Abstract

Ultrasensitive detectors based on localized surface plasmon resonance refractive index sensing are capable of detecting very low numbers of molecules for biochemical analysis. It is well known that the sensitivity of such sensors crucially depends on the spatial distribution of the electromagnetic field around the metal surface. However, the precise connection between local field enhancement and resonance shift is seldom discussed. Using a quasistatic approximation, we developed a model that relates the sensitivity of a nanoplasmonic resonator to the local field in which the analyte is placed. The model, corroborated by finite-difference time-domain simulations, may be used to estimate the magnitude of the shift as a function of the properties of the sensed object – permittivity and volume – and its location on the surface of the resonator. It requires only a computation of the resonant field induced by the metal structure and is therefore suitable for numerical optimization of nanoplasmonic sensors.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Englebienne, “Use of colloidal gold surface plasmon resonance peak shift to infer affinity constants from the interactions between protein antigens and antibodies specific for single or miltiple epitopes,” Analyst 123, 1599–1603 (1998).
    [CrossRef] [PubMed]
  2. T. Okamoto, I. Yamaguchi, and T. Kobayashi, “Local plasmon sensor with gold colloid monolayers deposited upon glass substrates,” Opt. Lett. 25, 372–374 (2000).
    [CrossRef]
  3. M. D. Malinsky, K. L. Kelly, G. C. Schatz, and R. P. Van Duyne, “Chain length dependence and sensing capabilities of the localized surface plasmon resonance of silver nanoparticles chemically modified with alkanethiol self-assembled monolayers,” J. Am. Chem. Soc. 123, 1471–1482 (2001).
    [CrossRef]
  4. N. Nath and A. Chilkoti, “A colorimetric gold nanoparticle sensor to interrogate biomolecular interactions in real time on a surface,” Anal. Chem. 74, 504–509 (2002).
    [CrossRef] [PubMed]
  5. A. J. Haes and R. P. Van Duyne, “A nanoscale optical biosensor: Sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles,” J. Am. Chem. Soc. 124, 10596–10604 (2002).
    [CrossRef] [PubMed]
  6. H. Xu and M. Käll, “Modeling the optical response of nanoparticle-based aurface plasmon resonance sensors,” Sens. Actuators B Chem. 87, 244–249 (2002).
    [CrossRef]
  7. J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
    [CrossRef] [PubMed]
  8. J. Homola, Surface plasmon resonance based sensors, Springer Series on Chemical Sensors and Biosensors (Springer-Verlag, Berlin-Heidelberg-New York, 2006).
    [CrossRef]
  9. H. Xu, J. Aizpurua, M. Käll, and P. Apell, “Electromagnetic contributions to single-molecule sensitivity in surface-enhanced raman scattering,” Phys. Rev. E 62, 4318–4324 (2000).
    [CrossRef]
  10. H. Xu, E. J. Bjerneld, M. Käll, and L. Börjesson, “Spectroscopy of single hemoglobin molecules by surface enhanced raman scattering,” Phys. Rev. Lett. 83, 4357–4360 (1999).
    [CrossRef]
  11. L. Rodríguez-Lorenzo, R. A. Álvarez-Puebla, I. Pastoriza-Santos, S. Mazzucco, O. Stéphan, M. Kociak, L. M. Liz-Marzán, and F. J. G. de Abajo, “Zeptomol detection through controlled ultrasensitive surface-enhanced Raman scattering,” J. Am. Chem. Soc. 131, 4616–4618 (2009).
    [CrossRef] [PubMed]
  12. T. Dadosh, J. Sperling, G. W. Bryant, R. Breslow, T. Shegai, M. Dyshel, G. Haran, and I. Bar-Joseph, “Plasmonic control of the shape of the raman spectrum of a single molecule in a silver nanoparticle dimer,” ACS Nano 3, 1988–1994 (2009).
    [CrossRef] [PubMed]
  13. D.-K. Lim, K.-S. Jeon, H. M. Kim, J.-M. Nam, and Y. D. Suh, “Nanogap-engineerable Raman-active nan-odumbbells for single-molecule detection,” Nat. Mater. 9, 60–67 (2010).
    [CrossRef]
  14. A. Unger, U. Rietzler, R. Berger, and M. Kreiter, “Sensitivity of crescent-shaped metal nanoparticles to attachment of dielectric colloids,” Nano Lett. 9, 2311–2315 (2009).
    [CrossRef] [PubMed]
  15. T. Sannomiya, C. Hafner, and J. Voros, “In situ sensing of single binding events by localized surface plasmon resonance,” Nano Lett. 8, 3450–2455 (2008).
    [CrossRef] [PubMed]
  16. T. Davis, D. Gómez, and K. Vernon, “Interaction of molecules with localized surface plasmons in metallic nanoparticles,” Phys. Rev. B 81, 045423 (2010).
    [CrossRef]
  17. T. J. Davis, K. C. Vernon, and D. E. Gómez, “Designing plasmonic systems using optical coupling between nanoparticles,” Phys. Rev. B 79, 155423 (2009).
    [CrossRef]
  18. J. D. Jackson, Classical Electrodynamics, 3rd ed. (John Wiley and Sons, Inc., New York, 1999).
  19. A. Pinchuk and G. Schatz, “Anisotropic polarizability tensor of a dimer of nanospheres in the vicinity of a plane substrate,” Nanotechnology 16, 2209–2217 (2005).
    [CrossRef] [PubMed]
  20. B. Rolly, B. Stout, and N. Bonod, “Metallic dimers: When bonding transverse modes shine light,” Phys. Rev. B 84, 125420 (2011).
    [CrossRef]
  21. F. Wang and Y. R. Shen, “General properties of local plasmons in metal nanostructures,” Phys. Rev. Lett. 97, 206806 (2006).
    [CrossRef] [PubMed]
  22. P. Johnson and R. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
    [CrossRef]
  23. O. Kedem, A. B. Tesler, A. Vaskevich, and I. Rubinstein, “Sensitivity and optimization of localized surface plasmon resonance transducers,” ACS Nano 5, 748–760 (2011).
    [CrossRef] [PubMed]
  24. J. R. Zurita-Sánchez, “Quasi-static electromagnetic fields created by an electric dipole in the vicinity of a dielectric sphere: method of images,” Rev. Mex. Fis. 55, 443–449 (2009).

