Abstract

Structured illumination (SI) has long been regarded as a nonquantitative technique for obtaining sectioned microscopic images. Its lack of quantitative results has restricted the use of SI sectioning to qualitative imaging experiments, and has also limited researchers’ ability to compare SI against competing sectioning methods such as confocal microscopy. We show how to modify the standard SI sectioning algorithm to make the technique quantitative, and provide formulas for calculating the noise in the sectioned images. The results indicate that, for an illumination source providing the same spatially-integrated photon flux at the object plane, and for the same effective slice thicknesses, SI sectioning can provide higher SNR images than confocal microscopy for an equivalent setup when the modulation contrast exceeds about 0.09.

© 2011 OSA

Full Article  |  PDF Article

Corrections

Nathan Hagen, Liang Gao, and Tomasz S. Tkaczyk, "Quantitative sectioning and noise analysis for structured illumination microscopy: errata," Opt. Express 20, 5343-5343 (2012)
https://www.osapublishing.org/oe/abstract.cfm?uri=oe-20-5-5343

References

  • View by:
  • |
  • |
  • |

  1. D. Karadaglić and T. Wilson, “Image formation in structured illumination wide-field fluorescence microscopy,” Micron 39, 808–818 (2008).
    [CrossRef]
  2. M. A. A. Neil, R. Juškaitis, and T. Wilson, “Method of obtaining optical sectioning by using structured light in a conventional microscope,” Opt. Lett. 22, 1905–1907 (1997).
    [CrossRef]
  3. L. Schermelleh, P. M. Carlton, S. Haase, L. Shao, L. Winoto, P. Kner, B. Burke, M. C. Cardoso, D. A. Agard, M. G. L. Gustafsson, H. Leonhardt, and J. W. Sedat, “Subdiffraction multicolor imaging of the nuclear periphery with 3D structured illumination microscopy,” Science 320, 1332–1336 (2008).
    [CrossRef] [PubMed]
  4. V. C. Cogger, G. P. McNerney, T. Nyunt, L. D. DeLeve, P. McCourt, B. Smedsrød, D. G. L. Couteur, and T. R. Huser, “Three-dimensional structured illumination microscopy of liver sinusoidal endothelial cell fenestrations,” J. Struct. Biol. 171, 382–388 (2010).
    [CrossRef] [PubMed]
  5. P. Kner, B. B. Chhun, E. R. Griffis, L. Winoto, and M. G. L. Gustafsson, “Super-resolution video microscopy of live cells by structured illumination,” Nat. Met. 6, 339–344 (2009).
    [CrossRef]
  6. G. Best, R. Amberger, D. Baddeley, T. Ach, S. Dithmar, R. Heintzmann, and C. Cremer, “Structured illumination microscopy of autofluorescent aggregations in human tissue,” Micron 42, 330–335 (2011).
    [CrossRef]
  7. P. J. Keller, A. D. Schmidt, A. Santella, K. Khairy, Z. Bao, J. Wittbrodt, and E. H. K. Stelzer, “Fast, high-contrast imaging of animal development with scanned light sheet-based structured-illumination microscopy,” Nat. Meth. 7, 637–645 (2010).
    [CrossRef]
  8. N. Bozinovic, C. Ventalon, T. Ford, and J. Mertz, “Fluorescence endomicroscopy with structured illumination,” Opt. Express 16, 8016–8026 (2008).
    [CrossRef] [PubMed]
  9. R. Heintzmann and C. Cremer, “Laterally modulated excitation microscopy: improvement of resolution by using a diffraction grating,” in EUROPTO Conference on Optical Microscopy, Proc. SPIE 3568, 185–196 (1999).
    [CrossRef]
  10. M. G. L. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” J. Microsc. 198, 82–87 (2000).
    [CrossRef] [PubMed]
  11. L. M. Hirvonen, K. Wicker, O. Mandula, and R. Heintzmann, “Structured illumination microscopy of a living cell,” Eur. Biophys. J. 38, 807–813 (2009).
    [CrossRef] [PubMed]
  12. J. M. Murray, P. L. Appleton, J. R. Swedlow, and J. C. Waters, “Evaluating performance in three-dimensional fluorescence microscopy,” J. Microsc. 228, 390–405 (2007).
    [CrossRef] [PubMed]
  13. L. Gao, N. Bedard, N. Hagen, R. T. Kester, and T. S. Tkaczyk, “Depth-resolved image mapping spectrometer (IMS) with structured illumination,” Opt. Express 19, 17439–17452 (2011).
    [CrossRef] [PubMed]
  14. M. G. Somekh, K. Hsu, and M. C. Pitter, “Resolution in structured illumination microscopy: a probabilistic approach,” J. Opt. Soc. Am. A 25, 1319–1329 (2008).
    [CrossRef]
  15. M. G. Somekh, K. Hsu, and M. C. Pitter, “Stochastic transfer function for structured illumination microscopy,” J. Opt. Soc. Am. A 26, 1630–1637 (2009).
    [CrossRef]
  16. K. M. Kedziora, J. H. M. Prehn, J. Dobruck, and T. Bernas, “Method of calibration of a fluorescence microscope for quantitative studies,” J. Microsc. 244, 101–111 (2011).
    [CrossRef] [PubMed]
  17. J. C. Waters, “Accuracy and precision in quantitative fluorescence microscopy,” J. Cell Biol. 1858, 1135–1148 (2009).
    [CrossRef]
  18. A. Esposito, S. Schlachter, G. S. Schierle, A. D. Elder, A. Diaspro, F. S. Wouters, C. F. Kaminski, and A. I. Iliev, “Quantitative fluorescence microscopy techniques,” Methods Mol. Biol. 586, 117–142 (2009).
    [CrossRef] [PubMed]
  19. R. Heintzmann and P. A. Benedetti, “High-resolution image reconstruction in fluorescence microscopy with patterned excitation,” Appl. Opt. 45, 5037–5045 (2006).
    [CrossRef] [PubMed]
  20. M. A. A. Neil, T. Wilson, and R. Juškaitis, “A light efficient optical sectioning microscope,” J. Microsc. 189, 114–117 (1998).
    [CrossRef]
  21. M. J. Cole, J. Siegel, S. E. D. Webb, R. Jones, K. Dowling, M. J. Dayel, D. Parsons-Karavassis, P. M. W. French, M. J. Lever, L. O. D. Sucharov, M. A. A. Neil, R. Juvskaitis, and T. Wilson, “Time-domain whole-field fluorescence lifetime imaging with optical sectioning,” J. Microsc. 203, 246–257 (2001).
    [CrossRef] [PubMed]
  22. L. H. Schaefer, D. Schuster, and J. Schaffer, “Structured illumination microscopy: artefact analysis and reduction utilizing a parameter optimization approach,” J. Microsc. 216, 165–174 (2004).
    [CrossRef] [PubMed]
  23. L. G. Krzewina and M. K. Kim, “Single-exposure optical sectioning by color structured illumination microscopy,” Opt. Lett. 31, 477–479 (2006).
    [CrossRef] [PubMed]
  24. A. L. Barlow and C. J. Guerin, “Quantization of widefield fluorescence images using structured illumination and image analysis software,” Microsc. Res. Tech. 70, 76–84 (2007).
    [CrossRef]
  25. F. Chasles, B. Dubertret, and A. C. Boccara, “Optimization and characterization of a structured illumination microscope,” Opt. Express 15, 16130–16141 (2007).
    [CrossRef] [PubMed]
  26. S. D. Konecky, A. Mazhar, D. Cuccia, A. J. Durkin, J. C. Schotland, and B. J. Tromberg, “Quantitative optical tomography of sub-surface heterogeneities using spatially modulated structured light,” Opt. Express 17, 14780–14790 (2009).
    [CrossRef] [PubMed]
  27. M. F. Langhorst, J. Schaffer, and B. Goetze, “Structure brings clarity: structured illumination microscopy in cell biology,” Biotechnol. J. 4, 858–865 (2009).
    [CrossRef] [PubMed]
  28. T. A. Erickson, A. Mazhar, D. Cuccia, A. J. Durkin, and J. W. Tunnell, “Lookup-table method for imaging optical properties with structured illumination beyond the diffusion theory regime,” J. Biomed. Opt. 15, 036013 (2010).
    [CrossRef] [PubMed]
  29. K. Wicker and R. Heintzmann, “Single-shot optical sectioning using polarization-coded structured illumination,” J. Opt. 12, 084010 (2010).
    [CrossRef]
  30. T. Wilson, “Optical sectioning in fluorescence microscopy,” J. Microsc. 242, 111–116 (2010).
    [CrossRef] [PubMed]
  31. S. Gruppetta and S. Chetty, “Theoretical study of multispectral structured illumination for depth resolved imaging of non-stationary objects: focus on retinal imaging,” Biomed. Opt. Express 2, 255–263 (2011).
    [CrossRef] [PubMed]
  32. M. A. A. Neil, R. Juškaitis, and T. Wilson, “Real time 3D fluorescence microscopy by two beam interference illumination,” Opt. Commun. 153, 1–4 (1998).
    [CrossRef]
  33. V. Poher, H. X. Zhang, G. T. Kennedy, C. Griffin, S. Oddos, E. Gu, D. S. Elson, M. Girkin, P. M. W. French, M. D. Dawson, and M. A. A. Neil, “Optical sectioning microscopes with no moving parts using a micro-stripe array light emitting diode,” Opt. Express 15 (2007).
    [CrossRef] [PubMed]
  34. L. Mortara and A. Fowler, “Evaluations of charge-coupled device (CCD) performance for astronomical use,” in Solid state imagers for astronomy, Proc. SPIE 290, 28–33 (1981).

