, S. Hassing, O. Albrektsen, S. Foghmoes, and P. Morgen, “Fabrication of large-area self-organizing gold nanostructures with sub-10 nm gaps on a porous Al2O3 template for application as a SERS-substrate,” J. Phys. Chem. C 113(32), 14165–14171 (2009).
    [CrossRef]
  2. D.-K. Lim, K.-S. Jeon, H. M. Kim, J.-M. Nam, and Y. D. Suh, “Nanogap-engineerable Raman-active nanodumbbells for single-molecule detection,” Nat. Mater. 9(1), 60–67 (2010).
    [CrossRef] [PubMed]
  3. K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
    [CrossRef]
  4. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440(7083), 508–511 (2006).
    [CrossRef] [PubMed]
  5. R. B. Nielsen, I. Fernandez-Cuesta, A. Boltasseva, V. S. Volkov, S. I. Bozhevolnyi, A. Klukowska, and A. Kristensen, “Channel plasmon polariton propagation in nanoimprinted V-groove waveguides,” Opt. Lett. 33(23), 2800–2802 (2008).
    [CrossRef] [PubMed]
  6. I. P. Radko, S. I. Bozhevolnyi, A. B. Evlyukhin, and A. Boltasseva, “Surface plasmon polariton beam focusing with parabolic nanoparticle chains,” Opt. Express 15(11), 6576–6582 (2007).
    [CrossRef] [PubMed]
  7. S. I. Bozhevolnyi, J. Beermann, and V. Coello, “Direct observation of localized second-harmonic enhancement in random metal nanostructures,” Phys. Rev. Lett. 90(19), 197403 (2003).
    [CrossRef] [PubMed]
  8. P. Nielsen, J. Beermann, O. Albrektsen, S. Hassing, P. Morgen, and S. I. Bozhevolnyi, “Two-photon luminescence microscopy oflarge-area gold nanostructures on templates of anodized aluminum,” Opt. Express 18(16), 17040–17052 (2010).
    [CrossRef] [PubMed]
  9. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
    [CrossRef] [PubMed]
  10. I.-K. Ding, J. Zhu, W. Cai, S.-J. Moon, N. Cai, P. Wang, S. M. Zakeeruddin, M. Grätzel, M. L. Brongersma, Y. Cui, and M. D. McGehee, “Plasmonic dye-sensitized solar cells,” Adv. Energy Mater. 1(1), 52–57 (2011).
    [CrossRef]
  11. A. Aubry, D. Y. Lei, A. I. Fernández-Domínguez, Y. Sonnefraud, S. A. Maier, and J. B. Pendry, “Plasmonic light-harvesting devices over the whole visible spectrum,” Nano Lett. 10(7), 2574–2579 (2010).
    [CrossRef] [PubMed]
  12. G. Mie, “Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen,” Ann. Phys. 330(3), 377–445 (1908).
    [CrossRef]
  13. R. D. Averitt, D. Sarkar, and N. J. Halas, “Plasmon Resonance Shifts of Au-Coated Au2S Nanoshells: Insight into Multicomponent Nanoparticle Growth,” Phys. Rev. Lett. 78(22), 4217–4220 (1997).
    [CrossRef]
  14. J. B. Jackson, S. L. Westcott, L. R. Hirsch, J. L. West, and N. J. Halas, “Controlling the surface enhanced Raman effect via the nanoshell geometry,” Appl. Phys. Lett. 82(2), 257–259 (2003).
    [CrossRef]
  15. K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58(1), 267–297 (2007).
    [CrossRef] [PubMed]
  16. C. Farcau and S. Astilean, “Mapping the SERS efficiency and hot-spots localization on gold film over nanospheres substrates,” J. Phys. Chem. C 114(27), 11717–11722 (2010).
    [CrossRef]
  17. W. Mu, D.-K. Hwang, R. P. H. Chang, M. Sukharev, D. B. Tice, and J. B. Ketterson, “Surface-enhanced Raman scattering from silver-coated opals,” J. Chem. Phys. 134(12), 124312 (2011).
    [CrossRef] [PubMed]
  18. L. Baia, M. Baia, J. Popp, and S. Astilean, “Gold films deposited over regular arrays of polystyrene nanospheres as highly effective SERS substrates from visible to NIR,” J. Phys. Chem. B 110(47), 23982–23986 (2006).
    [CrossRef] [PubMed]
  19. M. Litorja, C. L. Haynes, A. J. Haes, T. R. Jensen, and R. P. Van Duyne, “Surface-Enhanced Raman Scattering Detected Temperature Programmed Desorption: Optical Properties, Nanostructure, and Stability of Silver Film over SiO2 Nanosphere Surfaces,” J. Phys. Chem. B 105(29), 6907–6915 (2001).
    [CrossRef]
  20. H. Masuda and K. Fukuda, “Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina,” Science 268(5216), 1466–1468 (1995).
    [CrossRef] [PubMed]
  21. S. Ono, M. Saito, M. Ishiguro, and H. Asoh, “Controlling factor of self-ordering of anodic porous alumina,” J. Electrochem. Soc. 151(8), B473–B478 (2004).
    [CrossRef]
  22. W. Lee, R. Ji, U. Gösele, and K. Nielsch, “Fast fabrication of long-range ordered porous alumina membranes by hard anodization,” Nat. Mater. 5(9), 741–747 (2006).
    [CrossRef] [PubMed]
  23. P. Krohne-Nielsen, O. Albrektsen, S. Hassing, and P. Morgen, “Controlling interparticle gaps in self-organizing gold nanoparticles on templates made by a modified hard anodization technique,” J. Phys. Chem. C 114(8), 3459–3465 (2010).
    [CrossRef]
  24. J. Yao, Z. Liu, Y. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321(5891), 930 (2008).
    [CrossRef] [PubMed]
  25. M. Hegner, P. Wagner, and G. Semenza, “Ultralarge atomically flat template-stripped Au surfaces for scanning probe microscopy,” Surf. Sci. 291(1-2), 39–46 (1993).
    [CrossRef]
  26. P. Nielsen, P. Morgen, A. C. Simonsen, and O. Albrektsen, “Hemispherical shell nanostructures from metal-stripped embossed alumina on aluminum templates,” J. Phys. Chem. C 115(13), 5552–5560 (2011).
    [CrossRef]
  27. P. Nielsen, S. M. Novikov, P. Morgen, S. I. Bozhevolnyi, and O. Albrektsen, “Surface-enhanced Raman microscopy of hemispherical shells stripped from templates of anodized aluminum,” J. Raman Spectrosc. (to be published), doi:.
    [CrossRef]
  28. A. Mooradian, “Photoluminescence of metals,” Phys. Rev. Lett. 22(5), 185–187 (1969).
    [CrossRef]
  29. G. T. Boyd, Z. H. Yu, and Y. R. Shen, “Photoinduced luminescence from the noble metals and its enhancement on roughened surfaces,” Phys. Rev. B Condens. Matter 33(12), 7923–7936 (1986).
    [CrossRef] [PubMed]
  30. J. Beermann, S. M. Novikov, T. Søndergaard, A. E. Boltasseva, and S. I. Bozhevolnyi, “Two-photon mapping of localized field enhancements in thin nanostrip antennas,” Opt. Express 16(22), 17302–17309 (2008).
    [CrossRef] [PubMed]
  31. A. Hohenau, J. R. Krenn, S. G. Rodrigo, L. Martin-Moreno, F. Garcia-Vidal, J. Beermann, and S. I. Bozhevolnyi, “Spectroscopy and nonlinear microscopy of gold nanoparticle arrays on gold films,” Phys. Rev. B 75(8), 085104 (2007).
    [CrossRef]
  32. P. B. Johnson and R. W. Christy, “Optical constants of noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
    [CrossRef]
  33. E. C. Le Ru and P. G. Etchegoin, “Rigorous justification of the |E|4 enhancement factor in Surface Enhanced Raman Spectroscopy,” Chem. Phys. Lett. 423(1-3), 63–66 (2006).
    [CrossRef]