2011 (2)

B. Rolly, B. Stout, and N. Bonod, “Metallic dimers: When bonding transverse modes shine light,” Phys. Rev. B 84, 125420 (2011).
[CrossRef]

O. Kedem, A. B. Tesler, A. Vaskevich, and I. Rubinstein, “Sensitivity and optimization of localized surface plasmon resonance transducers,” ACS Nano 5, 748–760 (2011).
[CrossRef] [PubMed]

2010 (2)

D.-K. Lim, K.-S. Jeon, H. M. Kim, J.-M. Nam, and Y. D. Suh, “Nanogap-engineerable Raman-active nan-odumbbells for single-molecule detection,” Nat. Mater. 9, 60–67 (2010).
[CrossRef]

T. Davis, D. Gómez, and K. Vernon, “Interaction of molecules with localized surface plasmons in metallic nanoparticles,” Phys. Rev. B 81, 045423 (2010).
[CrossRef]

2009 (5)

T. J. Davis, K. C. Vernon, and D. E. Gómez, “Designing plasmonic systems using optical coupling between nanoparticles,” Phys. Rev. B 79, 155423 (2009).
[CrossRef]

A. Unger, U. Rietzler, R. Berger, and M. Kreiter, “Sensitivity of crescent-shaped metal nanoparticles to attachment of dielectric colloids,” Nano Lett. 9, 2311–2315 (2009).
[CrossRef] [PubMed]

J. R. Zurita-Sánchez, “Quasi-static electromagnetic fields created by an electric dipole in the vicinity of a dielectric sphere: method of images,” Rev. Mex. Fis. 55, 443–449 (2009).

L. Rodríguez-Lorenzo, R. A. Álvarez-Puebla, I. Pastoriza-Santos, S. Mazzucco, O. Stéphan, M. Kociak, L. M. Liz-Marzán, and F. J. G. de Abajo, “Zeptomol detection through controlled ultrasensitive surface-enhanced Raman scattering,” J. Am. Chem. Soc. 131, 4616–4618 (2009).
[CrossRef] [PubMed]

T. Dadosh, J. Sperling, G. W. Bryant, R. Breslow, T. Shegai, M. Dyshel, G. Haran, and I. Bar-Joseph, “Plasmonic control of the shape of the raman spectrum of a single molecule in a silver nanoparticle dimer,” ACS Nano 3, 1988–1994 (2009).
[CrossRef] [PubMed]

2008 (2)

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[CrossRef] [PubMed]

T. Sannomiya, C. Hafner, and J. Voros, “In situ sensing of single binding events by localized surface plasmon resonance,” Nano Lett. 8, 3450–2455 (2008).
[CrossRef] [PubMed]

2006 (1)

F. Wang and Y. R. Shen, “General properties of local plasmons in metal nanostructures,” Phys. Rev. Lett. 97, 206806 (2006).
[CrossRef] [PubMed]

2005 (1)

A. Pinchuk and G. Schatz, “Anisotropic polarizability tensor of a dimer of nanospheres in the vicinity of a plane substrate,” Nanotechnology 16, 2209–2217 (2005).
[CrossRef] [PubMed]

2002 (3)

N. Nath and A. Chilkoti, “A colorimetric gold nanoparticle sensor to interrogate biomolecular interactions in real time on a surface,” Anal. Chem. 74, 504–509 (2002).
[CrossRef] [PubMed]

A. J. Haes and R. P. Van Duyne, “A nanoscale optical biosensor: Sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles,” J. Am. Chem. Soc. 124, 10596–10604 (2002).
[CrossRef] [PubMed]

H. Xu and M. Käll, “Modeling the optical response of nanoparticle-based aurface plasmon resonance sensors,” Sens. Actuators B Chem. 87, 244–249 (2002).
[CrossRef]

2001 (1)

M. D. Malinsky, K. L. Kelly, G. C. Schatz, and R. P. Van Duyne, “Chain length dependence and sensing capabilities of the localized surface plasmon resonance of silver nanoparticles chemically modified with alkanethiol self-assembled monolayers,” J. Am. Chem. Soc. 123, 1471–1482 (2001).
[CrossRef]

2000 (2)