2011 (4)

G. Best, R. Amberger, D. Baddeley, T. Ach, S. Dithmar, R. Heintzmann, and C. Cremer, “Structured illumination microscopy of autofluorescent aggregations in human tissue,” Micron 42, 330–335 (2011).
[CrossRef]

K. M. Kedziora, J. H. M. Prehn, J. Dobruck, and T. Bernas, “Method of calibration of a fluorescence microscope for quantitative studies,” J. Microsc. 244, 101–111 (2011).
[CrossRef] [PubMed]

S. Gruppetta and S. Chetty, “Theoretical study of multispectral structured illumination for depth resolved imaging of non-stationary objects: focus on retinal imaging,” Biomed. Opt. Express 2, 255–263 (2011).
[CrossRef] [PubMed]

L. Gao, N. Bedard, N. Hagen, R. T. Kester, and T. S. Tkaczyk, “Depth-resolved image mapping spectrometer (IMS) with structured illumination,” Opt. Express 19, 17439–17452 (2011).
[CrossRef] [PubMed]

2010 (5)

T. A. Erickson, A. Mazhar, D. Cuccia, A. J. Durkin, and J. W. Tunnell, “Lookup-table method for imaging optical properties with structured illumination beyond the diffusion theory regime,” J. Biomed. Opt. 15, 036013 (2010).
[CrossRef] [PubMed]

K. Wicker and R. Heintzmann, “Single-shot optical sectioning using polarization-coded structured illumination,” J. Opt. 12, 084010 (2010).
[CrossRef]

T. Wilson, “Optical sectioning in fluorescence microscopy,” J. Microsc. 242, 111–116 (2010).
[CrossRef] [PubMed]

P. J. Keller, A. D. Schmidt, A. Santella, K. Khairy, Z. Bao, J. Wittbrodt, and E. H. K. Stelzer, “Fast, high-contrast imaging of animal development with scanned light sheet-based structured-illumination microscopy,” Nat. Meth. 7, 637–645 (2010).
[CrossRef]

V. C. Cogger, G. P. McNerney, T. Nyunt, L. D. DeLeve, P. McCourt, B. Smedsrød, D. G. L. Couteur, and T. R. Huser, “Three-dimensional structured illumination microscopy of liver sinusoidal endothelial cell fenestrations,” J. Struct. Biol. 171, 382–388 (2010).
[CrossRef] [PubMed]

2009 (7)

P. Kner, B. B. Chhun, E. R. Griffis, L. Winoto, and M. G. L. Gustafsson, “Super-resolution video microscopy of live cells by structured illumination,” Nat. Met. 6, 339–344 (2009).
[CrossRef]

L. M. Hirvonen, K. Wicker, O. Mandula, and R. Heintzmann, “Structured illumination microscopy of a living cell,” Eur. Biophys. J. 38, 807–813 (2009).
[CrossRef] [PubMed]

J. C. Waters, “Accuracy and precision in quantitative fluorescence microscopy,” J. Cell Biol. 1858, 1135–1148 (2009).
[CrossRef]

A. Esposito, S. Schlachter, G. S. Schierle, A. D. Elder, A. Diaspro, F. S. Wouters, C. F. Kaminski, and A. I. Iliev, “Quantitative fluorescence microscopy techniques,” Methods Mol. Biol. 586, 117–142 (2009).
[CrossRef] [PubMed]

M. F. Langhorst, J. Schaffer, and B. Goetze, “Structure brings clarity: structured illumination microscopy in cell biology,” Biotechnol. J. 4, 858–865 (2009).
[CrossRef] [PubMed]

M. G. Somekh, K. Hsu, and M. C. Pitter, “Stochastic transfer function for structured illumination microscopy,” J. Opt. Soc. Am. A 26, 1630–1637 (2009).
[CrossRef]

S. D. Konecky, A. Mazhar, D. Cuccia, A. J. Durkin, J. C. Schotland, and B. J. Tromberg, “Quantitative optical tomography of sub-surface heterogeneities using spatially modulated structured light,” Opt. Express 17, 14780–14790 (2009).
[CrossRef] [PubMed]

2008 (4)

M. G. Somekh, K. Hsu, and M. C. Pitter, “Resolution in structured illumination microscopy: a probabilistic approach,” J. Opt. Soc. Am. A 25, 1319–1329 (2008).
[CrossRef]

N. Bozinovic, C. Ventalon, T. Ford, and J. Mertz, “Fluorescence endomicroscopy with structured illumination,” Opt. Express 16, 8016–8026 (2008).
[CrossRef] [PubMed]

D. Karadaglić and T. Wilson, “Image formation in structured illumination wide-field fluorescence microscopy,” Micron 39, 808–818 (2008).
[CrossRef]

L. Schermelleh, P. M. Carlton, S. Haase, L. Shao, L. Winoto, P. Kner, B. Burke, M. C. Cardoso, D. A. Agard, M. G. L. Gustafsson, H. Leonhardt, and J. W. Sedat, “Subdiffraction multicolor imaging of the nuclear periphery with 3D structured illumination microscopy,” Science 320, 1332–1336 (2008).
[CrossRef] [PubMed]

2007 (4)

J. M. Murray, P. L. Appleton, J. R. Swedlow, and J. C. Waters, “Evaluating performance in three-dimensional fluorescence microscopy,” J. Microsc. 228, 390–405 (2007).
[CrossRef] [PubMed]

F. Chasles, B. Dubertret, and A. C. Boccara, “Optimization and characterization of a structured illumination microscope,” Opt. Express 15, 16130–16141 (2007).
[CrossRef] [PubMed]

A. L. Barlow and C. J. Guerin, “Quantization of widefield fluorescence images using structured illumination and image analysis software,” Microsc. Res. Tech. 70, 76–84 (2007).
[CrossRef]

V. Poher, H. X. Zhang, G. T. Kennedy, C. Griffin, S. Oddos, E. Gu, D. S. Elson, M. Girkin, P. M. W. French, M. D. Dawson, and M. A. A. Neil, “Optical sectioning microscopes with no moving parts using a micro-stripe array light emitting diode,” Opt. Express 15 (2007).
[CrossRef] [PubMed]

2006 (2)

2004 (1)

L. H. Schaefer, D. Schuster, and J. Schaffer, “Structured illumination microscopy: artefact analysis and reduction utilizing a parameter optimization approach,” J. Microsc. 216, 165–174 (2004).
[CrossRef] [PubMed]

2001 (1)

M. J. Cole, J. Siegel, S. E. D. Webb, R. Jones, K. Dowling, M. J. Dayel, D. Parsons-Karavassis, P. M. W. French, M. J. Lever, L. O. D. Sucharov, M. A. A. Neil, R. Juvskaitis, and T. Wilson, “Time-domain whole-field fluorescence lifetime imaging with optical sectioning,” J. Microsc. 203, 246–257 (2001).
[CrossRef] [PubMed]

2000 (1)

M. G. L. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” J. Microsc. 198, 82–87 (2000).
[CrossRef] [PubMed]

1999 (1)

R. Heintzmann and C. Cremer, “Laterally modulated excitation microscopy: improvement of resolution by using a diffraction grating,” in EUROPTO Conference on Optical Microscopy, Proc. SPIE 3568, 185–196 (1999).
[CrossRef]

1998 (2)

M. A. A. Neil, T. Wilson, and R. Juškaitis, “A light efficient optical sectioning microscope,” J. Microsc. 189, 114–117 (1998).
[CrossRef]

M. A. A. Neil, R. Juškaitis, and T. Wilson, “Real time 3D fluorescence microscopy by two beam interference illumination,” Opt. Commun. 153, 1–4 (1998).
[CrossRef]

1997 (1)

1981 (1)

L. Mortara and A. Fowler, “Evaluations of charge-coupled device (CCD) performance for astronomical use,” in Solid state imagers for astronomy, Proc. SPIE 290, 28–33 (1981).