2011 (3)

I.-K. Ding, J. Zhu, W. Cai, S.-J. Moon, N. Cai, P. Wang, S. M. Zakeeruddin, M. Grätzel, M. L. Brongersma, Y. Cui, and M. D. McGehee, “Plasmonic dye-sensitized solar cells,” Adv. Energy Mater. 1(1), 52–57 (2011).
[CrossRef]

W. Mu, D.-K. Hwang, R. P. H. Chang, M. Sukharev, D. B. Tice, and J. B. Ketterson, “Surface-enhanced Raman scattering from silver-coated opals,” J. Chem. Phys. 134(12), 124312 (2011).
[CrossRef] [PubMed]

P. Nielsen, P. Morgen, A. C. Simonsen, and O. Albrektsen, “Hemispherical shell nanostructures from metal-stripped embossed alumina on aluminum templates,” J. Phys. Chem. C 115(13), 5552–5560 (2011).
[CrossRef]

2010 (6)

P. Krohne-Nielsen, O. Albrektsen, S. Hassing, and P. Morgen, “Controlling interparticle gaps in self-organizing gold nanoparticles on templates made by a modified hard anodization technique,” J. Phys. Chem. C 114(8), 3459–3465 (2010).
[CrossRef]

C. Farcau and S. Astilean, “Mapping the SERS efficiency and hot-spots localization on gold film over nanospheres substrates,” J. Phys. Chem. C 114(27), 11717–11722 (2010).
[CrossRef]

A. Aubry, D. Y. Lei, A. I. Fernández-Domínguez, Y. Sonnefraud, S. A. Maier, and J. B. Pendry, “Plasmonic light-harvesting devices over the whole visible spectrum,” Nano Lett. 10(7), 2574–2579 (2010).
[CrossRef] [PubMed]

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[CrossRef] [PubMed]

D.-K. Lim, K.-S. Jeon, H. M. Kim, J.-M. Nam, and Y. D. Suh, “Nanogap-engineerable Raman-active nanodumbbells for single-molecule detection,” Nat. Mater. 9(1), 60–67 (2010).
[CrossRef] [PubMed]

P. Nielsen, J. Beermann, O. Albrektsen, S. Hassing, P. Morgen, and S. I. Bozhevolnyi, “Two-photon luminescence microscopy oflarge-area gold nanostructures on templates of anodized aluminum,” Opt. Express 18(16), 17040–17052 (2010).
[CrossRef] [PubMed]

2009 (1)

P. Nielsen, S. Hassing, O. Albrektsen, S. Foghmoes, and P. Morgen, “Fabrication of large-area self-organizing gold nanostructures with sub-10 nm gaps on a porous Al2O3 template for application as a SERS-substrate,” J. Phys. Chem. C 113(32), 14165–14171 (2009).
[CrossRef]

2008 (3)

2007 (3)

K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58(1), 267–297 (2007).
[CrossRef] [PubMed]

I. P. Radko, S. I. Bozhevolnyi, A. B. Evlyukhin, and A. Boltasseva, “Surface plasmon polariton beam focusing with parabolic nanoparticle chains,” Opt. Express 15(11), 6576–6582 (2007).
[CrossRef] [PubMed]

A. Hohenau, J. R. Krenn, S. G. Rodrigo, L. Martin-Moreno, F. Garcia-Vidal, J. Beermann, and S. I. Bozhevolnyi, “Spectroscopy and nonlinear microscopy of gold nanoparticle arrays on gold films,” Phys. Rev. B 75(8), 085104 (2007).
[CrossRef]

2006 (4)

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440(7083), 508–511 (2006).
[CrossRef] [PubMed]

W. Lee, R. Ji, U. Gösele, and K. Nielsch, “Fast fabrication of long-range ordered porous alumina membranes by hard anodization,” Nat. Mater. 5(9), 741–747 (2006).
[CrossRef] [PubMed]

E. C. Le Ru and P. G. Etchegoin, “Rigorous justification of the |E|4 enhancement factor in Surface Enhanced Raman Spectroscopy,” Chem. Phys. Lett. 423(1-3), 63–66 (2006).
[CrossRef]

L. Baia, M. Baia, J. Popp, and S. Astilean, “Gold films deposited over regular arrays of polystyrene nanospheres as highly effective SERS substrates from visible to NIR,” J. Phys. Chem. B 110(47), 23982–23986 (2006).
[CrossRef] [PubMed]

2004 (1)

S. Ono, M. Saito, M. Ishiguro, and H. Asoh, “Controlling factor of self-ordering of anodic porous alumina,” J. Electrochem. Soc. 151(8), B473–B478 (2004).
[CrossRef]

2003 (2)

J. B. Jackson, S. L. Westcott, L. R. Hirsch, J. L. West, and N. J. Halas, “Controlling the surface enhanced Raman effect via the nanoshell geometry,” Appl. Phys. Lett. 82(2), 257–259 (2003).
[CrossRef]

S. I. Bozhevolnyi, J. Beermann, and V. Coello, “Direct observation of localized second-harmonic enhancement in random metal nanostructures,” Phys. Rev. Lett. 90(19), 197403 (2003).
[CrossRef] [PubMed]

2001 (1)

M. Litorja, C. L. Haynes, A. J. Haes, T. R. Jensen, and R. P. Van Duyne, “Surface-Enhanced Raman Scattering Detected Temperature Programmed Desorption: Optical Properties, Nanostructure, and Stability of Silver Film over SiO2 Nanosphere Surfaces,” J. Phys. Chem. B 105(29), 6907–6915 (2001).
[CrossRef]

1997 (2)

R. D. Averitt, D. Sarkar, and N. J. Halas, “Plasmon Resonance Shifts of Au-Coated Au2S Nanoshells: Insight into Multicomponent Nanoparticle Growth,” Phys. Rev. Lett. 78(22), 4217–4220 (1997).
[CrossRef]

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[CrossRef]

1995 (1)

H. Masuda and K. Fukuda, “Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina,” Science 268(5216), 1466–1468 (1995).
[CrossRef] [PubMed]

1993 (1)

M. Hegner, P. Wagner, and G. Semenza, “Ultralarge atomically flat template-stripped Au surfaces for scanning probe microscopy,” Surf. Sci. 291(1-2), 39–46 (1993).
[CrossRef]

1986 (1)

G. T. Boyd, Z. H. Yu, and Y. R. Shen, “Photoinduced luminescence from the noble metals and its enhancement on roughened surfaces,” Phys. Rev. B Condens. Matter 33(12), 7923–7936 (1986).
[CrossRef] [PubMed]

1972 (1)

P. B. Johnson and R. W. Christy, “Optical constants of noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

1969 (1)

A. Mooradian, “Photoluminescence of metals,” Phys. Rev. Lett. 22(5), 185–187 (1969).
[CrossRef]

1908 (1)

G. Mie, “Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen,” Ann. Phys. 330(3), 377–445 (1908).
[CrossRef]

Albrektsen, O.