T. Okamoto, I. Yamaguchi, and T. Kobayashi, “Local plasmon sensor with gold colloid monolayers deposited upon glass substrates,” Opt. Lett. 25, 372–374 (2000).
[CrossRef]

H. Xu, J. Aizpurua, M. Käll, and P. Apell, “Electromagnetic contributions to single-molecule sensitivity in surface-enhanced raman scattering,” Phys. Rev. E 62, 4318–4324 (2000).
[CrossRef]

1999 (1)

H. Xu, E. J. Bjerneld, M. Käll, and L. Börjesson, “Spectroscopy of single hemoglobin molecules by surface enhanced raman scattering,” Phys. Rev. Lett. 83, 4357–4360 (1999).
[CrossRef]

1998 (1)

P. Englebienne, “Use of colloidal gold surface plasmon resonance peak shift to infer affinity constants from the interactions between protein antigens and antibodies specific for single or miltiple epitopes,” Analyst 123, 1599–1603 (1998).
[CrossRef] [PubMed]

1972 (1)

P. Johnson and R. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

Aizpurua, J.

H. Xu, J. Aizpurua, M. Käll, and P. Apell, “Electromagnetic contributions to single-molecule sensitivity in surface-enhanced raman scattering,” Phys. Rev. E 62, 4318–4324 (2000).
[CrossRef]

Álvarez-Puebla, R. A.

L. Rodríguez-Lorenzo, R. A. Álvarez-Puebla, I. Pastoriza-Santos, S. Mazzucco, O. Stéphan, M. Kociak, L. M. Liz-Marzán, and F. J. G. de Abajo, “Zeptomol detection through controlled ultrasensitive surface-enhanced Raman scattering,” J. Am. Chem. Soc. 131, 4616–4618 (2009).
[CrossRef] [PubMed]

Anker, J. N.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[CrossRef] [PubMed]

Apell, P.

H. Xu, J. Aizpurua, M. Käll, and P. Apell, “Electromagnetic contributions to single-molecule sensitivity in surface-enhanced raman scattering,” Phys. Rev. E 62, 4318–4324 (2000).
[CrossRef]

Bar-Joseph, I.

T. Dadosh, J. Sperling, G. W. Bryant, R. Breslow, T. Shegai, M. Dyshel, G. Haran, and I. Bar-Joseph, “Plasmonic control of the shape of the raman spectrum of a single molecule in a silver nanoparticle dimer,” ACS Nano 3, 1988–1994 (2009).
[CrossRef] [PubMed]

Berger, R.

A. Unger, U. Rietzler, R. Berger, and M. Kreiter, “Sensitivity of crescent-shaped metal nanoparticles to attachment of dielectric colloids,” Nano Lett. 9, 2311–2315 (2009).
[CrossRef] [PubMed]

Bjerneld, E. J.

H. Xu, E. J. Bjerneld, M. Käll, and L. Börjesson, “Spectroscopy of single hemoglobin molecules by surface enhanced raman scattering,” Phys. Rev. Lett. 83, 4357–4360 (1999).
[CrossRef]

Bonod, N.

B. Rolly, B. Stout, and N. Bonod, “Metallic dimers: When bonding transverse modes shine light,” Phys. Rev. B 84, 125420 (2011).
[CrossRef]

Börjesson, L.

H. Xu, E. J. Bjerneld, M. Käll, and L. Börjesson, “Spectroscopy of single hemoglobin molecules by surface enhanced raman scattering,” Phys. Rev. Lett. 83, 4357–4360 (1999).
[CrossRef]

Breslow, R.

T. Dadosh, J. Sperling, G. W. Bryant, R. Breslow, T. Shegai, M. Dyshel, G. Haran, and I. Bar-Joseph, “Plasmonic control of the shape of the raman spectrum of a single molecule in a silver nanoparticle dimer,” ACS Nano 3, 1988–1994 (2009).
[CrossRef] [PubMed]

Bryant, G. W.

T. Dadosh, J. Sperling, G. W. Bryant, R. Breslow, T. Shegai, M. Dyshel, G. Haran, and I. Bar-Joseph, “Plasmonic control of the shape of the raman spectrum of a single molecule in a silver nanoparticle dimer,” ACS Nano 3, 1988–1994 (2009).
[CrossRef] [PubMed]

Chilkoti, A.

N. Nath and A. Chilkoti, “A colorimetric gold nanoparticle sensor to interrogate biomolecular interactions in real time on a surface,” Anal. Chem. 74, 504–509 (2002).
[CrossRef] [PubMed]

Christy, R.

P. Johnson and R. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

Dadosh, T.

T. Dadosh, J. Sperling, G. W. Bryant, R. Breslow, T. Shegai, M. Dyshel, G. Haran, and I. Bar-Joseph, “Plasmonic control of the shape of the raman spectrum of a single molecule in a silver nanoparticle dimer,” ACS Nano 3, 1988–1994 (2009).
[CrossRef] [PubMed]

Davis, T.

T. Davis, D. Gómez, and K. Vernon, “Interaction of molecules with localized surface plasmons in metallic nanoparticles,” Phys. Rev. B 81, 045423 (2010).
[CrossRef]

Davis, T. J.