Ach, T.

G. Best, R. Amberger, D. Baddeley, T. Ach, S. Dithmar, R. Heintzmann, and C. Cremer, “Structured illumination microscopy of autofluorescent aggregations in human tissue,” Micron 42, 330–335 (2011).
[CrossRef]

Agard, D. A.

L. Schermelleh, P. M. Carlton, S. Haase, L. Shao, L. Winoto, P. Kner, B. Burke, M. C. Cardoso, D. A. Agard, M. G. L. Gustafsson, H. Leonhardt, and J. W. Sedat, “Subdiffraction multicolor imaging of the nuclear periphery with 3D structured illumination microscopy,” Science 320, 1332–1336 (2008).
[CrossRef] [PubMed]

Amberger, R.

G. Best, R. Amberger, D. Baddeley, T. Ach, S. Dithmar, R. Heintzmann, and C. Cremer, “Structured illumination microscopy of autofluorescent aggregations in human tissue,” Micron 42, 330–335 (2011).
[CrossRef]

Appleton, P. L.

J. M. Murray, P. L. Appleton, J. R. Swedlow, and J. C. Waters, “Evaluating performance in three-dimensional fluorescence microscopy,” J. Microsc. 228, 390–405 (2007).
[CrossRef] [PubMed]

Baddeley, D.

G. Best, R. Amberger, D. Baddeley, T. Ach, S. Dithmar, R. Heintzmann, and C. Cremer, “Structured illumination microscopy of autofluorescent aggregations in human tissue,” Micron 42, 330–335 (2011).
[CrossRef]

Bao, Z.

P. J. Keller, A. D. Schmidt, A. Santella, K. Khairy, Z. Bao, J. Wittbrodt, and E. H. K. Stelzer, “Fast, high-contrast imaging of animal development with scanned light sheet-based structured-illumination microscopy,” Nat. Meth. 7, 637–645 (2010).
[CrossRef]

Barlow, A. L.

A. L. Barlow and C. J. Guerin, “Quantization of widefield fluorescence images using structured illumination and image analysis software,” Microsc. Res. Tech. 70, 76–84 (2007).
[CrossRef]

Bedard, N.

Benedetti, P. A.

Bernas, T.

K. M. Kedziora, J. H. M. Prehn, J. Dobruck, and T. Bernas, “Method of calibration of a fluorescence microscope for quantitative studies,” J. Microsc. 244, 101–111 (2011).
[CrossRef] [PubMed]

Best, G.

G. Best, R. Amberger, D. Baddeley, T. Ach, S. Dithmar, R. Heintzmann, and C. Cremer, “Structured illumination microscopy of autofluorescent aggregations in human tissue,” Micron 42, 330–335 (2011).
[CrossRef]

Boccara, A. C.

Bozinovic, N.

Burke, B.

L. Schermelleh, P. M. Carlton, S. Haase, L. Shao, L. Winoto, P. Kner, B. Burke, M. C. Cardoso, D. A. Agard, M. G. L. Gustafsson, H. Leonhardt, and J. W. Sedat, “Subdiffraction multicolor imaging of the nuclear periphery with 3D structured illumination microscopy,” Science 320, 1332–1336 (2008).
[CrossRef] [PubMed]

Cardoso, M. C.

L. Schermelleh, P. M. Carlton, S. Haase, L. Shao, L. Winoto, P. Kner, B. Burke, M. C. Cardoso, D. A. Agard, M. G. L. Gustafsson, H. Leonhardt, and J. W. Sedat, “Subdiffraction multicolor imaging of the nuclear periphery with 3D structured illumination microscopy,” Science 320, 1332–1336 (2008).
[CrossRef] [PubMed]

Carlton, P. M.

L. Schermelleh, P. M. Carlton, S. Haase, L. Shao, L. Winoto, P. Kner, B. Burke, M. C. Cardoso, D. A. Agard, M. G. L. Gustafsson, H. Leonhardt, and J. W. Sedat, “Subdiffraction multicolor imaging of the nuclear periphery with 3D structured illumination microscopy,” Science 320, 1332–1336 (2008).
[CrossRef] [PubMed]

Chasles, F.

Chetty, S.

Chhun, B. B.

P. Kner, B. B. Chhun, E. R. Griffis, L. Winoto, and M. G. L. Gustafsson, “Super-resolution video microscopy of live cells by structured illumination,” Nat. Met. 6, 339–344 (2009).
[CrossRef]

Cogger, V. C.

V. C. Cogger, G. P. McNerney, T. Nyunt, L. D. DeLeve, P. McCourt, B. Smedsrød, D. G. L. Couteur, and T. R. Huser, “Three-dimensional structured illumination microscopy of liver sinusoidal endothelial cell fenestrations,” J. Struct. Biol. 171, 382–388 (2010).
[CrossRef] [PubMed]

Cole, M. J.

M. J. Cole, J. Siegel, S. E. D. Webb, R. Jones, K. Dowling, M. J. Dayel, D. Parsons-Karavassis, P. M. W. French, M. J. Lever, L. O. D. Sucharov, M. A. A. Neil, R. Juvskaitis, and T. Wilson, “Time-domain whole-field fluorescence lifetime imaging with optical sectioning,” J. Microsc. 203, 246–257 (2001).
[CrossRef] [PubMed]

Couteur, D. G. L.

V. C. Cogger, G. P. McNerney, T. Nyunt, L. D. DeLeve, P. McCourt, B. Smedsrød, D. G. L. Couteur, and T. R. Huser, “Three-dimensional structured illumination microscopy of liver sinusoidal endothelial cell fenestrations,” J. Struct. Biol. 171, 382–388 (2010).
[CrossRef] [PubMed]

Cremer, C.

G. Best, R. Amberger, D. Baddeley, T. Ach, S. Dithmar, R. Heintzmann, and C. Cremer, “Structured illumination microscopy of autofluorescent aggregations in human tissue,” Micron 42, 330–335 (2011).
[CrossRef]

R. Heintzmann and C. Cremer, “Laterally modulated excitation microscopy: improvement of resolution by using a diffraction grating,” in EUROPTO Conference on Optical Microscopy, Proc. SPIE 3568, 185–196 (1999).
[CrossRef]

Cuccia, D.

T. A. Erickson, A. Mazhar, D. Cuccia, A. J. Durkin, and J. W. Tunnell, “Lookup-table method for imaging optical properties with structured illumination beyond the diffusion theory regime,” J. Biomed. Opt. 15, 036013 (2010).
[CrossRef] [PubMed]

S. D. Konecky, A. Mazhar, D. Cuccia, A. J. Durkin, J. C. Schotland, and B. J. Tromberg, “Quantitative optical tomography of sub-surface heterogeneities using spatially modulated structured light,” Opt. Express 17, 14780–14790 (2009).
[CrossRef] [PubMed]

Dawson, M. D.

V. Poher, H. X. Zhang, G. T. Kennedy, C. Griffin, S. Oddos, E. Gu, D. S. Elson, M. Girkin, P. M. W. French, M. D. Dawson, and M. A. A. Neil, “Optical sectioning microscopes with no moving parts using a micro-stripe array light emitting diode,” Opt. Express 15 (2007).
[CrossRef] [PubMed]

Dayel, M. J.

M. J. Cole, J. Siegel, S. E. D. Webb, R. Jones, K. Dowling, M. J. Dayel, D. Parsons-Karavassis, P. M. W. French, M. J. Lever, L. O. D. Sucharov, M. A. A. Neil, R. Juvskaitis, and T. Wilson, “Time-domain whole-field fluorescence lifetime imaging with optical sectioning,” J. Microsc. 203, 246–257 (2001).
[CrossRef] [PubMed]

DeLeve, L. D.

V. C. Cogger, G. P. McNerney, T. Nyunt, L. D. DeLeve, P. McCourt, B. Smedsrød, D. G. L. Couteur, and T. R. Huser, “Three-dimensional structured illumination microscopy of liver sinusoidal endothelial cell fenestrations,” J. Struct. Biol. 171, 382–388 (2010).
[CrossRef] [PubMed]

Diaspro, A.

A. Esposito, S. Schlachter, G. S. Schierle, A. D. Elder, A. Diaspro, F. S. Wouters, C. F. Kaminski, and A. I. Iliev, “Quantitative fluorescence microscopy techniques,” Methods Mol. Biol. 586, 117–142 (2009).
[CrossRef] [PubMed]

Dithmar, S.

G. Best, R. Amberger, D. Baddeley, T. Ach, S. Dithmar, R. Heintzmann, and C. Cremer, “Structured illumination microscopy of autofluorescent aggregations in human tissue,” Micron 42, 330–335 (2011).
[CrossRef]

Dobruck, J.

