Abstract

In this paper the concept of a microspectrometer based on a Linear Variable Optical Filter (LVOF) for operation in the visible spectrum is presented and used in two different designs: the first is for the narrow spectral band between 610 nm and 680 nm, whereas the other is for the wider spectral band between 570 nm and 740 nm. Design considerations, fabrication and measurement results of the LVOF are presented. An iterative signal processing algorithm based on an initial calibration has been implemented to enhance the spectral resolution. Experimental validation is based on the spectrum of a Neon lamp. The results of measurements have been used to analyze the operating limits of the concept and to explain the sources of error in the algorithm. It is shown that the main benefits of a LVOF-based microspectrometer are in case of implementation in a narrowband application. The realized LVOF microspectrometers show a spectral resolution of 2.2 nm in the wideband design and 0.7 nm in the narrowband design.

© 2011 OSA

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. F. Wolffenbuttel, “MEMS-based optical mini- and microspectrometers for the visible and infrared spectral range,” J. Micromech. Microeng. 15(7), S145–S152 (2005).
    [CrossRef]
  2. G. Minas, R. F. Wolffenbuttel, and J. H. Correia, “A lab-on-a-chip for spectrophotometric analysis of biological fluids,” Lab Chip 5(11), 1303–1309 (2005).
    [CrossRef] [PubMed]
  3. J. H. Correia, G. de Graaf, S. H. Kong, M. Bartek, and R. F. Wolffenbuttel, “Single-chip CMOS optical microspectrometer,” Sens. Actuators A Phys. 82(1-3), 191–197 (2000).
    [CrossRef]
  4. S. W. Wang, M. Li, C. S. Xia, H. Q. Wang, X. S. Chen, and W. Lu, “128 channels of integrated filter array rapidly fabricated by using the combinatorial deposition technique,” Appl. Phys. B 88(2), 281–284 (2007).
    [CrossRef]
  5. R. R. McLeod and T. Honda, “Improving the spectral resolution of wedged etalons and linear variable filters with incidence angle,” Opt. Lett. 30(19), 2647–2649 (2005).
    [CrossRef] [PubMed]
  6. A. Emadi, H. Wu, G. de Graaf, and R. F. Wolffenbuttel, “CMOS-compatible LVOF-based visible microspectrometer,” Proc. SPIE 7680, 76800W (2010).
    [CrossRef]
  7. A. Emadi, S. Grabarnik, H. Wu, G. de Graaf, K. Hedsten, P. Enoksson, J. H. Correia, and R. F. Wolffenbuttel, “Spectral measurement using IC-compatible linear variable optical filter,” Proc. SPIE 7716, 77162G (2010).
    [CrossRef]
  8. A. Emadi, H. Wu, S. Grabarnik, G. De Graaf, K. Hedsten, P. Enoksson, J. H. Correia, and R. F. Wolffenbuttel, “Fabrication and characterization of IC-compatible linear variable optical filters with application in a micro-spectrometer,” Sens. Actuators A Phys. 162(2), 400–405 (2010).
    [CrossRef]
  9. M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 7th ed., 360–376 (Cambridge University Press, 1999).
  10. A. Emadi, H. Wu, S. Grabarnik, G. de Graaf, and R. F. Wolffenbuttel, “Vertically tapered layers for optical applications fabricated using resist reflow,” J. Micromech. Microeng. 19(7), 074014 (2009).
    [CrossRef]
  11. A. Emadi, “Linear-variable optical filters for microspectrometer application,” PhD Thesis, Technical University of Delft (2010).
  12. V. Krajicek and M. Vrbova, “Laser-induced fluorescence spectra of plants,” Remote Sens. Environ. 47(1), 51–54 (1994).
    [CrossRef]
  13. K. Burns, K. B. Adams, and J. Longwell, “Interference measurements in the spectra of neon and natural mercury,” J. Opt. Soc. Am. 40(6), 339–344 (1950).
    [CrossRef]
  14. NIST atomic spectra database, Online: http://www.nist.gov/pml/data/asd.cfm
  15. M. P. Wisniewski, R. Z. Morawski, and A. Barwicz, “Algorithms for interpretation of spectrometric data- A comparative study,” Instrumentation and Measurement Technology Conference, 2000. IMTC 2000. Proceedings of the 17th IEEE, 2, 703–706 (2000).
  16. D. Massicotte, R. Z. Morawski, and A. Barwicz, “Kalman-filter-based algorithms of spectrometric data correction-Part I: an iterative algorithm of deconvolution,” IEEE Trans. Instrum. Meas. 46(3), 678–684 (1997).
    [CrossRef]
  17. M. H. Hayes and H. Monson, “Recursive least squares,” in Statistical Digital Signal Processing and Modeling (Wiley, 1996), ch. 9.4.
  18. S. Grabarnik, A. Emadi, H. Wu, G. de Graaf, and R. F. Wolffenbuttel, “High-resolution microspectrometer with an aberration-correcting planar grating,” Appl. Opt. 47(34), 6442–6447 (2008).
    [CrossRef] [PubMed]