P. Nielsen, P. Morgen, A. C. Simonsen, and O. Albrektsen, “Hemispherical shell nanostructures from metal-stripped embossed alumina on aluminum templates,” J. Phys. Chem. C 115(13), 5552–5560 (2011).
[CrossRef]

P. Nielsen, J. Beermann, O. Albrektsen, S. Hassing, P. Morgen, and S. I. Bozhevolnyi, “Two-photon luminescence microscopy oflarge-area gold nanostructures on templates of anodized aluminum,” Opt. Express 18(16), 17040–17052 (2010).
[CrossRef] [PubMed]

P. Krohne-Nielsen, O. Albrektsen, S. Hassing, and P. Morgen, “Controlling interparticle gaps in self-organizing gold nanoparticles on templates made by a modified hard anodization technique,” J. Phys. Chem. C 114(8), 3459–3465 (2010).
[CrossRef]

P. Nielsen, S. Hassing, O. Albrektsen, S. Foghmoes, and P. Morgen, “Fabrication of large-area self-organizing gold nanostructures with sub-10 nm gaps on a porous Al2O3 template for application as a SERS-substrate,” J. Phys. Chem. C 113(32), 14165–14171 (2009).
[CrossRef]

P. Nielsen, S. M. Novikov, P. Morgen, S. I. Bozhevolnyi, and O. Albrektsen, “Surface-enhanced Raman microscopy of hemispherical shells stripped from templates of anodized aluminum,” J. Raman Spectrosc. (to be published), doi:.
[CrossRef]

Asoh, H.

S. Ono, M. Saito, M. Ishiguro, and H. Asoh, “Controlling factor of self-ordering of anodic porous alumina,” J. Electrochem. Soc. 151(8), B473–B478 (2004).
[CrossRef]

Astilean, S.

C. Farcau and S. Astilean, “Mapping the SERS efficiency and hot-spots localization on gold film over nanospheres substrates,” J. Phys. Chem. C 114(27), 11717–11722 (2010).
[CrossRef]

L. Baia, M. Baia, J. Popp, and S. Astilean, “Gold films deposited over regular arrays of polystyrene nanospheres as highly effective SERS substrates from visible to NIR,” J. Phys. Chem. B 110(47), 23982–23986 (2006).
[CrossRef] [PubMed]

Atwater, H. A.

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[CrossRef] [PubMed]

Aubry, A.

A. Aubry, D. Y. Lei, A. I. Fernández-Domínguez, Y. Sonnefraud, S. A. Maier, and J. B. Pendry, “Plasmonic light-harvesting devices over the whole visible spectrum,” Nano Lett. 10(7), 2574–2579 (2010).
[CrossRef] [PubMed]

Averitt, R. D.

R. D. Averitt, D. Sarkar, and N. J. Halas, “Plasmon Resonance Shifts of Au-Coated Au2S Nanoshells: Insight into Multicomponent Nanoparticle Growth,” Phys. Rev. Lett. 78(22), 4217–4220 (1997).
[CrossRef]

Baia, L.

L. Baia, M. Baia, J. Popp, and S. Astilean, “Gold films deposited over regular arrays of polystyrene nanospheres as highly effective SERS substrates from visible to NIR,” J. Phys. Chem. B 110(47), 23982–23986 (2006).
[CrossRef] [PubMed]

Baia, M.

L. Baia, M. Baia, J. Popp, and S. Astilean, “Gold films deposited over regular arrays of polystyrene nanospheres as highly effective SERS substrates from visible to NIR,” J. Phys. Chem. B 110(47), 23982–23986 (2006).
[CrossRef] [PubMed]

Bartal, G.

J. Yao, Z. Liu, Y. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321(5891), 930 (2008).
[CrossRef] [PubMed]

Beermann, J.

P. Nielsen, J. Beermann, O. Albrektsen, S. Hassing, P. Morgen, and S. I. Bozhevolnyi, “Two-photon luminescence microscopy oflarge-area gold nanostructures on templates of anodized aluminum,” Opt. Express 18(16), 17040–17052 (2010).
[CrossRef] [PubMed]

J. Beermann, S. M. Novikov, T. Søndergaard, A. E. Boltasseva, and S. I. Bozhevolnyi, “Two-photon mapping of localized field enhancements in thin nanostrip antennas,” Opt. Express 16(22), 17302–17309 (2008).
[CrossRef] [PubMed]

A. Hohenau, J. R. Krenn, S. G. Rodrigo, L. Martin-Moreno, F. Garcia-Vidal, J. Beermann, and S. I. Bozhevolnyi, “Spectroscopy and nonlinear microscopy of gold nanoparticle arrays on gold films,” Phys. Rev. B 75(8), 085104 (2007).
[CrossRef]

S. I. Bozhevolnyi, J. Beermann, and V. Coello, “Direct observation of localized second-harmonic enhancement in random metal nanostructures,” Phys. Rev. Lett. 90(19), 197403 (2003).
[CrossRef] [PubMed]

Boltasseva, A.

Boltasseva, A. E.

Boyd, G. T.

G. T. Boyd, Z. H. Yu, and Y. R. Shen, “Photoinduced luminescence from the noble metals and its enhancement on roughened surfaces,” Phys. Rev. B Condens. Matter 33(12), 7923–7936 (1986).
[CrossRef] [PubMed]

Bozhevolnyi, S. I.

P. Nielsen, J. Beermann, O. Albrektsen, S. Hassing, P. Morgen, and S. I. Bozhevolnyi, “Two-photon luminescence microscopy oflarge-area gold nanostructures on templates of anodized aluminum,” Opt. Express 18(16), 17040–17052 (2010).
[CrossRef] [PubMed]

J. Beermann, S. M. Novikov, T. Søndergaard, A. E. Boltasseva, and S. I. Bozhevolnyi, “Two-photon mapping of localized field enhancements in thin nanostrip antennas,” Opt. Express 16(22), 17302–17309 (2008).
[CrossRef] [PubMed]

R. B. Nielsen, I. Fernandez-Cuesta, A. Boltasseva, V. S. Volkov, S. I. Bozhevolnyi, A. Klukowska, and A. Kristensen, “Channel plasmon polariton propagation in nanoimprinted V-groove waveguides,” Opt. Lett. 33(23), 2800–2802 (2008).
[CrossRef] [PubMed]

I. P. Radko, S. I. Bozhevolnyi, A. B. Evlyukhin, and A. Boltasseva, “Surface plasmon polariton beam focusing with parabolic nanoparticle chains,” Opt. Express 15(11), 6576–6582 (2007).
[CrossRef] [PubMed]

A. Hohenau, J. R. Krenn, S. G. Rodrigo, L. Martin-Moreno, F. Garcia-Vidal, J. Beermann, and S. I. Bozhevolnyi, “Spectroscopy and nonlinear microscopy of gold nanoparticle arrays on gold films,” Phys. Rev. B 75(8), 085104 (2007).
[CrossRef]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440(7083), 508–511 (2006).
[CrossRef] [PubMed]

S. I. Bozhevolnyi, J. Beermann, and V. Coello, “Direct observation of localized second-harmonic enhancement in random metal nanostructures,” Phys. Rev. Lett. 90(19), 197403 (2003).
[CrossRef] [PubMed]

P. Nielsen, S. M. Novikov, P. Morgen, S. I. Bozhevolnyi, and O. Albrektsen, “Surface-enhanced Raman microscopy of hemispherical shells stripped from templates of anodized aluminum,” J. Raman Spectrosc. (to be published), doi:.
[CrossRef]

Brongersma, M. L.

I.-K. Ding, J. Zhu, W. Cai, S.-J. Moon, N. Cai, P. Wang, S. M. Zakeeruddin, M. Grätzel, M. L. Brongersma, Y. Cui, and M. D. McGehee, “Plasmonic dye-sensitized solar cells,” Adv. Energy Mater. 1(1), 52–57 (2011).
[CrossRef]

Cai, N.

I.-K. Ding, J. Zhu, W. Cai, S.-J. Moon, N. Cai, P. Wang, S. M. Zakeeruddin, M. Grätzel, M. L. Brongersma, Y. Cui, and M. D. McGehee, “Plasmonic dye-sensitized solar cells,” Adv. Energy Mater. 1(1), 52–57 (2011).
[CrossRef]

Cai, W.

I.-K. Ding, J. Zhu, W. Cai, S.-J. Moon, N. Cai, P. Wang, S. M. Zakeeruddin, M. Grätzel, M. L. Brongersma, Y. Cui, and M. D. McGehee, “Plasmonic dye-sensitized solar cells,” Adv. Energy Mater. 1(1), 52–57 (2011).
[CrossRef]

Chang, R. P. H.