K. M. Kedziora, J. H. M. Prehn, J. Dobruck, and T. Bernas, “Method of calibration of a fluorescence microscope for quantitative studies,” J. Microsc. 244, 101–111 (2011).
[CrossRef] [PubMed]

Dowling, K.

M. J. Cole, J. Siegel, S. E. D. Webb, R. Jones, K. Dowling, M. J. Dayel, D. Parsons-Karavassis, P. M. W. French, M. J. Lever, L. O. D. Sucharov, M. A. A. Neil, R. Juvskaitis, and T. Wilson, “Time-domain whole-field fluorescence lifetime imaging with optical sectioning,” J. Microsc. 203, 246–257 (2001).
[CrossRef] [PubMed]

Dubertret, B.

Durkin, A. J.

T. A. Erickson, A. Mazhar, D. Cuccia, A. J. Durkin, and J. W. Tunnell, “Lookup-table method for imaging optical properties with structured illumination beyond the diffusion theory regime,” J. Biomed. Opt. 15, 036013 (2010).
[CrossRef] [PubMed]

S. D. Konecky, A. Mazhar, D. Cuccia, A. J. Durkin, J. C. Schotland, and B. J. Tromberg, “Quantitative optical tomography of sub-surface heterogeneities using spatially modulated structured light,” Opt. Express 17, 14780–14790 (2009).
[CrossRef] [PubMed]

Elder, A. D.

A. Esposito, S. Schlachter, G. S. Schierle, A. D. Elder, A. Diaspro, F. S. Wouters, C. F. Kaminski, and A. I. Iliev, “Quantitative fluorescence microscopy techniques,” Methods Mol. Biol. 586, 117–142 (2009).
[CrossRef] [PubMed]

Elson, D. S.

V. Poher, H. X. Zhang, G. T. Kennedy, C. Griffin, S. Oddos, E. Gu, D. S. Elson, M. Girkin, P. M. W. French, M. D. Dawson, and M. A. A. Neil, “Optical sectioning microscopes with no moving parts using a micro-stripe array light emitting diode,” Opt. Express 15 (2007).
[CrossRef] [PubMed]

Erickson, T. A.

T. A. Erickson, A. Mazhar, D. Cuccia, A. J. Durkin, and J. W. Tunnell, “Lookup-table method for imaging optical properties with structured illumination beyond the diffusion theory regime,” J. Biomed. Opt. 15, 036013 (2010).
[CrossRef] [PubMed]

Esposito, A.

A. Esposito, S. Schlachter, G. S. Schierle, A. D. Elder, A. Diaspro, F. S. Wouters, C. F. Kaminski, and A. I. Iliev, “Quantitative fluorescence microscopy techniques,” Methods Mol. Biol. 586, 117–142 (2009).
[CrossRef] [PubMed]

Ford, T.

Fowler, A.

L. Mortara and A. Fowler, “Evaluations of charge-coupled device (CCD) performance for astronomical use,” in Solid state imagers for astronomy, Proc. SPIE 290, 28–33 (1981).

French, P. M. W.

V. Poher, H. X. Zhang, G. T. Kennedy, C. Griffin, S. Oddos, E. Gu, D. S. Elson, M. Girkin, P. M. W. French, M. D. Dawson, and M. A. A. Neil, “Optical sectioning microscopes with no moving parts using a micro-stripe array light emitting diode,” Opt. Express 15 (2007).
[CrossRef] [PubMed]

M. J. Cole, J. Siegel, S. E. D. Webb, R. Jones, K. Dowling, M. J. Dayel, D. Parsons-Karavassis, P. M. W. French, M. J. Lever, L. O. D. Sucharov, M. A. A. Neil, R. Juvskaitis, and T. Wilson, “Time-domain whole-field fluorescence lifetime imaging with optical sectioning,” J. Microsc. 203, 246–257 (2001).
[CrossRef] [PubMed]

Gao, L.

Girkin, M.

V. Poher, H. X. Zhang, G. T. Kennedy, C. Griffin, S. Oddos, E. Gu, D. S. Elson, M. Girkin, P. M. W. French, M. D. Dawson, and M. A. A. Neil, “Optical sectioning microscopes with no moving parts using a micro-stripe array light emitting diode,” Opt. Express 15 (2007).
[CrossRef] [PubMed]

Goetze, B.

M. F. Langhorst, J. Schaffer, and B. Goetze, “Structure brings clarity: structured illumination microscopy in cell biology,” Biotechnol. J. 4, 858–865 (2009).
[CrossRef] [PubMed]

Griffin, C.

V. Poher, H. X. Zhang, G. T. Kennedy, C. Griffin, S. Oddos, E. Gu, D. S. Elson, M. Girkin, P. M. W. French, M. D. Dawson, and M. A. A. Neil, “Optical sectioning microscopes with no moving parts using a micro-stripe array light emitting diode,” Opt. Express 15 (2007).
[CrossRef] [PubMed]

Griffis, E. R.

P. Kner, B. B. Chhun, E. R. Griffis, L. Winoto, and M. G. L. Gustafsson, “Super-resolution video microscopy of live cells by structured illumination,” Nat. Met. 6, 339–344 (2009).
[CrossRef]

Gruppetta, S.

Gu, E.

V. Poher, H. X. Zhang, G. T. Kennedy, C. Griffin, S. Oddos, E. Gu, D. S. Elson, M. Girkin, P. M. W. French, M. D. Dawson, and M. A. A. Neil, “Optical sectioning microscopes with no moving parts using a micro-stripe array light emitting diode,” Opt. Express 15 (2007).
[CrossRef] [PubMed]

Guerin, C. J.

A. L. Barlow and C. J. Guerin, “Quantization of widefield fluorescence images using structured illumination and image analysis software,” Microsc. Res. Tech. 70, 76–84 (2007).
[CrossRef]

Gustafsson, M. G. L.

P. Kner, B. B. Chhun, E. R. Griffis, L. Winoto, and M. G. L. Gustafsson, “Super-resolution video microscopy of live cells by structured illumination,” Nat. Met. 6, 339–344 (2009).
[CrossRef]

L. Schermelleh, P. M. Carlton, S. Haase, L. Shao, L. Winoto, P. Kner, B. Burke, M. C. Cardoso, D. A. Agard, M. G. L. Gustafsson, H. Leonhardt, and J. W. Sedat, “Subdiffraction multicolor imaging of the nuclear periphery with 3D structured illumination microscopy,” Science 320, 1332–1336 (2008).
[CrossRef] [PubMed]

M. G. L. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” J. Microsc. 198, 82–87 (2000).
[CrossRef] [PubMed]

Haase, S.

L. Schermelleh, P. M. Carlton, S. Haase, L. Shao, L. Winoto, P. Kner, B. Burke, M. C. Cardoso, D. A. Agard, M. G. L. Gustafsson, H. Leonhardt, and J. W. Sedat, “Subdiffraction multicolor imaging of the nuclear periphery with 3D structured illumination microscopy,” Science 320, 1332–1336 (2008).
[CrossRef] [PubMed]

Hagen, N.

Heintzmann, R.

G. Best, R. Amberger, D. Baddeley, T. Ach, S. Dithmar, R. Heintzmann, and C. Cremer, “Structured illumination microscopy of autofluorescent aggregations in human tissue,” Micron 42, 330–335 (2011).
[CrossRef]

K. Wicker and R. Heintzmann, “Single-shot optical sectioning using polarization-coded structured illumination,” J. Opt. 12, 084010 (2010).
[CrossRef]

L. M. Hirvonen, K. Wicker, O. Mandula, and R. Heintzmann, “Structured illumination microscopy of a living cell,” Eur. Biophys. J. 38, 807–813 (2009).
[CrossRef] [PubMed]

R. Heintzmann and P. A. Benedetti, “High-resolution image reconstruction in fluorescence microscopy with patterned excitation,” Appl. Opt. 45, 5037–5045 (2006).
[CrossRef] [PubMed]

R. Heintzmann and C. Cremer, “Laterally modulated excitation microscopy: improvement of resolution by using a diffraction grating,” in EUROPTO Conference on Optical Microscopy, Proc. SPIE 3568, 185–196 (1999).
[CrossRef]

Hirvonen, L. M.

L. M. Hirvonen, K. Wicker, O. Mandula, and R. Heintzmann, “Structured illumination microscopy of a living cell,” Eur. Biophys. J. 38, 807–813 (2009).
[CrossRef] [PubMed]

Hsu, K.

Huser, T. R.

V. C. Cogger, G. P. McNerney, T. Nyunt, L. D. DeLeve, P. McCourt, B. Smedsrød, D. G. L. Couteur, and T. R. Huser, “Three-dimensional structured illumination microscopy of liver sinusoidal endothelial cell fenestrations,” J. Struct. Biol. 171, 382–388 (2010).
[CrossRef] [PubMed]

Iliev, A. I.

A. Esposito, S. Schlachter, G. S. Schierle, A. D. Elder, A. Diaspro, F. S. Wouters, C. F. Kaminski, and A. I. Iliev, “Quantitative fluorescence microscopy techniques,” Methods Mol. Biol. 586, 117–142 (2009).
[CrossRef] [PubMed]

Jones, R.

M. J. Cole, J. Siegel, S. E. D. Webb, R. Jones, K. Dowling, M. J. Dayel, D. Parsons-Karavassis, P. M. W. French, M. J. Lever, L. O. D. Sucharov, M. A. A. Neil, R. Juvskaitis, and T. Wilson, “Time-domain whole-field fluorescence lifetime imaging with optical sectioning,” J. Microsc. 203, 246–257 (2001).
[CrossRef] [PubMed]

Juškaitis, R.

M. A. A. Neil, R. Juškaitis, and T. Wilson, “Real time 3D fluorescence microscopy by two beam interference illumination,” Opt. Commun. 153, 1–4 (1998).
[CrossRef]

M. A. A. Neil, T. Wilson, and R. Juškaitis, “A light efficient optical sectioning microscope,” J. Microsc. 189, 114–117 (1998).
[CrossRef]

M. A. A. Neil, R. Juškaitis, and T. Wilson, “Method of obtaining optical sectioning by using structured light in a conventional microscope,” Opt. Lett. 22, 1905–1907 (1997).
[CrossRef]

Juvskaitis, R.

M. J. Cole, J. Siegel, S. E. D. Webb, R. Jones, K. Dowling, M. J. Dayel, D. Parsons-Karavassis, P. M. W. French, M. J. Lever, L. O. D. Sucharov, M. A. A. Neil, R. Juvskaitis, and T. Wilson, “Time-domain whole-field fluorescence lifetime imaging with optical sectioning,” J. Microsc. 203, 246–257 (2001).
[CrossRef] [PubMed]

Kaminski, C. F.

A. Esposito, S. Schlachter, G. S. Schierle, A. D. Elder, A. Diaspro, F. S. Wouters, C. F. Kaminski, and A. I. Iliev, “Quantitative fluorescence microscopy techniques,” Methods Mol. Biol. 586, 117–142 (2009).
[CrossRef] [PubMed]

Karadaglic, D.

D. Karadaglić and T. Wilson, “Image formation in structured illumination wide-field fluorescence microscopy,” Micron 39, 808–818 (2008).
[CrossRef]

Kedziora, K. M.

K. M. Kedziora, J. H. M. Prehn, J. Dobruck, and T. Bernas, “Method of calibration of a fluorescence microscope for quantitative studies,” J. Microsc. 244, 101–111 (2011).
[CrossRef] [PubMed]

Keller, P. J.

P. J. Keller, A. D. Schmidt, A. Santella, K. Khairy, Z. Bao, J. Wittbrodt, and E. H. K. Stelzer, “Fast, high-contrast imaging of animal development with scanned light sheet-based structured-illumination microscopy,” Nat. Meth. 7, 637–645 (2010).
[CrossRef]

Kennedy, G. T.

V. Poher, H. X. Zhang, G. T. Kennedy, C. Griffin, S. Oddos, E. Gu, D. S. Elson, M. Girkin, P. M. W. French, M. D. Dawson, and M. A. A. Neil, “Optical sectioning microscopes with no moving parts using a micro-stripe array light emitting diode,” Opt. Express 15 (2007).
[CrossRef] [PubMed]

Kester, R. T.

Khairy, K.

P. J. Keller, A. D. Schmidt, A. Santella, K. Khairy, Z. Bao, J. Wittbrodt, and E. H. K. Stelzer, “Fast, high-contrast imaging of animal development with scanned light sheet-based structured-illumination microscopy,” Nat. Meth. 7, 637–645 (2010).
[CrossRef]

Kim, M. K.

Kner, P.

P. Kner, B. B. Chhun, E. R. Griffis, L. Winoto, and M. G. L. Gustafsson, “Super-resolution video microscopy of live cells by structured illumination,” Nat. Met. 6, 339–344 (2009).
[CrossRef]

L. Schermelleh, P. M. Carlton, S. Haase, L. Shao, L. Winoto, P. Kner, B. Burke, M. C. Cardoso, D. A. Agard, M. G. L. Gustafsson, H. Leonhardt, and J. W. Sedat, “Subdiffraction multicolor imaging of the nuclear periphery with 3D structured illumination microscopy,” Science 320, 1332–1336 (2008).
[CrossRef] [PubMed]

Konecky, S. D.

Krzewina, L. G.

Langhorst, M. F.

M. F. Langhorst, J. Schaffer, and B. Goetze, “Structure brings clarity: structured illumination microscopy in cell biology,” Biotechnol. J. 4, 858–865 (2009).
[CrossRef] [PubMed]

Leonhardt, H.

L. Schermelleh, P. M. Carlton, S. Haase, L. Shao, L. Winoto, P. Kner, B. Burke, M. C. Cardoso, D. A. Agard, M. G. L. Gustafsson, H. Leonhardt, and J. W. Sedat, “Subdiffraction multicolor imaging of the nuclear periphery with 3D structured illumination microscopy,” Science 320, 1332–1336 (2008).
[CrossRef] [PubMed]

Lever, M. J.

M. J. Cole, J. Siegel, S. E. D. Webb, R. Jones, K. Dowling, M. J. Dayel, D. Parsons-Karavassis, P. M. W. French, M. J. Lever, L. O. D. Sucharov, M. A. A. Neil, R. Juvskaitis, and T. Wilson, “Time-domain whole-field fluorescence lifetime imaging with optical sectioning,” J. Microsc. 203, 246–257 (2001).
[CrossRef] [PubMed]

Mandula, O.

L. M. Hirvonen, K. Wicker, O. Mandula, and R. Heintzmann, “Structured illumination microscopy of a living cell,” Eur. Biophys. J. 38, 807–813 (2009).
[CrossRef] [PubMed]

Mazhar, A.

T. A. Erickson, A. Mazhar, D. Cuccia, A. J. Durkin, and J. W. Tunnell, “Lookup-table method for imaging optical properties with structured illumination beyond the diffusion theory regime,” J. Biomed. Opt. 15, 036013 (2010).
[CrossRef] [PubMed]

S. D. Konecky, A. Mazhar, D. Cuccia, A. J. Durkin, J. C. Schotland, and B. J. Tromberg, “Quantitative optical tomography of sub-surface heterogeneities using spatially modulated structured light,” Opt. Express 17, 14780–14790 (2009).
[CrossRef] [PubMed]

McCourt, P.

V. C. Cogger, G. P. McNerney, T. Nyunt, L. D. DeLeve, P. McCourt, B. Smedsrød, D. G. L. Couteur, and T. R. Huser, “Three-dimensional structured illumination microscopy of liver sinusoidal endothelial cell fenestrations,” J. Struct. Biol. 171, 382–388 (2010).
[CrossRef] [PubMed]

McNerney, G. P.

V. C. Cogger, G. P. McNerney, T. Nyunt, L. D. DeLeve, P. McCourt, B. Smedsrød, D. G. L. Couteur, and T. R. Huser, “Three-dimensional structured illumination microscopy of liver sinusoidal endothelial cell fenestrations,” J. Struct. Biol. 171, 382–388 (2010).
[CrossRef] [PubMed]

Mertz, J.

Mortara, L.

L. Mortara and A. Fowler, “Evaluations of charge-coupled device (CCD) performance for astronomical use,” in Solid state imagers for astronomy, Proc. SPIE 290, 28–33 (1981).

Murray, J. M.

J. M. Murray, P. L. Appleton, J. R. Swedlow, and J. C. Waters, “Evaluating performance in three-dimensional fluorescence microscopy,” J. Microsc. 228, 390–405 (2007).
[CrossRef] [PubMed]

Neil, M. A. A.

V. Poher, H. X. Zhang, G. T. Kennedy, C. Griffin, S. Oddos, E. Gu, D. S. Elson, M. Girkin, P. M. W. French, M. D. Dawson, and M. A. A. Neil, “Optical sectioning microscopes with no moving parts using a micro-stripe array light emitting diode,” Opt. Express 15 (2007).
[CrossRef] [PubMed]

M. J. Cole, J. Siegel, S. E. D. Webb, R. Jones, K. Dowling, M. J. Dayel, D. Parsons-Karavassis, P. M. W. French, M. J. Lever, L. O. D. Sucharov, M. A. A. Neil, R. Juvskaitis, and T. Wilson, “Time-domain whole-field fluorescence lifetime imaging with optical sectioning,” J. Microsc. 203, 246–257 (2001).
[CrossRef] [PubMed]

M. A. A. Neil, R. Juškaitis, and T. Wilson, “Real time 3D fluorescence microscopy by two beam interference illumination,” Opt. Commun. 153, 1–4 (1998).
[CrossRef]

M. A. A. Neil, T. Wilson, and R. Juškaitis, “A light efficient optical sectioning microscope,” J. Microsc. 189, 114–117 (1998).
[CrossRef]

M. A. A. Neil, R. Juškaitis, and T. Wilson, “Method of obtaining optical sectioning by using structured light in a conventional microscope,” Opt. Lett. 22, 1905–1907 (1997).
[CrossRef]

Nyunt, T.

V. C. Cogger, G. P. McNerney, T. Nyunt, L. D. DeLeve, P. McCourt, B. Smedsrød, D. G. L. Couteur, and T. R. Huser, “Three-dimensional structured illumination microscopy of liver sinusoidal endothelial cell fenestrations,” J. Struct. Biol. 171, 382–388 (2010).
[CrossRef] [PubMed]

Oddos, S.

V. Poher, H. X. Zhang, G. T. Kennedy, C. Griffin, S. Oddos, E. Gu, D. S. Elson, M. Girkin, P. M. W. French, M. D. Dawson, and M. A. A. Neil, “Optical sectioning microscopes with no moving parts using a micro-stripe array light emitting diode,” Opt. Express 15 (2007).
[CrossRef] [PubMed]

Parsons-Karavassis, D.

M. J. Cole, J. Siegel, S. E. D. Webb, R. Jones, K. Dowling, M. J. Dayel, D. Parsons-Karavassis, P. M. W. French, M. J. Lever, L. O. D. Sucharov, M. A. A. Neil, R. Juvskaitis, and T. Wilson, “Time-domain whole-field fluorescence lifetime imaging with optical sectioning,” J. Microsc. 203, 246–257 (2001).
[CrossRef] [PubMed]

Pitter, M. C.

Poher, V.

V. Poher, H. X. Zhang, G. T. Kennedy, C. Griffin, S. Oddos, E. Gu, D. S. Elson, M. Girkin, P. M. W. French, M. D. Dawson, and M. A. A. Neil, “Optical sectioning microscopes with no moving parts using a micro-stripe array light emitting diode,” Opt. Express 15 (2007).
[CrossRef] [PubMed]

Prehn, J. H. M.

K. M. Kedziora, J. H. M. Prehn, J. Dobruck, and T. Bernas, “Method of calibration of a fluorescence microscope for quantitative studies,” J. Microsc. 244, 101–111 (2011).
[CrossRef] [PubMed]

Santella, A.

P. J. Keller, A. D. Schmidt, A. Santella, K. Khairy, Z. Bao, J. Wittbrodt, and E. H. K. Stelzer, “Fast, high-contrast imaging of animal development with scanned light sheet-based structured-illumination microscopy,” Nat. Meth. 7, 637–645 (2010).
[CrossRef]

Schaefer, L. H.

L. H. Schaefer, D. Schuster, and J. Schaffer, “Structured illumination microscopy: artefact analysis and reduction utilizing a parameter optimization approach,” J. Microsc. 216, 165–174 (2004).
[CrossRef] [PubMed]

Schaffer, J.

M. F. Langhorst, J. Schaffer, and B. Goetze, “Structure brings clarity: structured illumination microscopy in cell biology,” Biotechnol. J. 4, 858–865 (2009).
[CrossRef] [PubMed]

L. H. Schaefer, D. Schuster, and J. Schaffer, “Structured illumination microscopy: artefact analysis and reduction utilizing a parameter optimization approach,” J. Microsc. 216, 165–174 (2004).
[CrossRef] [PubMed]

Schermelleh, L.

L. Schermelleh, P. M. Carlton, S. Haase, L. Shao, L. Winoto, P. Kner, B. Burke, M. C. Cardoso, D. A. Agard, M. G. L. Gustafsson, H. Leonhardt, and J. W. Sedat, “Subdiffraction multicolor imaging of the nuclear periphery with 3D structured illumination microscopy,” Science 320, 1332–1336 (2008).
[CrossRef] [PubMed]

Schierle, G. S.

A. Esposito, S. Schlachter, G. S. Schierle, A. D. Elder, A. Diaspro, F. S. Wouters, C. F. Kaminski, and A. I. Iliev, “Quantitative fluorescence microscopy techniques,” Methods Mol. Biol. 586, 117–142 (2009).
[CrossRef] [PubMed]

Schlachter, S.

A. Esposito, S. Schlachter, G. S. Schierle, A. D. Elder, A. Diaspro, F. S. Wouters, C. F. Kaminski, and A. I. Iliev, “Quantitative fluorescence microscopy techniques,” Methods Mol. Biol. 586, 117–142 (2009).
[CrossRef] [PubMed]

Schmidt, A. D.

P. J. Keller, A. D. Schmidt, A. Santella, K. Khairy, Z. Bao, J. Wittbrodt, and E. H. K. Stelzer, “Fast, high-contrast imaging of animal development with scanned light sheet-based structured-illumination microscopy,” Nat. Meth. 7, 637–645 (2010).
[CrossRef]

Schotland, J. C.

Schuster, D.

L. H. Schaefer, D. Schuster, and J. Schaffer, “Structured illumination microscopy: artefact analysis and reduction utilizing a parameter optimization approach,” J. Microsc. 216, 165–174 (2004).
[CrossRef] [PubMed]

Sedat, J. W.

L. Schermelleh, P. M. Carlton, S. Haase, L. Shao, L. Winoto, P. Kner, B. Burke, M. C. Cardoso, D. A. Agard, M. G. L. Gustafsson, H. Leonhardt, and J. W. Sedat, “Subdiffraction multicolor imaging of the nuclear periphery with 3D structured illumination microscopy,” Science 320, 1332–1336 (2008).
[CrossRef] [PubMed]

Shao, L.

L. Schermelleh, P. M. Carlton, S. Haase, L. Shao, L. Winoto, P. Kner, B. Burke, M. C. Cardoso, D. A. Agard, M. G. L. Gustafsson, H. Leonhardt, and J. W. Sedat, “Subdiffraction multicolor imaging of the nuclear periphery with 3D structured illumination microscopy,” Science 320, 1332–1336 (2008).
[CrossRef] [PubMed]

Siegel, J.

M. J. Cole, J. Siegel, S. E. D. Webb, R. Jones, K. Dowling, M. J. Dayel, D. Parsons-Karavassis, P. M. W. French, M. J. Lever, L. O. D. Sucharov, M. A. A. Neil, R. Juvskaitis, and T. Wilson, “Time-domain whole-field fluorescence lifetime imaging with optical sectioning,” J. Microsc. 203, 246–257 (2001).
[CrossRef] [PubMed]

Smedsrød, B.

V. C. Cogger, G. P. McNerney, T. Nyunt, L. D. DeLeve, P. McCourt, B. Smedsrød, D. G. L. Couteur, and T. R. Huser, “Three-dimensional structured illumination microscopy of liver sinusoidal endothelial cell fenestrations,” J. Struct. Biol. 171, 382–388 (2010).
[CrossRef] [PubMed]

Somekh, M. G.

Stelzer, E. H. K.

P. J. Keller, A. D. Schmidt, A. Santella, K. Khairy, Z. Bao, J. Wittbrodt, and E. H. K. Stelzer, “Fast, high-contrast imaging of animal development with scanned light sheet-based structured-illumination microscopy,” Nat. Meth. 7, 637–645 (2010).
[CrossRef]

Sucharov, L. O. D.

M. J. Cole, J. Siegel, S. E. D. Webb, R. Jones, K. Dowling, M. J. Dayel, D. Parsons-Karavassis, P. M. W. French, M. J. Lever, L. O. D. Sucharov, M. A. A. Neil, R. Juvskaitis, and T. Wilson, “Time-domain whole-field fluorescence lifetime imaging with optical sectioning,” J. Microsc. 203, 246–257 (2001).
[CrossRef] [PubMed]

Swedlow, J. R.

J. M. Murray, P. L. Appleton, J. R. Swedlow, and J. C. Waters, “Evaluating performance in three-dimensional fluorescence microscopy,” J. Microsc. 228, 390–405 (2007).
[CrossRef] [PubMed]

Tkaczyk, T. S.

Tromberg, B. J.

Tunnell, J. W.