2010 (3)

A. Emadi, H. Wu, G. de Graaf, and R. F. Wolffenbuttel, “CMOS-compatible LVOF-based visible microspectrometer,” Proc. SPIE 7680, 76800W (2010).
[CrossRef]

A. Emadi, S. Grabarnik, H. Wu, G. de Graaf, K. Hedsten, P. Enoksson, J. H. Correia, and R. F. Wolffenbuttel, “Spectral measurement using IC-compatible linear variable optical filter,” Proc. SPIE 7716, 77162G (2010).
[CrossRef]

A. Emadi, H. Wu, S. Grabarnik, G. De Graaf, K. Hedsten, P. Enoksson, J. H. Correia, and R. F. Wolffenbuttel, “Fabrication and characterization of IC-compatible linear variable optical filters with application in a micro-spectrometer,” Sens. Actuators A Phys. 162(2), 400–405 (2010).
[CrossRef]

2009 (1)

A. Emadi, H. Wu, S. Grabarnik, G. de Graaf, and R. F. Wolffenbuttel, “Vertically tapered layers for optical applications fabricated using resist reflow,” J. Micromech. Microeng. 19(7), 074014 (2009).
[CrossRef]

2008 (1)

2007 (1)

S. W. Wang, M. Li, C. S. Xia, H. Q. Wang, X. S. Chen, and W. Lu, “128 channels of integrated filter array rapidly fabricated by using the combinatorial deposition technique,” Appl. Phys. B 88(2), 281–284 (2007).
[CrossRef]

2005 (3)

R. R. McLeod and T. Honda, “Improving the spectral resolution of wedged etalons and linear variable filters with incidence angle,” Opt. Lett. 30(19), 2647–2649 (2005).
[CrossRef] [PubMed]

R. F. Wolffenbuttel, “MEMS-based optical mini- and microspectrometers for the visible and infrared spectral range,” J. Micromech. Microeng. 15(7), S145–S152 (2005).
[CrossRef]

G. Minas, R. F. Wolffenbuttel, and J. H. Correia, “A lab-on-a-chip for spectrophotometric analysis of biological fluids,” Lab Chip 5(11), 1303–1309 (2005).
[CrossRef] [PubMed]

2000 (1)

J. H. Correia, G. de Graaf, S. H. Kong, M. Bartek, and R. F. Wolffenbuttel, “Single-chip CMOS optical microspectrometer,” Sens. Actuators A Phys. 82(1-3), 191–197 (2000).
[CrossRef]

1997 (1)

D. Massicotte, R. Z. Morawski, and A. Barwicz, “Kalman-filter-based algorithms of spectrometric data correction-Part I: an iterative algorithm of deconvolution,” IEEE Trans. Instrum. Meas. 46(3), 678–684 (1997).
[CrossRef]

1994 (1)

V. Krajicek and M. Vrbova, “Laser-induced fluorescence spectra of plants,” Remote Sens. Environ. 47(1), 51–54 (1994).
[CrossRef]

1950 (1)

Adams, K. B.

Bartek, M.

J. H. Correia, G. de Graaf, S. H. Kong, M. Bartek, and R. F. Wolffenbuttel, “Single-chip CMOS optical microspectrometer,” Sens. Actuators A Phys. 82(1-3), 191–197 (2000).
[CrossRef]

Barwicz, A.

D. Massicotte, R. Z. Morawski, and A. Barwicz, “Kalman-filter-based algorithms of spectrometric data correction-Part I: an iterative algorithm of deconvolution,” IEEE Trans. Instrum. Meas. 46(3), 678–684 (1997).
[CrossRef]

Burns, K.

Chen, X. S.