W. Mu, D.-K. Hwang, R. P. H. Chang, M. Sukharev, D. B. Tice, and J. B. Ketterson, “Surface-enhanced Raman scattering from silver-coated opals,” J. Chem. Phys. 134(12), 124312 (2011).
[CrossRef] [PubMed]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

Coello, V.

S. I. Bozhevolnyi, J. Beermann, and V. Coello, “Direct observation of localized second-harmonic enhancement in random metal nanostructures,” Phys. Rev. Lett. 90(19), 197403 (2003).
[CrossRef] [PubMed]

Cui, Y.

I.-K. Ding, J. Zhu, W. Cai, S.-J. Moon, N. Cai, P. Wang, S. M. Zakeeruddin, M. Grätzel, M. L. Brongersma, Y. Cui, and M. D. McGehee, “Plasmonic dye-sensitized solar cells,” Adv. Energy Mater. 1(1), 52–57 (2011).
[CrossRef]

Dasari, R. R.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[CrossRef]

Devaux, E.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440(7083), 508–511 (2006).
[CrossRef] [PubMed]

Ding, I.-K.

I.-K. Ding, J. Zhu, W. Cai, S.-J. Moon, N. Cai, P. Wang, S. M. Zakeeruddin, M. Grätzel, M. L. Brongersma, Y. Cui, and M. D. McGehee, “Plasmonic dye-sensitized solar cells,” Adv. Energy Mater. 1(1), 52–57 (2011).
[CrossRef]

Ebbesen, T. W.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440(7083), 508–511 (2006).
[CrossRef] [PubMed]

Etchegoin, P. G.

E. C. Le Ru and P. G. Etchegoin, “Rigorous justification of the |E|4 enhancement factor in Surface Enhanced Raman Spectroscopy,” Chem. Phys. Lett. 423(1-3), 63–66 (2006).
[CrossRef]

Evlyukhin, A. B.

Farcau, C.

C. Farcau and S. Astilean, “Mapping the SERS efficiency and hot-spots localization on gold film over nanospheres substrates,” J. Phys. Chem. C 114(27), 11717–11722 (2010).
[CrossRef]

Feld, M. S.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[CrossRef]

Fernandez-Cuesta, I.

Fernández-Domínguez, A. I.

A. Aubry, D. Y. Lei, A. I. Fernández-Domínguez, Y. Sonnefraud, S. A. Maier, and J. B. Pendry, “Plasmonic light-harvesting devices over the whole visible spectrum,” Nano Lett. 10(7), 2574–2579 (2010).
[CrossRef] [PubMed]

Foghmoes, S.

P. Nielsen, S. Hassing, O. Albrektsen, S. Foghmoes, and P. Morgen, “Fabrication of large-area self-organizing gold nanostructures with sub-10 nm gaps on a porous Al2O3 template for application as a SERS-substrate,” J. Phys. Chem. C 113(32), 14165–14171 (2009).
[CrossRef]

Fukuda, K.

H. Masuda and K. Fukuda, “Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina,” Science 268(5216), 1466–1468 (1995).
[CrossRef] [PubMed]

Garcia-Vidal, F.

A. Hohenau, J. R. Krenn, S. G. Rodrigo, L. Martin-Moreno, F. Garcia-Vidal, J. Beermann, and S. I. Bozhevolnyi, “Spectroscopy and nonlinear microscopy of gold nanoparticle arrays on gold films,” Phys. Rev. B 75(8), 085104 (2007).
[CrossRef]

Gösele, U.

W. Lee, R. Ji, U. Gösele, and K. Nielsch, “Fast fabrication of long-range ordered porous alumina membranes by hard anodization,” Nat. Mater. 5(9), 741–747 (2006).
[CrossRef] [PubMed]

Grätzel, M.

I.-K. Ding, J. Zhu, W. Cai, S.-J. Moon, N. Cai, P. Wang, S. M. Zakeeruddin, M. Grätzel, M. L. Brongersma, Y. Cui, and M. D. McGehee, “Plasmonic dye-sensitized solar cells,” Adv. Energy Mater. 1(1), 52–57 (2011).
[CrossRef]

Haes, A. J.

M. Litorja, C. L. Haynes, A. J. Haes, T. R. Jensen, and R. P. Van Duyne, “Surface-Enhanced Raman Scattering Detected Temperature Programmed Desorption: Optical Properties, Nanostructure, and Stability of Silver Film over SiO2 Nanosphere Surfaces,” J. Phys. Chem. B 105(29), 6907–6915 (2001).
[CrossRef]

Halas, N. J.

J. B. Jackson, S. L. Westcott, L. R. Hirsch, J. L. West, and N. J. Halas, “Controlling the surface enhanced Raman effect via the nanoshell geometry,” Appl. Phys. Lett. 82(2), 257–259 (2003).
[CrossRef]

R. D. Averitt, D. Sarkar, and N. J. Halas, “Plasmon Resonance Shifts of Au-Coated Au2S Nanoshells: Insight into Multicomponent Nanoparticle Growth,” Phys. Rev. Lett. 78(22), 4217–4220 (1997).
[CrossRef]

Hassing, S.

P. Krohne-Nielsen, O. Albrektsen, S. Hassing, and P. Morgen, “Controlling interparticle gaps in self-organizing gold nanoparticles on templates made by a modified hard anodization technique,” J. Phys. Chem. C 114(8), 3459–3465 (2010).
[CrossRef]

P. Nielsen, J. Beermann, O. Albrektsen, S. Hassing, P. Morgen, and S. I. Bozhevolnyi, “Two-photon luminescence microscopy oflarge-area gold nanostructures on templates of anodized aluminum,” Opt. Express 18(16), 17040–17052 (2010).
[CrossRef] [PubMed]

P. Nielsen, S. Hassing, O. Albrektsen, S. Foghmoes, and P. Morgen, “Fabrication of large-area self-organizing gold nanostructures with sub-10 nm gaps on a porous Al2O3 template for application as a SERS-substrate,” J. Phys. Chem. C 113(32), 14165–14171 (2009).
[CrossRef]

Haynes, C. L.

M. Litorja, C. L. Haynes, A. J. Haes, T. R. Jensen, and R. P. Van Duyne, “Surface-Enhanced Raman Scattering Detected Temperature Programmed Desorption: Optical Properties, Nanostructure, and Stability of Silver Film over SiO2 Nanosphere Surfaces,” J. Phys. Chem. B 105(29), 6907–6915 (2001).
[CrossRef]

Hegner, M.

M. Hegner, P. Wagner, and G. Semenza, “Ultralarge atomically flat template-stripped Au surfaces for scanning probe microscopy,” Surf. Sci. 291(1-2), 39–46 (1993).
[CrossRef]

Hirsch, L. R.

J. B. Jackson, S. L. Westcott, L. R. Hirsch, J. L. West, and N. J. Halas, “Controlling the surface enhanced Raman effect via the nanoshell geometry,” Appl. Phys. Lett. 82(2), 257–259 (2003).
[CrossRef]

Hohenau, A.

A. Hohenau, J. R. Krenn, S. G. Rodrigo, L. Martin-Moreno, F. Garcia-Vidal, J. Beermann, and S. I. Bozhevolnyi, “Spectroscopy and nonlinear microscopy of gold nanoparticle arrays on gold films,” Phys. Rev. B 75(8), 085104 (2007).
[CrossRef]

Hwang, D.-K.

W. Mu, D.-K. Hwang, R. P. H. Chang, M. Sukharev, D. B. Tice, and J. B. Ketterson, “Surface-enhanced Raman scattering from silver-coated opals,” J. Chem. Phys. 134(12), 124312 (2011).
[CrossRef] [PubMed]

Ishiguro, M.