T. A. Erickson, A. Mazhar, D. Cuccia, A. J. Durkin, and J. W. Tunnell, “Lookup-table method for imaging optical properties with structured illumination beyond the diffusion theory regime,” J. Biomed. Opt. 15, 036013 (2010).
[CrossRef] [PubMed]

Ventalon, C.

Waters, J. C.

J. C. Waters, “Accuracy and precision in quantitative fluorescence microscopy,” J. Cell Biol. 1858, 1135–1148 (2009).
[CrossRef]

J. M. Murray, P. L. Appleton, J. R. Swedlow, and J. C. Waters, “Evaluating performance in three-dimensional fluorescence microscopy,” J. Microsc. 228, 390–405 (2007).
[CrossRef] [PubMed]

Webb, S. E. D.

M. J. Cole, J. Siegel, S. E. D. Webb, R. Jones, K. Dowling, M. J. Dayel, D. Parsons-Karavassis, P. M. W. French, M. J. Lever, L. O. D. Sucharov, M. A. A. Neil, R. Juvskaitis, and T. Wilson, “Time-domain whole-field fluorescence lifetime imaging with optical sectioning,” J. Microsc. 203, 246–257 (2001).
[CrossRef] [PubMed]

Wicker, K.

K. Wicker and R. Heintzmann, “Single-shot optical sectioning using polarization-coded structured illumination,” J. Opt. 12, 084010 (2010).
[CrossRef]

L. M. Hirvonen, K. Wicker, O. Mandula, and R. Heintzmann, “Structured illumination microscopy of a living cell,” Eur. Biophys. J. 38, 807–813 (2009).
[CrossRef] [PubMed]

Wilson, T.

T. Wilson, “Optical sectioning in fluorescence microscopy,” J. Microsc. 242, 111–116 (2010).
[CrossRef] [PubMed]

D. Karadaglić and T. Wilson, “Image formation in structured illumination wide-field fluorescence microscopy,” Micron 39, 808–818 (2008).
[CrossRef]

M. J. Cole, J. Siegel, S. E. D. Webb, R. Jones, K. Dowling, M. J. Dayel, D. Parsons-Karavassis, P. M. W. French, M. J. Lever, L. O. D. Sucharov, M. A. A. Neil, R. Juvskaitis, and T. Wilson, “Time-domain whole-field fluorescence lifetime imaging with optical sectioning,” J. Microsc. 203, 246–257 (2001).
[CrossRef] [PubMed]

M. A. A. Neil, R. Juškaitis, and T. Wilson, “Real time 3D fluorescence microscopy by two beam interference illumination,” Opt. Commun. 153, 1–4 (1998).
[CrossRef]

M. A. A. Neil, T. Wilson, and R. Juškaitis, “A light efficient optical sectioning microscope,” J. Microsc. 189, 114–117 (1998).
[CrossRef]

M. A. A. Neil, R. Juškaitis, and T. Wilson, “Method of obtaining optical sectioning by using structured light in a conventional microscope,” Opt. Lett. 22, 1905–1907 (1997).
[CrossRef]

Winoto, L.

P. Kner, B. B. Chhun, E. R. Griffis, L. Winoto, and M. G. L. Gustafsson, “Super-resolution video microscopy of live cells by structured illumination,” Nat. Met. 6, 339–344 (2009).
[CrossRef]

L. Schermelleh, P. M. Carlton, S. Haase, L. Shao, L. Winoto, P. Kner, B. Burke, M. C. Cardoso, D. A. Agard, M. G. L. Gustafsson, H. Leonhardt, and J. W. Sedat, “Subdiffraction multicolor imaging of the nuclear periphery with 3D structured illumination microscopy,” Science 320, 1332–1336 (2008).
[CrossRef] [PubMed]

Wittbrodt, J.

P. J. Keller, A. D. Schmidt, A. Santella, K. Khairy, Z. Bao, J. Wittbrodt, and E. H. K. Stelzer, “Fast, high-contrast imaging of animal development with scanned light sheet-based structured-illumination microscopy,” Nat. Meth. 7, 637–645 (2010).
[CrossRef]

Wouters, F. S.

A. Esposito, S. Schlachter, G. S. Schierle, A. D. Elder, A. Diaspro, F. S. Wouters, C. F. Kaminski, and A. I. Iliev, “Quantitative fluorescence microscopy techniques,” Methods Mol. Biol. 586, 117–142 (2009).
[CrossRef] [PubMed]

Zhang, H. X.

V. Poher, H. X. Zhang, G. T. Kennedy, C. Griffin, S. Oddos, E. Gu, D. S. Elson, M. Girkin, P. M. W. French, M. D. Dawson, and M. A. A. Neil, “Optical sectioning microscopes with no moving parts using a micro-stripe array light emitting diode,” Opt. Express 15 (2007).
[CrossRef] [PubMed]

Appl. Opt. (1)

Biomed. Opt. Express (1)

Biotechnol. J. (1)

M. F. Langhorst, J. Schaffer, and B. Goetze, “Structure brings clarity: structured illumination microscopy in cell biology,” Biotechnol. J. 4, 858–865 (2009).
[CrossRef] [PubMed]

Eur. Biophys. J. (1)

L. M. Hirvonen, K. Wicker, O. Mandula, and R. Heintzmann, “Structured illumination microscopy of a living cell,” Eur. Biophys. J. 38, 807–813 (2009).
[CrossRef] [PubMed]

J. Biomed. Opt. (1)

T. A. Erickson, A. Mazhar, D. Cuccia, A. J. Durkin, and J. W. Tunnell, “Lookup-table method for imaging optical properties with structured illumination beyond the diffusion theory regime,” J. Biomed. Opt. 15, 036013 (2010).
[CrossRef] [PubMed]

J. Cell Biol. (1)

J. C. Waters, “Accuracy and precision in quantitative fluorescence microscopy,” J. Cell Biol. 1858, 1135–1148 (2009).
[CrossRef]

J. Microsc. (7)

M. A. A. Neil, T. Wilson, and R. Juškaitis, “A light efficient optical sectioning microscope,” J. Microsc. 189, 114–117 (1998).
[CrossRef]

M. J. Cole, J. Siegel, S. E. D. Webb, R. Jones, K. Dowling, M. J. Dayel, D. Parsons-Karavassis, P. M. W. French, M. J. Lever, L. O. D. Sucharov, M. A. A. Neil, R. Juvskaitis, and T. Wilson, “Time-domain whole-field fluorescence lifetime imaging with optical sectioning,” J. Microsc. 203, 246–257 (2001).
[CrossRef] [PubMed]

L. H. Schaefer, D. Schuster, and J. Schaffer, “Structured illumination microscopy: artefact analysis and reduction utilizing a parameter optimization approach,” J. Microsc. 216, 165–174 (2004).
[CrossRef] [PubMed]

T. Wilson, “Optical sectioning in fluorescence microscopy,” J. Microsc. 242, 111–116 (2010).
[CrossRef] [PubMed]

J. M. Murray, P. L. Appleton, J. R. Swedlow, and J. C. Waters, “Evaluating performance in three-dimensional fluorescence microscopy,” J. Microsc. 228, 390–405 (2007).
[CrossRef] [PubMed]

M. G. L. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” J. Microsc. 198, 82–87 (2000).
[CrossRef] [PubMed]

K. M. Kedziora, J. H. M. Prehn, J. Dobruck, and T. Bernas, “Method of calibration of a fluorescence microscope for quantitative studies,” J. Microsc. 244, 101–111 (2011).
[CrossRef] [PubMed]

J. Opt. (1)

K. Wicker and R. Heintzmann, “Single-shot optical sectioning using polarization-coded structured illumination,” J. Opt. 12, 084010 (2010).
[CrossRef]

J. Opt. Soc. Am. A (2)

J. Struct. Biol. (1)

V. C. Cogger, G. P. McNerney, T. Nyunt, L. D. DeLeve, P. McCourt, B. Smedsrød, D. G. L. Couteur, and T. R. Huser, “Three-dimensional structured illumination microscopy of liver sinusoidal endothelial cell fenestrations,” J. Struct. Biol. 171, 382–388 (2010).
[CrossRef] [PubMed]

Methods Mol. Biol. (1)

A. Esposito, S. Schlachter, G. S. Schierle, A. D. Elder, A. Diaspro, F. S. Wouters, C. F. Kaminski, and A. I. Iliev, “Quantitative fluorescence microscopy techniques,” Methods Mol. Biol. 586, 117–142 (2009).
[CrossRef] [PubMed]

Micron (2)

G. Best, R. Amberger, D. Baddeley, T. Ach, S. Dithmar, R. Heintzmann, and C. Cremer, “Structured illumination microscopy of autofluorescent aggregations in human tissue,” Micron 42, 330–335 (2011).
[CrossRef]

D. Karadaglić and T. Wilson, “Image formation in structured illumination wide-field fluorescence microscopy,” Micron 39, 808–818 (2008).
[CrossRef]

Microsc. Res. Tech. (1)

A. L. Barlow and C. J. Guerin, “Quantization of widefield fluorescence images using structured illumination and image analysis software,” Microsc. Res. Tech. 70, 76–84 (2007).
[CrossRef]

Nat. Met. (1)

P. Kner, B. B. Chhun, E. R. Griffis, L. Winoto, and M. G. L. Gustafsson, “Super-resolution video microscopy of live cells by structured illumination,” Nat. Met. 6, 339–344 (2009).
[CrossRef]

Nat. Meth. (1)

P. J. Keller, A. D. Schmidt, A. Santella, K. Khairy, Z. Bao, J. Wittbrodt, and E. H. K. Stelzer, “Fast, high-contrast imaging of animal development with scanned light sheet-based structured-illumination microscopy,” Nat. Meth. 7, 637–645 (2010).
[CrossRef]

Opt. Commun. (1)

M. A. A. Neil, R. Juškaitis, and T. Wilson, “Real time 3D fluorescence microscopy by two beam interference illumination,” Opt. Commun. 153, 1–4 (1998).
[CrossRef]

Opt. Express (5)

Opt. Lett. (2)

Proc. SPIE (2)

L. Mortara and A. Fowler, “Evaluations of charge-coupled device (CCD) performance for astronomical use,” in Solid state imagers for astronomy, Proc. SPIE 290, 28–33 (1981).

R. Heintzmann and C. Cremer, “Laterally modulated excitation microscopy: improvement of resolution by using a diffraction grating,” in EUROPTO Conference on Optical Microscopy, Proc. SPIE 3568, 185–196 (1999).
[CrossRef]

Science (1)

L. Schermelleh, P. M. Carlton, S. Haase, L. Shao, L. Winoto, P. Kner, B. Burke, M. C. Cardoso, D. A. Agard, M. G. L. Gustafsson, H. Leonhardt, and J. W. Sedat, “Subdiffraction multicolor imaging of the nuclear periphery with 3D structured illumination microscopy,” Science 320, 1332–1336 (2008).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

A histogram of the estimated modulation contrast, m̂, obtained from (15).

Fig. 2
Fig. 2

Signal vs. variance measurement, showing experimental data (dots) and the fitted line. The line slope of 4.1 gives an estimate for the gain of g = 4.1 photons/count.

Tables (2)

Tables Icon

Table 1 Measurements on a sample of five different fluorescent beads without out-of-focus light. These are the measured mean widefield intensity 〈f〉 and its standard deviation σm(f), the calculated widefield intensity 〈iw〉 and its standard deviation σm(iw), and the corresponding ratios r obtained with Eq. (17). The modulation contrast m used to calculate 〈f〉 is estimated using Eq. (15).

Tables Icon

Table 2 The mean intensity of wide-field images, 〈iw〉, and standard deviation σm of five different fluorescent beads, obtained from experiment and theory.

Equations (31)

Equations on this page are rendered with MathJax. Learn more.

s i ( x , y ) = 1 2 [ 1 + m cos ( ν x + ϕ i ) ] ,
g i ( x , y ) = 1 2 d ( x , y ) + s i ( x , y ) f ( x , y )
i std ( x , y ) = ( g 1 g 2 ) 2 + ( g 1 g 3 ) 3 + ( g 2 g 3 ) 2 ,
i std = 3 m 2 2 f ,
i ( x , y ) = 2 2 3 m ( g 1 g 2 ) 2 + ( g 1 g 3 ) 3 + ( g 2 g 3 ) 2 .
i w = 2 3 ( g 1 + g 2 + g 3 ) .
i w = d + f .
i w 2 = 4 9 ( g 1 + g 2 + g 3 ) 2 = 4 9 g 1 2 + g 2 2 + g 3 3 + g 1 g 2 + g 1 g 3 + g 1 g 2 + g 2 g 3 + g 1 g 3 + g 2 g 3 = 4 9 9 4 d 2 + f 2 ( s 1 2 + s 2 2 + s 3 2 ) + 3 2 d f ( s 1 + s 2 + s 3 ) + 2 f 2 ( s 1 s 2 + s 1 s 3 + s 2 s 3 ) = d 2 + 4 9 s 1 2 + s 2 2 + s 3 2 f 2 + 4 3 s 1 + s 2 + s 3 d f + 8 9 s 1 s 2 + s 1 s 3 + s 2 s 3 f 2 .
s 1 + s 2 + s 3 = 3 2 ,
s 1 2 + s 2 2 + s 3 2 = 3 4 + 3 8 m 2 ,
s 1 s 2 + s 1 s 3 + s 2 s 3 = 3 4 3 16 m 2 ,
i w 2 = d 2 + var ( d ) + 2 d f + f 2 ,
i w 2 = ( d + f ) 2 = d 2 + 2 d f + f 2 .
var ( i w ) = var ( d ) + var ( f ) .
i 2 = 8 9 m 2 [ ( g 1 g 2 ) 2 + ( g 1 g 3 ) 2 + ( g 2 g 3 ) 2 ] .
( g 1 g 2 ) 2 = ( 1 2 d 1 + s 1 f 1 1 2 d 2 s 2 f 2 ) 2 = 1 4 d 1 2 + 1 4 d 2 2 1 2 d 1 d 2 + s 1 2 f 1 2 s 2 2 f 2 2 + s 1 d 1 f 1 s 2 d 1 f 2 s 1 d 2 f 1 + s 2 d 2 f 2 2 s 1 s 2 f 1 f 2 .
( g 1 g 2 ) 2 = 1 2 var ( d ) + ( s 1 2 + s 2 2 ) f 2 2 s 1 s 2 f 2 .
i 2 = 8 9 m 2 [ 3 2 var ( d ) 2 ( s 1 s 2 + s 1 s 3 + s 2 s 3 ) f 2 + 2 ( s 1 2 + s 2 2 + s 3 2 ) f 2 ] = 8 9 m 2 [ 3 2 var ( d ) 2 ( 3 4 3 16 m 2 ) f 2 + 2 ( 3 4 + 3 8 m 2 ) f 2 ] = 4 3 m 2 var ( d ) + f 2 + ( 2 3 + 4 3 m 2 ) var ( f ) ,
var ( i ) = 4 3 m 2 var ( d ) + ( 2 3 + 4 3 m 2 ) var ( f ) .
var ( i ) 4 3 m 2 [ var ( d ) + var ( f ) ] ,
SNR ( i ) i 2 m 3 [ var ( d ) + var ( f ) ] 1 / 2 = m 3 2 f σ ( i w ) .
μ i ( x , y ) = g i ( x , y ) i w ( x , y ) = g i 2 3 ( g 1 + g 2 + g 3 ) .
( μ 1 1 2 ) 2 + ( μ 2 1 2 ) 2 + ( μ 3 1 2 ) 2 = m 2 4 [ cos 2 ( ν x ) + cos 2 ( ν x + 2 π 3 ) + cos 2 ( ν x + 4 π 3 ) ] = 3 8 m 2 ,
m ^ ( x , y ) = [ 8 3 ( ( μ 1 1 2 ) 2 + ( μ 2 1 2 ) 2 + ( μ 3 1 2 ) 2 ) ] 1 / 2 .
i ( x , y ) = 1 3 [ ( g 1 g 2 ) 2 + ( g 1 g 3 ) 2 + ( g 2 g 3 ) 2 ] 1 / 2 [ ( g 1 i w 1 2 ) + ( g 2 i w 1 2 ) + ( g 3 i w 1 2 ) ] 1 / 2
r = σ m σ p = 112 counts × 4.1 photons / count ( 4.33 × 10 4 counts × 4.1 photons / count ) 1 / 2 = 1.09.
r = σ m ( photons ) σ p ( photons ) = σ m ( photons ) [ f ( photons ) ] 1 / 2 = σ m ( counts ) × 4.1 photons / count [ f ( counts ) × 4.1 photons / count ) ] 1 / 2 .
r ^ = σ m σ p = var ( i ) f = [ ( 2 3 + 4 3 m 2 ) var ( f ) ] 1 / 2 f = ( 2 3 + 4 3 m 2 ) 1 / 2 = 2.49.
r ^ = σ m σ p = var ( i ) f = 1 f ( 4 3 m 2 [ var ( d ) + ( 1 + m 2 2 ) var ( f ) ] ) 1 / 2 1 f ( 4 3 m 2 [ var ( d ) + var ( f ) ] ) 1 / 2 = 2 m 3 d + f f .
r ^ = 2 m 3 i w f = 2.36 i w / f .
4 3 m 2 < 150 m > 0.094.

Metrics