S. W. Wang, M. Li, C. S. Xia, H. Q. Wang, X. S. Chen, and W. Lu, “128 channels of integrated filter array rapidly fabricated by using the combinatorial deposition technique,” Appl. Phys. B 88(2), 281–284 (2007).
[CrossRef]

Correia, J. H.

A. Emadi, H. Wu, S. Grabarnik, G. De Graaf, K. Hedsten, P. Enoksson, J. H. Correia, and R. F. Wolffenbuttel, “Fabrication and characterization of IC-compatible linear variable optical filters with application in a micro-spectrometer,” Sens. Actuators A Phys. 162(2), 400–405 (2010).
[CrossRef]

A. Emadi, S. Grabarnik, H. Wu, G. de Graaf, K. Hedsten, P. Enoksson, J. H. Correia, and R. F. Wolffenbuttel, “Spectral measurement using IC-compatible linear variable optical filter,” Proc. SPIE 7716, 77162G (2010).
[CrossRef]

G. Minas, R. F. Wolffenbuttel, and J. H. Correia, “A lab-on-a-chip for spectrophotometric analysis of biological fluids,” Lab Chip 5(11), 1303–1309 (2005).
[CrossRef] [PubMed]

J. H. Correia, G. de Graaf, S. H. Kong, M. Bartek, and R. F. Wolffenbuttel, “Single-chip CMOS optical microspectrometer,” Sens. Actuators A Phys. 82(1-3), 191–197 (2000).
[CrossRef]

de Graaf, G.

A. Emadi, S. Grabarnik, H. Wu, G. de Graaf, K. Hedsten, P. Enoksson, J. H. Correia, and R. F. Wolffenbuttel, “Spectral measurement using IC-compatible linear variable optical filter,” Proc. SPIE 7716, 77162G (2010).
[CrossRef]

A. Emadi, H. Wu, G. de Graaf, and R. F. Wolffenbuttel, “CMOS-compatible LVOF-based visible microspectrometer,” Proc. SPIE 7680, 76800W (2010).
[CrossRef]

A. Emadi, H. Wu, S. Grabarnik, G. De Graaf, K. Hedsten, P. Enoksson, J. H. Correia, and R. F. Wolffenbuttel, “Fabrication and characterization of IC-compatible linear variable optical filters with application in a micro-spectrometer,” Sens. Actuators A Phys. 162(2), 400–405 (2010).
[CrossRef]

A. Emadi, H. Wu, S. Grabarnik, G. de Graaf, and R. F. Wolffenbuttel, “Vertically tapered layers for optical applications fabricated using resist reflow,” J. Micromech. Microeng. 19(7), 074014 (2009).
[CrossRef]

S. Grabarnik, A. Emadi, H. Wu, G. de Graaf, and R. F. Wolffenbuttel, “High-resolution microspectrometer with an aberration-correcting planar grating,” Appl. Opt. 47(34), 6442–6447 (2008).
[CrossRef] [PubMed]

J. H. Correia, G. de Graaf, S. H. Kong, M. Bartek, and R. F. Wolffenbuttel, “Single-chip CMOS optical microspectrometer,” Sens. Actuators A Phys. 82(1-3), 191–197 (2000).
[CrossRef]

Emadi, A.

A. Emadi, S. Grabarnik, H. Wu, G. de Graaf, K. Hedsten, P. Enoksson, J. H. Correia, and R. F. Wolffenbuttel, “Spectral measurement using IC-compatible linear variable optical filter,” Proc. SPIE 7716, 77162G (2010).
[CrossRef]

A. Emadi, H. Wu, S. Grabarnik, G. De Graaf, K. Hedsten, P. Enoksson, J. H. Correia, and R. F. Wolffenbuttel, “Fabrication and characterization of IC-compatible linear variable optical filters with application in a micro-spectrometer,” Sens. Actuators A Phys. 162(2), 400–405 (2010).
[CrossRef]

A. Emadi, H. Wu, G. de Graaf, and R. F. Wolffenbuttel, “CMOS-compatible LVOF-based visible microspectrometer,” Proc. SPIE 7680, 76800W (2010).
[CrossRef]

A. Emadi, H. Wu, S. Grabarnik, G. de Graaf, and R. F. Wolffenbuttel, “Vertically tapered layers for optical applications fabricated using resist reflow,” J. Micromech. Microeng. 19(7), 074014 (2009).
[CrossRef]

S. Grabarnik, A. Emadi, H. Wu, G. de Graaf, and R. F. Wolffenbuttel, “High-resolution microspectrometer with an aberration-correcting planar grating,” Appl. Opt. 47(34), 6442–6447 (2008).
[CrossRef] [PubMed]

Enoksson, P.