S. Ono, M. Saito, M. Ishiguro, and H. Asoh, “Controlling factor of self-ordering of anodic porous alumina,” J. Electrochem. Soc. 151(8), B473–B478 (2004).
[CrossRef]

Itzkan, I.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[CrossRef]

Jackson, J. B.

J. B. Jackson, S. L. Westcott, L. R. Hirsch, J. L. West, and N. J. Halas, “Controlling the surface enhanced Raman effect via the nanoshell geometry,” Appl. Phys. Lett. 82(2), 257–259 (2003).
[CrossRef]

Jensen, T. R.

M. Litorja, C. L. Haynes, A. J. Haes, T. R. Jensen, and R. P. Van Duyne, “Surface-Enhanced Raman Scattering Detected Temperature Programmed Desorption: Optical Properties, Nanostructure, and Stability of Silver Film over SiO2 Nanosphere Surfaces,” J. Phys. Chem. B 105(29), 6907–6915 (2001).
[CrossRef]

Jeon, K.-S.

D.-K. Lim, K.-S. Jeon, H. M. Kim, J.-M. Nam, and Y. D. Suh, “Nanogap-engineerable Raman-active nanodumbbells for single-molecule detection,” Nat. Mater. 9(1), 60–67 (2010).
[CrossRef] [PubMed]

Ji, R.

W. Lee, R. Ji, U. Gösele, and K. Nielsch, “Fast fabrication of long-range ordered porous alumina membranes by hard anodization,” Nat. Mater. 5(9), 741–747 (2006).
[CrossRef] [PubMed]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

Ketterson, J. B.

W. Mu, D.-K. Hwang, R. P. H. Chang, M. Sukharev, D. B. Tice, and J. B. Ketterson, “Surface-enhanced Raman scattering from silver-coated opals,” J. Chem. Phys. 134(12), 124312 (2011).
[CrossRef] [PubMed]

Kim, H. M.

D.-K. Lim, K.-S. Jeon, H. M. Kim, J.-M. Nam, and Y. D. Suh, “Nanogap-engineerable Raman-active nanodumbbells for single-molecule detection,” Nat. Mater. 9(1), 60–67 (2010).
[CrossRef] [PubMed]

Klukowska, A.

Kneipp, H.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[CrossRef]

Kneipp, K.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[CrossRef]

Krenn, J. R.

A. Hohenau, J. R. Krenn, S. G. Rodrigo, L. Martin-Moreno, F. Garcia-Vidal, J. Beermann, and S. I. Bozhevolnyi, “Spectroscopy and nonlinear microscopy of gold nanoparticle arrays on gold films,” Phys. Rev. B 75(8), 085104 (2007).
[CrossRef]

Kristensen, A.

Krohne-Nielsen, P.

P. Krohne-Nielsen, O. Albrektsen, S. Hassing, and P. Morgen, “Controlling interparticle gaps in self-organizing gold nanoparticles on templates made by a modified hard anodization technique,” J. Phys. Chem. C 114(8), 3459–3465 (2010).
[CrossRef]

Laluet, J. Y.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440(7083), 508–511 (2006).
[CrossRef] [PubMed]

Le Ru, E. C.

E. C. Le Ru and P. G. Etchegoin, “Rigorous justification of the |E|4 enhancement factor in Surface Enhanced Raman Spectroscopy,” Chem. Phys. Lett. 423(1-3), 63–66 (2006).
[CrossRef]

Lee, W.

W. Lee, R. Ji, U. Gösele, and K. Nielsch, “Fast fabrication of long-range ordered porous alumina membranes by hard anodization,” Nat. Mater. 5(9), 741–747 (2006).
[CrossRef] [PubMed]

Lei, D. Y.

A. Aubry, D. Y. Lei, A. I. Fernández-Domínguez, Y. Sonnefraud, S. A. Maier, and J. B. Pendry, “Plasmonic light-harvesting devices over the whole visible spectrum,” Nano Lett. 10(7), 2574–2579 (2010).
[CrossRef] [PubMed]

Lim, D.-K.

D.-K. Lim, K.-S. Jeon, H. M. Kim, J.-M. Nam, and Y. D. Suh, “Nanogap-engineerable Raman-active nanodumbbells for single-molecule detection,” Nat. Mater. 9(1), 60–67 (2010).
[CrossRef] [PubMed]

Litorja, M.

M. Litorja, C. L. Haynes, A. J. Haes, T. R. Jensen, and R. P. Van Duyne, “Surface-Enhanced Raman Scattering Detected Temperature Programmed Desorption: Optical Properties, Nanostructure, and Stability of Silver Film over SiO2 Nanosphere Surfaces,” J. Phys. Chem. B 105(29), 6907–6915 (2001).
[CrossRef]

Liu, Y.

J. Yao, Z. Liu, Y. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321(5891), 930 (2008).
[CrossRef] [PubMed]

Liu, Z.

J. Yao, Z. Liu, Y. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321(5891), 930 (2008).
[CrossRef] [PubMed]

Maier, S. A.

A. Aubry, D. Y. Lei, A. I. Fernández-Domínguez, Y. Sonnefraud, S. A. Maier, and J. B. Pendry, “Plasmonic light-harvesting devices over the whole visible spectrum,” Nano Lett. 10(7), 2574–2579 (2010).
[CrossRef] [PubMed]

Martin-Moreno, L.

A. Hohenau, J. R. Krenn, S. G. Rodrigo, L. Martin-Moreno, F. Garcia-Vidal, J. Beermann, and S. I. Bozhevolnyi, “Spectroscopy and nonlinear microscopy of gold nanoparticle arrays on gold films,” Phys. Rev. B 75(8), 085104 (2007).
[CrossRef]

Masuda, H.

H. Masuda and K. Fukuda, “Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina,” Science 268(5216), 1466–1468 (1995).
[CrossRef] [PubMed]

McGehee, M. D.

I.-K. Ding, J. Zhu, W. Cai, S.-J. Moon, N. Cai, P. Wang, S. M. Zakeeruddin, M. Grätzel, M. L. Brongersma, Y. Cui, and M. D. McGehee, “Plasmonic dye-sensitized solar cells,” Adv. Energy Mater. 1(1), 52–57 (2011).
[CrossRef]

Mie, G.

G. Mie, “Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen,” Ann. Phys. 330(3), 377–445 (1908).
[CrossRef]

Moon, S.-J.

I.-K. Ding, J. Zhu, W. Cai, S.-J. Moon, N. Cai, P. Wang, S. M. Zakeeruddin, M. Grätzel, M. L. Brongersma, Y. Cui, and M. D. McGehee, “Plasmonic dye-sensitized solar cells,” Adv. Energy Mater. 1(1), 52–57 (2011).
[CrossRef]

Mooradian, A.

A. Mooradian, “Photoluminescence of metals,” Phys. Rev. Lett. 22(5), 185–187 (1969).
[CrossRef]

Morgen, P.

P. Nielsen, P. Morgen, A. C. Simonsen, and O. Albrektsen, “Hemispherical shell nanostructures from metal-stripped embossed alumina on aluminum templates,” J. Phys. Chem. C 115(13), 5552–5560 (2011).
[CrossRef]

P. Nielsen, J. Beermann, O. Albrektsen, S. Hassing, P. Morgen, and S. I. Bozhevolnyi, “Two-photon luminescence microscopy oflarge-area gold nanostructures on templates of anodized aluminum,” Opt. Express 18(16), 17040–17052 (2010).
[CrossRef] [PubMed]

P. Krohne-Nielsen, O. Albrektsen, S. Hassing, and P. Morgen, “Controlling interparticle gaps in self-organizing gold nanoparticles on templates made by a modified hard anodization technique,” J. Phys. Chem. C 114(8), 3459–3465 (2010).
[CrossRef]

P. Nielsen, S. Hassing, O. Albrektsen, S. Foghmoes, and P. Morgen, “Fabrication of large-area self-organizing gold nanostructures with sub-10 nm gaps on a porous Al2O3 template for application as a SERS-substrate,” J. Phys. Chem. C 113(32), 14165–14171 (2009).
[CrossRef]

P. Nielsen, S. M. Novikov, P. Morgen, S. I. Bozhevolnyi, and O. Albrektsen, “Surface-enhanced Raman microscopy of hemispherical shells stripped from templates of anodized aluminum,” J. Raman Spectrosc. (to be published), doi:.
[CrossRef]

Mu, W.

W. Mu, D.-K. Hwang, R. P. H. Chang, M. Sukharev, D. B. Tice, and J. B. Ketterson, “Surface-enhanced Raman scattering from silver-coated opals,” J. Chem. Phys. 134(12), 124312 (2011).
[CrossRef] [PubMed]

Nam, J.-M.

D.-K. Lim, K.-S. Jeon, H. M. Kim, J.-M. Nam, and Y. D. Suh, “Nanogap-engineerable Raman-active nanodumbbells for single-molecule detection,” Nat. Mater. 9(1), 60–67 (2010).
[CrossRef] [PubMed]

Nielsch, K.

W. Lee, R. Ji, U. Gösele, and K. Nielsch, “Fast fabrication of long-range ordered porous alumina membranes by hard anodization,” Nat. Mater. 5(9), 741–747 (2006).
[CrossRef] [PubMed]

Nielsen, P.

P. Nielsen, P. Morgen, A. C. Simonsen, and O. Albrektsen, “Hemispherical shell nanostructures from metal-stripped embossed alumina on aluminum templates,” J. Phys. Chem. C 115(13), 5552–5560 (2011).
[CrossRef]

P. Nielsen, J. Beermann, O. Albrektsen, S. Hassing, P. Morgen, and S. I. Bozhevolnyi, “Two-photon luminescence microscopy oflarge-area gold nanostructures on templates of anodized aluminum,” Opt. Express 18(16), 17040–17052 (2010).
[CrossRef] [PubMed]

P. Nielsen, S. Hassing, O. Albrektsen, S. Foghmoes, and P. Morgen, “Fabrication of large-area self-organizing gold nanostructures with sub-10 nm gaps on a porous Al2O3 template for application as a SERS-substrate,” J. Phys. Chem. C 113(32), 14165–14171 (2009).
[CrossRef]

P. Nielsen, S. M. Novikov, P. Morgen, S. I. Bozhevolnyi, and O. Albrektsen, “Surface-enhanced Raman microscopy of hemispherical shells stripped from templates of anodized aluminum,” J. Raman Spectrosc. (to be published), doi:.
[CrossRef]

Nielsen, R. B.

Novikov, S. M.

J. Beermann, S. M. Novikov, T. Søndergaard, A. E. Boltasseva, and S. I. Bozhevolnyi, “Two-photon mapping of localized field enhancements in thin nanostrip antennas,” Opt. Express 16(22), 17302–17309 (2008).
[CrossRef] [PubMed]

P. Nielsen, S. M. Novikov, P. Morgen, S. I. Bozhevolnyi, and O. Albrektsen, “Surface-enhanced Raman microscopy of hemispherical shells stripped from templates of anodized aluminum,” J. Raman Spectrosc. (to be published), doi:.
[CrossRef]

Ono, S.

S. Ono, M. Saito, M. Ishiguro, and H. Asoh, “Controlling factor of self-ordering of anodic porous alumina,” J. Electrochem. Soc. 151(8), B473–B478 (2004).
[CrossRef]

Pendry, J. B.

A. Aubry, D. Y. Lei, A. I. Fernández-Domínguez, Y. Sonnefraud, S. A. Maier, and J. B. Pendry, “Plasmonic light-harvesting devices over the whole visible spectrum,” Nano Lett. 10(7), 2574–2579 (2010).
[CrossRef] [PubMed]

Perelman, L. T.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[CrossRef]

Polman, A.

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[CrossRef] [PubMed]

Popp, J.

L. Baia, M. Baia, J. Popp, and S. Astilean, “Gold films deposited over regular arrays of polystyrene nanospheres as highly effective SERS substrates from visible to NIR,” J. Phys. Chem. B 110(47), 23982–23986 (2006).
[CrossRef] [PubMed]

Radko, I. P.

Rodrigo, S. G.

A. Hohenau, J. R. Krenn, S. G. Rodrigo, L. Martin-Moreno, F. Garcia-Vidal, J. Beermann, and S. I. Bozhevolnyi, “Spectroscopy and nonlinear microscopy of gold nanoparticle arrays on gold films,” Phys. Rev. B 75(8), 085104 (2007).
[CrossRef]

Saito, M.

S. Ono, M. Saito, M. Ishiguro, and H. Asoh, “Controlling factor of self-ordering of anodic porous alumina,” J. Electrochem. Soc. 151(8), B473–B478 (2004).
[CrossRef]

Sarkar, D.

R. D. Averitt, D. Sarkar, and N. J. Halas, “Plasmon Resonance Shifts of Au-Coated Au2S Nanoshells: Insight into Multicomponent Nanoparticle Growth,” Phys. Rev. Lett. 78(22), 4217–4220 (1997).
[CrossRef]

Semenza, G.

M. Hegner, P. Wagner, and G. Semenza, “Ultralarge atomically flat template-stripped Au surfaces for scanning probe microscopy,” Surf. Sci. 291(1-2), 39–46 (1993).
[CrossRef]

Shen, Y. R.

G. T. Boyd, Z. H. Yu, and Y. R. Shen, “Photoinduced luminescence from the noble metals and its enhancement on roughened surfaces,” Phys. Rev. B Condens. Matter 33(12), 7923–7936 (1986).
[CrossRef] [PubMed]

Simonsen, A. C.

P. Nielsen, P. Morgen, A. C. Simonsen, and O. Albrektsen, “Hemispherical shell nanostructures from metal-stripped embossed alumina on aluminum templates,” J. Phys. Chem. C 115(13), 5552–5560 (2011).
[CrossRef]

Søndergaard, T.

Sonnefraud, Y.

A. Aubry, D. Y. Lei, A. I. Fernández-Domínguez, Y. Sonnefraud, S. A. Maier, and J. B. Pendry, “Plasmonic light-harvesting devices over the whole visible spectrum,” Nano Lett. 10(7), 2574–2579 (2010).
[CrossRef] [PubMed]

Stacy, A. M.

J. Yao, Z. Liu, Y. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321(5891), 930 (2008).
[CrossRef] [PubMed]

Suh, Y. D.

D.-K. Lim, K.-S. Jeon, H. M. Kim, J.-M. Nam, and Y. D. Suh, “Nanogap-engineerable Raman-active nanodumbbells for single-molecule detection,” Nat. Mater. 9(1), 60–67 (2010).
[CrossRef] [PubMed]

Sukharev, M.

W. Mu, D.-K. Hwang, R. P. H. Chang, M. Sukharev, D. B. Tice, and J. B. Ketterson, “Surface-enhanced Raman scattering from silver-coated opals,” J. Chem. Phys. 134(12), 124312 (2011).
[CrossRef] [PubMed]

Sun, C.

J. Yao, Z. Liu, Y. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321(5891), 930 (2008).
[CrossRef] [PubMed]

Tice, D. B.

W. Mu, D.-K. Hwang, R. P. H. Chang, M. Sukharev, D. B. Tice, and J. B. Ketterson, “Surface-enhanced Raman scattering from silver-coated opals,” J. Chem. Phys. 134(12), 124312 (2011).
[CrossRef] [PubMed]

Van Duyne, R. P.

K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58(1), 267–297 (2007).
[CrossRef] [PubMed]

M. Litorja, C. L. Haynes, A. J. Haes, T. R. Jensen, and R. P. Van Duyne, “Surface-Enhanced Raman Scattering Detected Temperature Programmed Desorption: Optical Properties, Nanostructure, and Stability of Silver Film over SiO2 Nanosphere Surfaces,” J. Phys. Chem. B 105(29), 6907–6915 (2001).
[CrossRef]

Volkov, V. S.

R. B. Nielsen, I. Fernandez-Cuesta, A. Boltasseva, V. S. Volkov, S. I. Bozhevolnyi, A. Klukowska, and A. Kristensen, “Channel plasmon polariton propagation in nanoimprinted V-groove waveguides,” Opt. Lett. 33(23), 2800–2802 (2008).
[CrossRef] [PubMed]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440(7083), 508–511 (2006).
[CrossRef] [PubMed]

Wagner, P.

M. Hegner, P. Wagner, and G. Semenza, “Ultralarge atomically flat template-stripped Au surfaces for scanning probe microscopy,” Surf. Sci. 291(1-2), 39–46 (1993).
[CrossRef]

Wang, P.

I.-K. Ding, J. Zhu, W. Cai, S.-J. Moon, N. Cai, P. Wang, S. M. Zakeeruddin, M. Grätzel, M. L. Brongersma, Y. Cui, and M. D. McGehee, “Plasmonic dye-sensitized solar cells,” Adv. Energy Mater. 1(1), 52–57 (2011).
[CrossRef]

Wang, Y.

J. Yao, Z. Liu, Y. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321(5891), 930 (2008).
[CrossRef] [PubMed]

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[CrossRef]

West, J. L.

J. B. Jackson, S. L. Westcott, L. R. Hirsch, J. L. West, and N. J. Halas, “Controlling the surface enhanced Raman effect via the nanoshell geometry,” Appl. Phys. Lett. 82(2), 257–259 (2003).
[CrossRef]

Westcott, S. L.

J. B. Jackson, S. L. Westcott, L. R. Hirsch, J. L. West, and N. J. Halas, “Controlling the surface enhanced Raman effect via the nanoshell geometry,” Appl. Phys. Lett. 82(2), 257–259 (2003).
[CrossRef]

Willets, K. A.

K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58(1), 267–297 (2007).
[CrossRef] [PubMed]

Yao, J.

J. Yao, Z. Liu, Y. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321(5891), 930 (2008).
[CrossRef] [PubMed]

Yu, Z. H.

G. T. Boyd, Z. H. Yu, and Y. R. Shen, “Photoinduced luminescence from the noble metals and its enhancement on roughened surfaces,” Phys. Rev. B Condens. Matter 33(12), 7923–7936 (1986).
[CrossRef] [PubMed]

Zakeeruddin, S. M.

I.-K. Ding, J. Zhu, W. Cai, S.-J. Moon, N. Cai, P. Wang, S. M. Zakeeruddin, M. Grätzel, M. L. Brongersma, Y. Cui, and M. D. McGehee, “Plasmonic dye-sensitized solar cells,” Adv. Energy Mater. 1(1), 52–57 (2011).
[CrossRef]

Zhang, X.

J. Yao, Z. Liu, Y. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321(5891), 930 (2008).
[CrossRef] [PubMed]

Zhu, J.

I.-K. Ding, J. Zhu, W. Cai, S.-J. Moon, N. Cai, P. Wang, S. M. Zakeeruddin, M. Grätzel, M. L. Brongersma, Y. Cui, and M. D. McGehee, “Plasmonic dye-sensitized solar cells,” Adv. Energy Mater. 1(1), 52–57 (2011).
[CrossRef]

Adv. Energy Mater. (1)

I.-K. Ding, J. Zhu, W. Cai, S.-J. Moon, N. Cai, P. Wang, S. M. Zakeeruddin, M. Grätzel, M. L. Brongersma, Y. Cui, and M. D. McGehee, “Plasmonic dye-sensitized solar cells,” Adv. Energy Mater. 1(1), 52–57 (2011).
[CrossRef]

Ann. Phys. (1)

G. Mie, “Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen,” Ann. Phys. 330(3), 377–445 (1908).
[CrossRef]

Annu. Rev. Phys. Chem. (1)

K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58(1), 267–297 (2007).
[CrossRef] [PubMed]

Appl. Phys. Lett. (1)

J. B. Jackson, S. L. Westcott, L. R. Hirsch, J. L. West, and N. J. Halas, “Controlling the surface enhanced Raman effect via the nanoshell geometry,” Appl. Phys. Lett. 82(2), 257–259 (2003).
[CrossRef]

Chem. Phys. Lett. (1)

E. C. Le Ru and P. G. Etchegoin, “Rigorous justification of the |E|4 enhancement factor in Surface Enhanced Raman Spectroscopy,” Chem. Phys. Lett. 423(1-3), 63–66 (2006).
[CrossRef]

J. Chem. Phys. (1)

W. Mu, D.-K. Hwang, R. P. H. Chang, M. Sukharev, D. B. Tice, and J. B. Ketterson, “Surface-enhanced Raman scattering from silver-coated opals,” J. Chem. Phys. 134(12), 124312 (2011).
[CrossRef] [PubMed]

J. Electrochem. Soc. (1)

S. Ono, M. Saito, M. Ishiguro, and H. Asoh, “Controlling factor of self-ordering of anodic porous alumina,” J. Electrochem. Soc. 151(8), B473–B478 (2004).
[CrossRef]

J. Phys. Chem. B (2)

L. Baia, M. Baia, J. Popp, and S. Astilean, “Gold films deposited over regular arrays of polystyrene nanospheres as highly effective SERS substrates from visible to NIR,” J. Phys. Chem. B 110(47), 23982–23986 (2006).
[CrossRef] [PubMed]

M. Litorja, C. L. Haynes, A. J. Haes, T. R. Jensen, and R. P. Van Duyne, “Surface-Enhanced Raman Scattering Detected Temperature Programmed Desorption: Optical Properties, Nanostructure, and Stability of Silver Film over SiO2 Nanosphere Surfaces,” J. Phys. Chem. B 105(29), 6907–6915 (2001).
[CrossRef]

J. Phys. Chem. C (4)

P. Krohne-Nielsen, O. Albrektsen, S. Hassing, and P. Morgen, “Controlling interparticle gaps in self-organizing gold nanoparticles on templates made by a modified hard anodization technique,” J. Phys. Chem. C 114(8), 3459–3465 (2010).
[CrossRef]

C. Farcau and S. Astilean, “Mapping the SERS efficiency and hot-spots localization on gold film over nanospheres substrates,” J. Phys. Chem. C 114(27), 11717–11722 (2010).
[CrossRef]

P. Nielsen, P. Morgen, A. C. Simonsen, and O. Albrektsen, “Hemispherical shell nanostructures from metal-stripped embossed alumina on aluminum templates,” J. Phys. Chem. C 115(13), 5552–5560 (2011).
[CrossRef]

P. Nielsen, S. Hassing, O. Albrektsen, S. Foghmoes, and P. Morgen, “Fabrication of large-area self-organizing gold nanostructures with sub-10 nm gaps on a porous Al2O3 template for application as a SERS-substrate,” J. Phys. Chem. C 113(32), 14165–14171 (2009).
[CrossRef]

J. Raman Spectrosc. (1)

P. Nielsen, S. M. Novikov, P. Morgen, S. I. Bozhevolnyi, and O. Albrektsen, “Surface-enhanced Raman microscopy of hemispherical shells stripped from templates of anodized aluminum,” J. Raman Spectrosc. (to be published), doi:.
[CrossRef]

Nano Lett. (1)

A. Aubry, D. Y. Lei, A. I. Fernández-Domínguez, Y. Sonnefraud, S. A. Maier, and J. B. Pendry, “Plasmonic light-harvesting devices over the whole visible spectrum,” Nano Lett. 10(7), 2574–2579 (2010).
[CrossRef] [PubMed]

Nat. Mater. (3)

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[CrossRef] [PubMed]