T. J. Davis, K. C. Vernon, and D. E. Gómez, “Designing plasmonic systems using optical coupling between nanoparticles,” Phys. Rev. B 79, 155423 (2009).
[CrossRef]

de Abajo, F. J. G.

L. Rodríguez-Lorenzo, R. A. Álvarez-Puebla, I. Pastoriza-Santos, S. Mazzucco, O. Stéphan, M. Kociak, L. M. Liz-Marzán, and F. J. G. de Abajo, “Zeptomol detection through controlled ultrasensitive surface-enhanced Raman scattering,” J. Am. Chem. Soc. 131, 4616–4618 (2009).
[CrossRef] [PubMed]

Dyshel, M.

T. Dadosh, J. Sperling, G. W. Bryant, R. Breslow, T. Shegai, M. Dyshel, G. Haran, and I. Bar-Joseph, “Plasmonic control of the shape of the raman spectrum of a single molecule in a silver nanoparticle dimer,” ACS Nano 3, 1988–1994 (2009).
[CrossRef] [PubMed]

Englebienne, P.

P. Englebienne, “Use of colloidal gold surface plasmon resonance peak shift to infer affinity constants from the interactions between protein antigens and antibodies specific for single or miltiple epitopes,” Analyst 123, 1599–1603 (1998).
[CrossRef] [PubMed]

Gómez, D.

T. Davis, D. Gómez, and K. Vernon, “Interaction of molecules with localized surface plasmons in metallic nanoparticles,” Phys. Rev. B 81, 045423 (2010).
[CrossRef]

Gómez, D. E.

T. J. Davis, K. C. Vernon, and D. E. Gómez, “Designing plasmonic systems using optical coupling between nanoparticles,” Phys. Rev. B 79, 155423 (2009).
[CrossRef]

Haes, A. J.

A. J. Haes and R. P. Van Duyne, “A nanoscale optical biosensor: Sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles,” J. Am. Chem. Soc. 124, 10596–10604 (2002).
[CrossRef] [PubMed]

Hafner, C.

T. Sannomiya, C. Hafner, and J. Voros, “In situ sensing of single binding events by localized surface plasmon resonance,” Nano Lett. 8, 3450–2455 (2008).
[CrossRef] [PubMed]

Hall, W. P.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[CrossRef] [PubMed]

Haran, G.

T. Dadosh, J. Sperling, G. W. Bryant, R. Breslow, T. Shegai, M. Dyshel, G. Haran, and I. Bar-Joseph, “Plasmonic control of the shape of the raman spectrum of a single molecule in a silver nanoparticle dimer,” ACS Nano 3, 1988–1994 (2009).
[CrossRef] [PubMed]

Homola, J.

J. Homola, Surface plasmon resonance based sensors, Springer Series on Chemical Sensors and Biosensors (Springer-Verlag, Berlin-Heidelberg-New York, 2006).
[CrossRef]

Jackson, J. D.

J. D. Jackson, Classical Electrodynamics, 3rd ed. (John Wiley and Sons, Inc., New York, 1999).

Jeon, K.-S.

D.-K. Lim, K.-S. Jeon, H. M. Kim, J.-M. Nam, and Y. D. Suh, “Nanogap-engineerable Raman-active nan-odumbbells for single-molecule detection,” Nat. Mater. 9, 60–67 (2010).
[CrossRef]

Johnson, P.

P. Johnson and R. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

Käll, M.

H. Xu and M. Käll, “Modeling the optical response of nanoparticle-based aurface plasmon resonance sensors,” Sens. Actuators B Chem. 87, 244–249 (2002).
[CrossRef]

H. Xu, J. Aizpurua, M. Käll, and P. Apell, “Electromagnetic contributions to single-molecule sensitivity in surface-enhanced raman scattering,” Phys. Rev. E 62, 4318–4324 (2000).
[CrossRef]

H. Xu, E. J. Bjerneld, M. Käll, and L. Börjesson, “Spectroscopy of single hemoglobin molecules by surface enhanced raman scattering,” Phys. Rev. Lett. 83, 4357–4360 (1999).
[CrossRef]

Kedem, O.

O. Kedem, A. B. Tesler, A. Vaskevich, and I. Rubinstein, “Sensitivity and optimization of localized surface plasmon resonance transducers,” ACS Nano 5, 748–760 (2011).
[CrossRef] [PubMed]

Kelly, K. L.

M. D. Malinsky, K. L. Kelly, G. C. Schatz, and R. P. Van Duyne, “Chain length dependence and sensing capabilities of the localized surface plasmon resonance of silver nanoparticles chemically modified with alkanethiol self-assembled monolayers,” J. Am. Chem. Soc. 123, 1471–1482 (2001).
[CrossRef]

Kim, H. M.

D.-K. Lim, K.-S. Jeon, H. M. Kim, J.-M. Nam, and Y. D. Suh, “Nanogap-engineerable Raman-active nan-odumbbells for single-molecule detection,” Nat. Mater. 9, 60–67 (2010).
[CrossRef]

Kobayashi, T.

Kociak, M.

L. Rodríguez-Lorenzo, R. A. Álvarez-Puebla, I. Pastoriza-Santos, S. Mazzucco, O. Stéphan, M. Kociak, L. M. Liz-Marzán, and F. J. G. de Abajo, “Zeptomol detection through controlled ultrasensitive surface-enhanced Raman scattering,” J. Am. Chem. Soc. 131, 4616–4618 (2009).
[CrossRef] [PubMed]

Kreiter, M.

A. Unger, U. Rietzler, R. Berger, and M. Kreiter, “Sensitivity of crescent-shaped metal nanoparticles to attachment of dielectric colloids,” Nano Lett. 9, 2311–2315 (2009).
[CrossRef] [PubMed]

Lim, D.-K.

D.-K. Lim, K.-S. Jeon, H. M. Kim, J.-M. Nam, and Y. D. Suh, “Nanogap-engineerable Raman-active nan-odumbbells for single-molecule detection,” Nat. Mater. 9, 60–67 (2010).
[CrossRef]

Liz-Marzán, L. M.

L. Rodríguez-Lorenzo, R. A. Álvarez-Puebla, I. Pastoriza-Santos, S. Mazzucco, O. Stéphan, M. Kociak, L. M. Liz-Marzán, and F. J. G. de Abajo, “Zeptomol detection through controlled ultrasensitive surface-enhanced Raman scattering,” J. Am. Chem. Soc. 131, 4616–4618 (2009).
[CrossRef] [PubMed]

Lyandres, O.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[CrossRef] [PubMed]

Malinsky, M. D.

M. D. Malinsky, K. L. Kelly, G. C. Schatz, and R. P. Van Duyne, “Chain length dependence and sensing capabilities of the localized surface plasmon resonance of silver nanoparticles chemically modified with alkanethiol self-assembled monolayers,” J. Am. Chem. Soc. 123, 1471–1482 (2001).
[CrossRef]

Mazzucco, S.

L. Rodríguez-Lorenzo, R. A. Álvarez-Puebla, I. Pastoriza-Santos, S. Mazzucco, O. Stéphan, M. Kociak, L. M. Liz-Marzán, and F. J. G. de Abajo, “Zeptomol detection through controlled ultrasensitive surface-enhanced Raman scattering,” J. Am. Chem. Soc. 131, 4616–4618 (2009).
[CrossRef] [PubMed]

Nam, J.-M.

D.-K. Lim, K.-S. Jeon, H. M. Kim, J.-M. Nam, and Y. D. Suh, “Nanogap-engineerable Raman-active nan-odumbbells for single-molecule detection,” Nat. Mater. 9, 60–67 (2010).
[CrossRef]

Nath, N.

N. Nath and A. Chilkoti, “A colorimetric gold nanoparticle sensor to interrogate biomolecular interactions in real time on a surface,” Anal. Chem. 74, 504–509 (2002).
[CrossRef] [PubMed]

Okamoto, T.

Pastoriza-Santos, I.

L. Rodríguez-Lorenzo, R. A. Álvarez-Puebla, I. Pastoriza-Santos, S. Mazzucco, O. Stéphan, M. Kociak, L. M. Liz-Marzán, and F. J. G. de Abajo, “Zeptomol detection through controlled ultrasensitive surface-enhanced Raman scattering,” J. Am. Chem. Soc. 131, 4616–4618 (2009).
[CrossRef] [PubMed]

Pinchuk, A.

A. Pinchuk and G. Schatz, “Anisotropic polarizability tensor of a dimer of nanospheres in the vicinity of a plane substrate,” Nanotechnology 16, 2209–2217 (2005).
[CrossRef] [PubMed]

Rietzler, U.

A. Unger, U. Rietzler, R. Berger, and M. Kreiter, “Sensitivity of crescent-shaped metal nanoparticles to attachment of dielectric colloids,” Nano Lett. 9, 2311–2315 (2009).
[CrossRef] [PubMed]

Rodríguez-Lorenzo, L.

L. Rodríguez-Lorenzo, R. A. Álvarez-Puebla, I. Pastoriza-Santos, S. Mazzucco, O. Stéphan, M. Kociak, L. M. Liz-Marzán, and F. J. G. de Abajo, “Zeptomol detection through controlled ultrasensitive surface-enhanced Raman scattering,” J. Am. Chem. Soc. 131, 4616–4618 (2009).
[CrossRef] [PubMed]

Rolly, B.

B. Rolly, B. Stout, and N. Bonod, “Metallic dimers: When bonding transverse modes shine light,” Phys. Rev. B 84, 125420 (2011).
[CrossRef]

Rubinstein, I.

O. Kedem, A. B. Tesler, A. Vaskevich, and I. Rubinstein, “Sensitivity and optimization of localized surface plasmon resonance transducers,” ACS Nano 5, 748–760 (2011).
[CrossRef] [PubMed]

Sannomiya, T.

T. Sannomiya, C. Hafner, and J. Voros, “In situ sensing of single binding events by localized surface plasmon resonance,” Nano Lett. 8, 3450–2455 (2008).
[CrossRef] [PubMed]

Schatz, G.

A. Pinchuk and G. Schatz, “Anisotropic polarizability tensor of a dimer of nanospheres in the vicinity of a plane substrate,” Nanotechnology 16, 2209–2217 (2005).
[CrossRef] [PubMed]

Schatz, G. C.

M. D. Malinsky, K. L. Kelly, G. C. Schatz, and R. P. Van Duyne, “Chain length dependence and sensing capabilities of the localized surface plasmon resonance of silver nanoparticles chemically modified with alkanethiol self-assembled monolayers,” J. Am. Chem. Soc. 123, 1471–1482 (2001).
[CrossRef]

Shah, N. C.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[CrossRef] [PubMed]

Shegai, T.

T. Dadosh, J. Sperling, G. W. Bryant, R. Breslow, T. Shegai, M. Dyshel, G. Haran, and I. Bar-Joseph, “Plasmonic control of the shape of the raman spectrum of a single molecule in a silver nanoparticle dimer,” ACS Nano 3, 1988–1994 (2009).
[CrossRef] [PubMed]

Shen, Y. R.

F. Wang and Y. R. Shen, “General properties of local plasmons in metal nanostructures,” Phys. Rev. Lett. 97, 206806 (2006).
[CrossRef] [PubMed]

Sperling, J.

T. Dadosh, J. Sperling, G. W. Bryant, R. Breslow, T. Shegai, M. Dyshel, G. Haran, and I. Bar-Joseph, “Plasmonic control of the shape of the raman spectrum of a single molecule in a silver nanoparticle dimer,” ACS Nano 3, 1988–1994 (2009).
[CrossRef] [PubMed]

Stéphan, O.

L. Rodríguez-Lorenzo, R. A. Álvarez-Puebla, I. Pastoriza-Santos, S. Mazzucco, O. Stéphan, M. Kociak, L. M. Liz-Marzán, and F. J. G. de Abajo, “Zeptomol detection through controlled ultrasensitive surface-enhanced Raman scattering,” J. Am. Chem. Soc. 131, 4616–4618 (2009).
[CrossRef] [PubMed]

Stout, B.

B. Rolly, B. Stout, and N. Bonod, “Metallic dimers: When bonding transverse modes shine light,” Phys. Rev. B 84, 125420 (2011).
[CrossRef]

Suh, Y. D.

D.-K. Lim, K.-S. Jeon, H. M. Kim, J.-M. Nam, and Y. D. Suh, “Nanogap-engineerable Raman-active nan-odumbbells for single-molecule detection,” Nat. Mater. 9, 60–67 (2010).
[CrossRef]

Tesler, A. B.

O. Kedem, A. B. Tesler, A. Vaskevich, and I. Rubinstein, “Sensitivity and optimization of localized surface plasmon resonance transducers,” ACS Nano 5, 748–760 (2011).
[CrossRef] [PubMed]

Unger, A.

A. Unger, U. Rietzler, R. Berger, and M. Kreiter, “Sensitivity of crescent-shaped metal nanoparticles to attachment of dielectric colloids,” Nano Lett. 9, 2311–2315 (2009).
[CrossRef] [PubMed]

Van Duyne, R. P.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[CrossRef] [PubMed]

A. J. Haes and R. P. Van Duyne, “A nanoscale optical biosensor: Sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles,” J. Am. Chem. Soc. 124, 10596–10604 (2002).
[CrossRef] [PubMed]

M. D. Malinsky, K. L. Kelly, G. C. Schatz, and R. P. Van Duyne, “Chain length dependence and sensing capabilities of the localized surface plasmon resonance of silver nanoparticles chemically modified with alkanethiol self-assembled monolayers,” J. Am. Chem. Soc. 123, 1471–1482 (2001).
[CrossRef]

Vaskevich, A.

O. Kedem, A. B. Tesler, A. Vaskevich, and I. Rubinstein, “Sensitivity and optimization of localized surface plasmon resonance transducers,” ACS Nano 5, 748–760 (2011).
[CrossRef] [PubMed]

Vernon, K.

T. Davis, D. Gómez, and K. Vernon, “Interaction of molecules with localized surface plasmons in metallic nanoparticles,” Phys. Rev. B 81, 045423 (2010).
[CrossRef]

Vernon, K. C.

T. J. Davis, K. C. Vernon, and D. E. Gómez, “Designing plasmonic systems using optical coupling between nanoparticles,” Phys. Rev. B 79, 155423 (2009).
[CrossRef]

Voros, J.

T. Sannomiya, C. Hafner, and J. Voros, “In situ sensing of single binding events by localized surface plasmon resonance,” Nano Lett. 8, 3450–2455 (2008).
[CrossRef] [PubMed]

Wang, F.

F. Wang and Y. R. Shen, “General properties of local plasmons in metal nanostructures,” Phys. Rev. Lett. 97, 206806 (2006).
[CrossRef] [PubMed]

Xu, H.

H. Xu and M. Käll, “Modeling the optical response of nanoparticle-based aurface plasmon resonance sensors,” Sens. Actuators B Chem. 87, 244–249 (2002).
[CrossRef]

H. Xu, J. Aizpurua, M. Käll, and P. Apell, “Electromagnetic contributions to single-molecule sensitivity in surface-enhanced raman scattering,” Phys. Rev. E 62, 4318–4324 (2000).
[CrossRef]

H. Xu, E. J. Bjerneld, M. Käll, and L. Börjesson, “Spectroscopy of single hemoglobin molecules by surface enhanced raman scattering,” Phys. Rev. Lett. 83, 4357–4360 (1999).
[CrossRef]

Yamaguchi, I.

Zhao, J.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[CrossRef] [PubMed]

Zurita-Sánchez, J. R.

J. R. Zurita-Sánchez, “Quasi-static electromagnetic fields created by an electric dipole in the vicinity of a dielectric sphere: method of images,” Rev. Mex. Fis. 55, 443–449 (2009).

ACS Nano (2)

T. Dadosh, J. Sperling, G. W. Bryant, R. Breslow, T. Shegai, M. Dyshel, G. Haran, and I. Bar-Joseph, “Plasmonic control of the shape of the raman spectrum of a single molecule in a silver nanoparticle dimer,” ACS Nano 3, 1988–1994 (2009).
[CrossRef] [PubMed]

O. Kedem, A. B. Tesler, A. Vaskevich, and I. Rubinstein, “Sensitivity and optimization of localized surface plasmon resonance transducers,” ACS Nano 5, 748–760 (2011).
[CrossRef] [PubMed]

Anal. Chem. (1)

N. Nath and A. Chilkoti, “A colorimetric gold nanoparticle sensor to interrogate biomolecular interactions in real time on a surface,” Anal. Chem. 74, 504–509 (2002).
[CrossRef] [PubMed]

Analyst (1)

P. Englebienne, “Use of colloidal gold surface plasmon resonance peak shift to infer affinity constants from the interactions between protein antigens and antibodies specific for single or miltiple epitopes,” Analyst 123, 1599–1603 (1998).
[CrossRef] [PubMed]

J. Am. Chem. Soc. (3)

A. J. Haes and R. P. Van Duyne, “A nanoscale optical biosensor: Sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles,” J. Am. Chem. Soc. 124, 10596–10604 (2002).
[CrossRef] [PubMed]

M. D. Malinsky, K. L. Kelly, G. C. Schatz, and R. P. Van Duyne, “Chain length dependence and sensing capabilities of the localized surface plasmon resonance of silver nanoparticles chemically modified with alkanethiol self-assembled monolayers,” J. Am. Chem. Soc. 123, 1471–1482 (2001).
[CrossRef]

L. Rodríguez-Lorenzo, R. A. Álvarez-Puebla, I. Pastoriza-Santos, S. Mazzucco, O. Stéphan, M. Kociak, L. M. Liz-Marzán, and F. J. G. de Abajo, “Zeptomol detection through controlled ultrasensitive surface-enhanced Raman scattering,” J. Am. Chem. Soc. 131, 4616–4618 (2009).
[CrossRef] [PubMed]

Nano Lett. (2)

A. Unger, U. Rietzler, R. Berger, and M. Kreiter, “Sensitivity of crescent-shaped metal nanoparticles to attachment of dielectric colloids,” Nano Lett. 9, 2311–2315 (2009).
[CrossRef] [PubMed]

T. Sannomiya, C. Hafner, and J. Voros, “In situ sensing of single binding events by localized surface plasmon resonance,” Nano Lett. 8, 3450–2455 (2008).
[CrossRef] [PubMed]

Nanotechnology (1)

A. Pinchuk and G. Schatz, “Anisotropic polarizability tensor of a dimer of nanospheres in the vicinity of a plane substrate,” Nanotechnology 16, 2209–2217 (2005).
[CrossRef] [PubMed]

Nat. Mater. (2)

D.-K. Lim, K.-S. Jeon, H. M. Kim, J.-M. Nam, and Y. D. Suh, “Nanogap-engineerable Raman-active nan-odumbbells for single-molecule detection,” Nat. Mater. 9, 60–67 (2010).
[CrossRef]

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[CrossRef] [PubMed]

Opt. Lett. (1)

Phys. Rev. B (4)

T. Davis, D. Gómez, and K. Vernon, “Interaction of molecules with localized surface plasmons in metallic nanoparticles,” Phys. Rev. B 81, 045423 (2010).
[CrossRef]

T. J. Davis, K. C. Vernon, and D. E. Gómez, “Designing plasmonic systems using optical coupling between nanoparticles,” Phys. Rev. B 79, 155423 (2009).
[CrossRef]

B. Rolly, B. Stout, and N. Bonod, “Metallic dimers: When bonding transverse modes shine light,” Phys. Rev. B 84, 125420 (2011).
[CrossRef]

P. Johnson and R. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

Phys. Rev. E (1)

H. Xu, J. Aizpurua, M. Käll, and P. Apell, “Electromagnetic contributions to single-molecule sensitivity in surface-enhanced raman scattering,” Phys. Rev. E 62, 4318–4324 (2000).
[CrossRef]

Phys. Rev. Lett. (2)

H. Xu, E. J. Bjerneld, M. Käll, and L. Börjesson, “Spectroscopy of single hemoglobin molecules by surface enhanced raman scattering,” Phys. Rev. Lett. 83, 4357–4360 (1999).
[CrossRef]

F. Wang and Y. R. Shen, “General properties of local plasmons in metal nanostructures,” Phys. Rev. Lett. 97, 206806 (2006).
[CrossRef] [PubMed]

Rev. Mex. Fis. (1)

J. R. Zurita-Sánchez, “Quasi-static electromagnetic fields created by an electric dipole in the vicinity of a dielectric sphere: method of images,” Rev. Mex. Fis. 55, 443–449 (2009).