A. Emadi, S. Grabarnik, H. Wu, G. de Graaf, K. Hedsten, P. Enoksson, J. H. Correia, and R. F. Wolffenbuttel, “Spectral measurement using IC-compatible linear variable optical filter,” Proc. SPIE 7716, 77162G (2010).
[CrossRef]

A. Emadi, H. Wu, S. Grabarnik, G. De Graaf, K. Hedsten, P. Enoksson, J. H. Correia, and R. F. Wolffenbuttel, “Fabrication and characterization of IC-compatible linear variable optical filters with application in a micro-spectrometer,” Sens. Actuators A Phys. 162(2), 400–405 (2010).
[CrossRef]

Grabarnik, S.

A. Emadi, H. Wu, S. Grabarnik, G. De Graaf, K. Hedsten, P. Enoksson, J. H. Correia, and R. F. Wolffenbuttel, “Fabrication and characterization of IC-compatible linear variable optical filters with application in a micro-spectrometer,” Sens. Actuators A Phys. 162(2), 400–405 (2010).
[CrossRef]

A. Emadi, S. Grabarnik, H. Wu, G. de Graaf, K. Hedsten, P. Enoksson, J. H. Correia, and R. F. Wolffenbuttel, “Spectral measurement using IC-compatible linear variable optical filter,” Proc. SPIE 7716, 77162G (2010).
[CrossRef]

A. Emadi, H. Wu, S. Grabarnik, G. de Graaf, and R. F. Wolffenbuttel, “Vertically tapered layers for optical applications fabricated using resist reflow,” J. Micromech. Microeng. 19(7), 074014 (2009).
[CrossRef]

S. Grabarnik, A. Emadi, H. Wu, G. de Graaf, and R. F. Wolffenbuttel, “High-resolution microspectrometer with an aberration-correcting planar grating,” Appl. Opt. 47(34), 6442–6447 (2008).
[CrossRef] [PubMed]

Hedsten, K.

A. Emadi, S. Grabarnik, H. Wu, G. de Graaf, K. Hedsten, P. Enoksson, J. H. Correia, and R. F. Wolffenbuttel, “Spectral measurement using IC-compatible linear variable optical filter,” Proc. SPIE 7716, 77162G (2010).
[CrossRef]

A. Emadi, H. Wu, S. Grabarnik, G. De Graaf, K. Hedsten, P. Enoksson, J. H. Correia, and R. F. Wolffenbuttel, “Fabrication and characterization of IC-compatible linear variable optical filters with application in a micro-spectrometer,” Sens. Actuators A Phys. 162(2), 400–405 (2010).
[CrossRef]

Honda, T.

Kong, S. H.

J. H. Correia, G. de Graaf, S. H. Kong, M. Bartek, and R. F. Wolffenbuttel, “Single-chip CMOS optical microspectrometer,” Sens. Actuators A Phys. 82(1-3), 191–197 (2000).
[CrossRef]

Krajicek, V.

V. Krajicek and M. Vrbova, “Laser-induced fluorescence spectra of plants,” Remote Sens. Environ. 47(1), 51–54 (1994).
[CrossRef]

Li, M.

S. W. Wang, M. Li, C. S. Xia, H. Q. Wang, X. S. Chen, and W. Lu, “128 channels of integrated filter array rapidly fabricated by using the combinatorial deposition technique,” Appl. Phys. B 88(2), 281–284 (2007).
[CrossRef]

Longwell, J.

Lu, W.

S. W. Wang, M. Li, C. S. Xia, H. Q. Wang, X. S. Chen, and W. Lu, “128 channels of integrated filter array rapidly fabricated by using the combinatorial deposition technique,” Appl. Phys. B 88(2), 281–284 (2007).
[CrossRef]

Massicotte, D.

D. Massicotte, R. Z. Morawski, and A. Barwicz, “Kalman-filter-based algorithms of spectrometric data correction-Part I: an iterative algorithm of deconvolution,” IEEE Trans. Instrum. Meas. 46(3), 678–684 (1997).
[CrossRef]

McLeod, R. R.

Minas, G.

G. Minas, R. F. Wolffenbuttel, and J. H. Correia, “A lab-on-a-chip for spectrophotometric analysis of biological fluids,” Lab Chip 5(11), 1303–1309 (2005).
[CrossRef] [PubMed]

Morawski, R. Z.