W. Lee, R. Ji, U. Gösele, and K. Nielsch, “Fast fabrication of long-range ordered porous alumina membranes by hard anodization,” Nat. Mater. 5(9), 741–747 (2006).
[CrossRef] [PubMed]

D.-K. Lim, K.-S. Jeon, H. M. Kim, J.-M. Nam, and Y. D. Suh, “Nanogap-engineerable Raman-active nanodumbbells for single-molecule detection,” Nat. Mater. 9(1), 60–67 (2010).
[CrossRef] [PubMed]

Nature (1)

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440(7083), 508–511 (2006).
[CrossRef] [PubMed]

Opt. Express (3)

Opt. Lett. (1)

Phys. Rev. B (2)

A. Hohenau, J. R. Krenn, S. G. Rodrigo, L. Martin-Moreno, F. Garcia-Vidal, J. Beermann, and S. I. Bozhevolnyi, “Spectroscopy and nonlinear microscopy of gold nanoparticle arrays on gold films,” Phys. Rev. B 75(8), 085104 (2007).
[CrossRef]

P. B. Johnson and R. W. Christy, “Optical constants of noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

Phys. Rev. B Condens. Matter (1)

G. T. Boyd, Z. H. Yu, and Y. R. Shen, “Photoinduced luminescence from the noble metals and its enhancement on roughened surfaces,” Phys. Rev. B Condens. Matter 33(12), 7923–7936 (1986).
[CrossRef] [PubMed]

Phys. Rev. Lett. (4)

S. I. Bozhevolnyi, J. Beermann, and V. Coello, “Direct observation of localized second-harmonic enhancement in random metal nanostructures,” Phys. Rev. Lett. 90(19), 197403 (2003).
[CrossRef] [PubMed]

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[CrossRef]

A. Mooradian, “Photoluminescence of metals,” Phys. Rev. Lett. 22(5), 185–187 (1969).
[CrossRef]

R. D. Averitt, D. Sarkar, and N. J. Halas, “Plasmon Resonance Shifts of Au-Coated Au2S Nanoshells: Insight into Multicomponent Nanoparticle Growth,” Phys. Rev. Lett. 78(22), 4217–4220 (1997).
[CrossRef]

Science (2)

J. Yao, Z. Liu, Y. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321(5891), 930 (2008).
[CrossRef] [PubMed]

H. Masuda and K. Fukuda, “Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina,” Science 268(5216), 1466–1468 (1995).
[CrossRef] [PubMed]

Surf. Sci. (1)

M. Hegner, P. Wagner, and G. Semenza, “Ultralarge atomically flat template-stripped Au surfaces for scanning probe microscopy,” Surf. Sci. 291(1-2), 39–46 (1993).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

(a) After annealing and electropolishing Al foils are anodized in oxalic acid or phosphoric acid, and a porous oxide is formed. (b) Selective etching of the porous Al2O3 leaving behind hemispherical embossed hollows in the Al surface. (c) Au deposition of different thicknesses. (d) Sandwiching the samples in (c) between two pieces of microscope glass slide with Epoxy resin. (e) Mechanical stripping of the Au layers from the Al template surfaces. (f) The sample Au layers with hemispherical shells constitutes fresh substrates; ready for e. g. SERS, and the Al templates can be re-used in step (b). Shells stripped from the same type of template have the same outer radius of curvature regardless of Au thickness.

Fig. 2
Fig. 2

(a) SEM of hexagonally ordered oxide pores prior to selective etching. (b) Cross-sectional SEM of aligned pores terminating in the bottom with a hemispherically shaped barrier oxide responsible for embossing the subjacent Al. (c) The embossed hemispherical hollows in the template formed after selective etching of the Al2O3. Protruding apexes and saddle points are marked to point out the template structures responsible for the creation of deep and sharp grooves and crevices in the Au film stripped from the template at a later stage in the fabrication. The yellow line marks the path of the AFM line scans [inset Fig. 5(b)]

Fig. 3
Fig. 3

SEM of 30° tilted samples with hexagonally ordered, inter-connected hemispherical Au shells (L* = 300 nm) stripped from templates with an average interpore distances of (a) D = 270 nm and b) D = 450nm. (c) The backside of an Au flap formed by cracking a sample in two. It is clearly inferred how the film is comprised of inter-connected hemispheres. (d) High-angle SEM of the sharp and well-defined grooves at the Au inter-sphere junctions. (e) 3D AFM visualization of a hexagonal cell of hemispherical shells with D = 450 nm. x:y:z scale 1:1:1.

Fig. 4
Fig. 4

(a)-(d) SEM images of templates with D = 450 nm where Au thicknesses of (a) L* = 20 nm, (b) L* = 40 nm, (c) L* = 60 nm, and (d) L* = 300 nm have been deposited. (e)-(h) Hemispherical shells stripped from samples in (a)-(d), respectively. The 20 nm film clearly suffers from cracks in the Au film, but when thicker Au layers are deposited, the film is crack-free and a grainier Au surface forms. This does, however, not affect the smooth stripped surface, or the radius of curvature, as is evident in (g) and (h).

Fig. 5
Fig. 5

Linear reflection spectroscopy of Au hemispherical shells with different thicknesses stripped from templates with (a) D = 270 nm and (d) D = 450 nm. Full Mie calculations of the extinction spectra of spherical Au core-shells with fixed outer radius (r2 = 135 nm) and an ncore = 1.519 with various shell thicknesses are shown in (b) along with (c) corresponding calculations of the quadrupole moment. The inset in (b) shows AFM line scans and spheres fitted into the hemispherical hollows. In (d), the red line marks the excitation λ used during the investigations with TPL-SOM. (e) Qext calculations of spherical core-shell quadrupole moments with r2 = 205 nm. (f) The λ of maximum extinction for the quadrupole moment calculated for spherical core-shells with different r2 and shell thicknesses, L. The dashed lines in (a) and (d) mark the measured spectral positions of the resonances for stripped shells with L* = 40 nm and L* = 300 nm. The lines are linked into the other subfigures as a guide to the eye.

Fig. 6
Fig. 6

After stripping smooth hemispherical Au shells with a nominal thickness L* = 300 nm and outer curvature radius of r, from the templates with hemispherical hollows, an additional Au layer is deposited to form a rougher surface with small grains and islands.

Fig. 7
Fig. 7

SEM images recorded on stripped hemispherical shells with D = 270 nm on which different thicknesses of Au (LR) have been deposited in order to increase roughness, increase outer radius of curvature and unsharpen the gaps at the inter-sphere junctions. (a) LR = 25 nm. (b) LR = 50 nm. (c) LR = 100 nm. (d) LR = 300 nm. Colors are correlated with the graphs in (e) Linear reflection spectroscopy measurements of samples with different roughnesses according to Fig. 7(a-d). The spectra are normalized, to emphasize the degrading LSPR quality factor of samples with post-deposited Au compared to the smooth stripped hemispherical shell. The inset illustrates the very small red-shift probably caused by partial coverage of the inter-sphere gaps or small changes in outer hemisphere radius of curvature.

Fig. 8
Fig. 8

(a) Linear reflection image obtained at a wavelength of 725 nm and a laser power of 0.5 mW on the D = 450 nm sample with shell thickness L* = 40 nm along with (b) corresponding TPL image. (c) From the simultaneously recorded cross-sectional line scans (indicated dotted lines) in the linear reflection and TPL image, it is inferred, that the two images are approximately of opposite contrast.

Fig. 9
Fig. 9

(a) Scan-area averaged FEs at λ = 725 nm calculated by comparing the magnitude of the measured TPL signal from different thicknesses of hemispherical shells stripped from the D = 450 nm templates with the TPL signal from a flat Au reference using Eq. (1). (b) FEs as a function of wavelength for the (D = 450 nm, L* = 40 nm) sample.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

α= TP L struct P ref 2 A ref TP L ref P struct 2 A struct ,

Metrics