Sens. Actuators B Chem. (1)

H. Xu and M. Käll, “Modeling the optical response of nanoparticle-based aurface plasmon resonance sensors,” Sens. Actuators B Chem. 87, 244–249 (2002).
[CrossRef]

Other (2)

J. Homola, Surface plasmon resonance based sensors, Springer Series on Chemical Sensors and Biosensors (Springer-Verlag, Berlin-Heidelberg-New York, 2006).
[CrossRef]

J. D. Jackson, Classical Electrodynamics, 3rd ed. (John Wiley and Sons, Inc., New York, 1999).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic view of a dielectric analyte (ɛd, Vd) attached to a metal sphere (ɛm(ω), Vm) surrounded by a dielectric medium (ɛs, Vs).

Fig. 2
Fig. 2

Local values of ɛi|Ei|2ɛi|Ei|2, which integrated in individual subvolumes i give the numerator of Eq. (12), calculated for a dielectric analyte of ɛd = 4, rd = 1 nm attached to a gold resonator (ɛm = −3.21+2.91i, rm = 30 nm) in vacuum (ɛs = 1) for the local electric field in metal Em (a) parallel and (b) perpendicular to the surface. The contribution from the metal is negative and causes a blueshift. The contributions from the surrounding medium and the analyte for ɛd = 4 are positive and cause a redshift. The vertical and horizontal black lines, in (a) and (b) respectively, separate the metal from the surrounding medium. The insets in (a) and (b) show the system scheme for β = 0 and β = π/2, respectively, where the dielectric particle (red circle) is attached to the metal resonator placed in an incident field E0.

Fig. 3
Fig. 3

(a) Resonance shift { Δ ω ¯ } as function of ɛd and β for an analyte of rd = 1 nm attached to a gold resonator rm = 30 nm in vacuum (ɛs = 1): black points – calculated with model, surface – Eq. (13) fitted to data, color scale for surface – residuals. (b)–(c) Total resonance shift { Δ ω ¯ = i = m , d , s Δ ω ¯ i }, contributions from subvolumes { Δ ω ¯ i = m , d , s }, and shift obtained with FDTD Δ ω ¯ FDTD for (b) a parallel (β = 0) and (c) perpendicular (β = π/2) field. Notice the different scales for β = 0 and β = π/2

Fig. 4
Fig. 4

Resonance shift { Δ ω ¯ } as function of normalized particle volume Vd/Vm and angle β calculated for a dielectric particle with ɛd = 2.

Fig. 5
Fig. 5

(a) Gold disk of radius 25 nm, thickness 25 nm, edge curvature 5 nm illuminated by a plane wave. Blue spheres indicate positions of analyte placement for FDTD calculations. (b) Resonance shift calculated using FDTD at positions from (a) and interpolated using cubic splines for easier comparison with model calculated shift. (c) Resonance shift calculated with the model. The color scale is the same for (b) and (c).

Fig. 6
Fig. 6

Gold rod 20 nm in radius with hemispherical caps of 100 nm long with schematically indicated positions of analyte placement illuminated with a plane wave polarized perpendicularly to the rod axis. The analytes are placed along a line parallel to the incident electric field as indicated by blue spheres. FDTD calculated/fitted resonance shifts are indicated by the blue line with 0.95 confidence interval (green dashed). The shift calculated using the model is shown by the red line.

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

P 1 = α 1 ( E 0 A 12 P 2 ) ,
P 2 = α 2 ( E 0 A 21 P 1 ) ,
P 2 = α 2 ( 1 α 1 A 21 ) 1 α 1 α 2 A 12 A 21 E 0 .
ɛ 2 ( ω Q ) = 2 + Q 1 Q ,
ɛ m ( ω Q ) = ɛ m ( ω 0 ) + ( ω Q ω 0 ) ɛ m ω | ω 0 +
Δ ω ¯ ω Q ω 0 ω 0 = 3 Q / ( 1 Q ) ω 0 ɛ m ω | ω 0 ,
Δ ω ¯ 1 2 V 1 V 2 ɛ 1 1 ɛ 1 + 2 .
i ɛ i I i = i ɛ i V i | E i | 2 d V = V E * D d V = V Ψ * D d V = = V [ ( Ψ * D ) Ψ * ( D ) ] d V = S ( Ψ * D ) d S = 0 ,
ɛ m ( ω 0 ) I m + ɛ s I s = 0 ,
ɛ m ( ω ) I m + ɛ s I s + ɛ d I d = 0 ,
ɛ m ( ω 0 ) ( I m I m ) + ω 0 Δ ω ¯ ɛ m ω | ω 0 I m I . field change in metal object and change in resonance frequency + ɛ d I d + ɛ s ( I s I s ) II . field and volume change outside metal object = 0 .
ω 0 Δ ω ¯ ɛ m ω | ω 0 I m = ɛ m ( ω 0 ) ( I m I m ) i . diff . in metal ɛ s ( I s I s ) ii . diff . in surrounding medium ( ɛ d I d ɛ s I d ) iii . diff . in dielectric .
Δ ω ¯ = i ( ɛ i I i ɛ i I i ) ω 0 ɛ m ω | ω 0 I m .
a 0 ɛ d 1 ɛ d + a 1 ( cos 2 β + b 0 | ɛ m ɛ s | 2 sin 2 β ) ,

Metrics