D. Massicotte, R. Z. Morawski, and A. Barwicz, “Kalman-filter-based algorithms of spectrometric data correction-Part I: an iterative algorithm of deconvolution,” IEEE Trans. Instrum. Meas. 46(3), 678–684 (1997).
[CrossRef]

Vrbova, M.

V. Krajicek and M. Vrbova, “Laser-induced fluorescence spectra of plants,” Remote Sens. Environ. 47(1), 51–54 (1994).
[CrossRef]

Wang, H. Q.

S. W. Wang, M. Li, C. S. Xia, H. Q. Wang, X. S. Chen, and W. Lu, “128 channels of integrated filter array rapidly fabricated by using the combinatorial deposition technique,” Appl. Phys. B 88(2), 281–284 (2007).
[CrossRef]

Wang, S. W.

S. W. Wang, M. Li, C. S. Xia, H. Q. Wang, X. S. Chen, and W. Lu, “128 channels of integrated filter array rapidly fabricated by using the combinatorial deposition technique,” Appl. Phys. B 88(2), 281–284 (2007).
[CrossRef]

Wolffenbuttel, R. F.

A. Emadi, H. Wu, G. de Graaf, and R. F. Wolffenbuttel, “CMOS-compatible LVOF-based visible microspectrometer,” Proc. SPIE 7680, 76800W (2010).
[CrossRef]

A. Emadi, H. Wu, S. Grabarnik, G. De Graaf, K. Hedsten, P. Enoksson, J. H. Correia, and R. F. Wolffenbuttel, “Fabrication and characterization of IC-compatible linear variable optical filters with application in a micro-spectrometer,” Sens. Actuators A Phys. 162(2), 400–405 (2010).
[CrossRef]

A. Emadi, S. Grabarnik, H. Wu, G. de Graaf, K. Hedsten, P. Enoksson, J. H. Correia, and R. F. Wolffenbuttel, “Spectral measurement using IC-compatible linear variable optical filter,” Proc. SPIE 7716, 77162G (2010).
[CrossRef]

A. Emadi, H. Wu, S. Grabarnik, G. de Graaf, and R. F. Wolffenbuttel, “Vertically tapered layers for optical applications fabricated using resist reflow,” J. Micromech. Microeng. 19(7), 074014 (2009).
[CrossRef]

S. Grabarnik, A. Emadi, H. Wu, G. de Graaf, and R. F. Wolffenbuttel, “High-resolution microspectrometer with an aberration-correcting planar grating,” Appl. Opt. 47(34), 6442–6447 (2008).
[CrossRef] [PubMed]

R. F. Wolffenbuttel, “MEMS-based optical mini- and microspectrometers for the visible and infrared spectral range,” J. Micromech. Microeng. 15(7), S145–S152 (2005).
[CrossRef]

G. Minas, R. F. Wolffenbuttel, and J. H. Correia, “A lab-on-a-chip for spectrophotometric analysis of biological fluids,” Lab Chip 5(11), 1303–1309 (2005).
[CrossRef] [PubMed]

J. H. Correia, G. de Graaf, S. H. Kong, M. Bartek, and R. F. Wolffenbuttel, “Single-chip CMOS optical microspectrometer,” Sens. Actuators A Phys. 82(1-3), 191–197 (2000).
[CrossRef]

Wu, H.

A. Emadi, S. Grabarnik, H. Wu, G. de Graaf, K. Hedsten, P. Enoksson, J. H. Correia, and R. F. Wolffenbuttel, “Spectral measurement using IC-compatible linear variable optical filter,” Proc. SPIE 7716, 77162G (2010).
[CrossRef]

A. Emadi, H. Wu, G. de Graaf, and R. F. Wolffenbuttel, “CMOS-compatible LVOF-based visible microspectrometer,” Proc. SPIE 7680, 76800W (2010).
[CrossRef]

A. Emadi, H. Wu, S. Grabarnik, G. De Graaf, K. Hedsten, P. Enoksson, J. H. Correia, and R. F. Wolffenbuttel, “Fabrication and characterization of IC-compatible linear variable optical filters with application in a micro-spectrometer,” Sens. Actuators A Phys. 162(2), 400–405 (2010).
[CrossRef]

A. Emadi, H. Wu, S. Grabarnik, G. de Graaf, and R. F. Wolffenbuttel, “Vertically tapered layers for optical applications fabricated using resist reflow,” J. Micromech. Microeng. 19(7), 074014 (2009).
[CrossRef]

S. Grabarnik, A. Emadi, H. Wu, G. de Graaf, and R. F. Wolffenbuttel, “High-resolution microspectrometer with an aberration-correcting planar grating,” Appl. Opt. 47(34), 6442–6447 (2008).
[CrossRef] [PubMed]

Xia, C. S.

S. W. Wang, M. Li, C. S. Xia, H. Q. Wang, X. S. Chen, and W. Lu, “128 channels of integrated filter array rapidly fabricated by using the combinatorial deposition technique,” Appl. Phys. B 88(2), 281–284 (2007).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. B (1)

S. W. Wang, M. Li, C. S. Xia, H. Q. Wang, X. S. Chen, and W. Lu, “128 channels of integrated filter array rapidly fabricated by using the combinatorial deposition technique,” Appl. Phys. B 88(2), 281–284 (2007).
[CrossRef]

IEEE Trans. Instrum. Meas. (1)

D. Massicotte, R. Z. Morawski, and A. Barwicz, “Kalman-filter-based algorithms of spectrometric data correction-Part I: an iterative algorithm of deconvolution,” IEEE Trans. Instrum. Meas. 46(3), 678–684 (1997).
[CrossRef]

J. Micromech. Microeng. (2)

A. Emadi, H. Wu, S. Grabarnik, G. de Graaf, and R. F. Wolffenbuttel, “Vertically tapered layers for optical applications fabricated using resist reflow,” J. Micromech. Microeng. 19(7), 074014 (2009).
[CrossRef]

R. F. Wolffenbuttel, “MEMS-based optical mini- and microspectrometers for the visible and infrared spectral range,” J. Micromech. Microeng. 15(7), S145–S152 (2005).
[CrossRef]

J. Opt. Soc. Am. (1)

Lab Chip (1)

G. Minas, R. F. Wolffenbuttel, and J. H. Correia, “A lab-on-a-chip for spectrophotometric analysis of biological fluids,” Lab Chip 5(11), 1303–1309 (2005).
[CrossRef] [PubMed]

Opt. Lett. (1)

Proc. SPIE (2)

A. Emadi, H. Wu, G. de Graaf, and R. F. Wolffenbuttel, “CMOS-compatible LVOF-based visible microspectrometer,” Proc. SPIE 7680, 76800W (2010).
[CrossRef]

A. Emadi, S. Grabarnik, H. Wu, G. de Graaf, K. Hedsten, P. Enoksson, J. H. Correia, and R. F. Wolffenbuttel, “Spectral measurement using IC-compatible linear variable optical filter,” Proc. SPIE 7716, 77162G (2010).
[CrossRef]

Remote Sens. Environ. (1)

V. Krajicek and M. Vrbova, “Laser-induced fluorescence spectra of plants,” Remote Sens. Environ. 47(1), 51–54 (1994).
[CrossRef]

Sens. Actuators A Phys. (2)

A. Emadi, H. Wu, S. Grabarnik, G. De Graaf, K. Hedsten, P. Enoksson, J. H. Correia, and R. F. Wolffenbuttel, “Fabrication and characterization of IC-compatible linear variable optical filters with application in a micro-spectrometer,” Sens. Actuators A Phys. 162(2), 400–405 (2010).
[CrossRef]

J. H. Correia, G. de Graaf, S. H. Kong, M. Bartek, and R. F. Wolffenbuttel, “Single-chip CMOS optical microspectrometer,” Sens. Actuators A Phys. 82(1-3), 191–197 (2000).
[CrossRef]

Other (5)

A. Emadi, “Linear-variable optical filters for microspectrometer application,” PhD Thesis, Technical University of Delft (2010).

M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 7th ed., 360–376 (Cambridge University Press, 1999).

M. H. Hayes and H. Monson, “Recursive least squares,” in Statistical Digital Signal Processing and Modeling (Wiley, 1996), ch. 9.4.

NIST atomic spectra database, Online: http://www.nist.gov/pml/data/asd.cfm

M. P. Wisniewski, R. Z. Morawski, and A. Barwicz, “Algorithms for interpretation of spectrometric data- A comparative study,” Instrumentation and Measurement Technology Conference, 2000. IMTC 2000. Proceedings of the 17th IEEE, 2, 703–706 (2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics