Abstract

Optical modulation of guided mode resonance (GMR) is demonstrated in a waveguide grating structure (WGS) which contains a disperse-red1 (DR1)-doped poly(methylmethacrylate) (PMMA) cladding layer. The resonance wavelength of a GMR mode can be tuned by pumping the cladding layer with a 442 nm wavelength laser beam, because of photoinduced refractive index change in the layer. The resonance wavelength shifts to shorter wavelength side, and the shift increases with pumping power, up to a maximum shift of 5 nm. A detector was used to monitor the intensity of the light that was reflected from the WGS at the wavelengths of the GMR peak positions, and the WGS was found to exhibit optical modulation with a shortest switching time of less than 0.3s.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Magnusson and S. S. Wang, “New principle for optical filters,” Appl. Phys. Lett. 61(9), 1022–1024 (1992).
    [CrossRef]
  2. A. Sharon, D. Rosenblatt, and A. A. Friesem, “Narrow spectral bandwidths with grating waveguide structures,” Appl. Phys. Lett. 69(27), 4154–4156 (1996).
    [CrossRef]
  3. D. Rosenblatt, A. Sharon, and A. A. Friesem, “Resonant grating waveguide structures,” IEEE J. Quantum Electron. 33(11), 2038–2059 (1997).
    [CrossRef]
  4. R. J. Stockermans and P. L. Rochon, “Narrow-band resonant grating waveguide filters constructed with azobenzene polymers,” Appl. Opt. 38(17), 3714–3719 (1999).
    [CrossRef] [PubMed]
  5. P. Rochon, A. Natansohn, C. L. Callender, and L. Robitaille, “Guided mode resonance filters using polymer films,” Appl. Phys. Lett. 71(8), 1008–1010 (1997).
    [CrossRef]
  6. M. G. Moharam and T. K. Gaylord, “Rigorous coupled-wave analysis of planar-grating diffraction,” J. Opt. Soc. Am. 71(7), 811–818 (1981).
    [CrossRef]
  7. S. S. Wang, R. Magnusson, J. S. Bagby, and M. G. Moharam, “Guided-mode resonances in planar dielectric-layer diffraction gratings,” J. Opt. Soc. Am. A 7(8), 1470–1474 (1990).
    [CrossRef]
  8. G. Levy-Yurista and A. A. Friesem, “Very narrow spectral filters with multilayered grating-waveguide structures,” Appl. Phys. Lett. 77(11), 1596–1598 (2000).
    [CrossRef]
  9. B.-H. Cheong, O. N. Prudnikov, E. Cho, H.-S. Kim, J. Yu, Y.-S. Cho, H.-Y. Choi, and S. T. Shin, “High angular tolerant color filter using subwavelength grating,” Appl. Phys. Lett. 94(21), 213104 (2009).
    [CrossRef]
  10. I. D. Block, N. Ganesh, M. Lu, and B. T. Cunningham, “A sensitivity model for predicting photonic crystal biosensor performance,” IEEE Sens. J. 8(3), 274–280 (2008).
    [CrossRef]
  11. G. Nemova and R. Kashyap, “A compact integrated planar-waveguide refractive-index sensor based on a corrugated metal grating,” J. Lightwave Technol. 25(8), 2244–2250 (2007).
    [CrossRef]
  12. A. Sharon, D. Rosenblatt, A. A. Friesem, H. G. Weber, H. Engel, and R. Steingrueber, “Light modulation with resonant grating-waveguide structures,” Opt. Lett. 21(19), 1564–1566 (1996).
    [CrossRef] [PubMed]
  13. T. Katchalski, G. Levy-Yurista, A. Friesem, G. Martin, R. Hierle, and J. Zyss, “Light modulation with electro-optic polymer-based resonant grating waveguide structures,” Opt. Express 13(12), 4645–4650 (2005).
    [CrossRef] [PubMed]
  14. R. R. Boye, R. W. Ziolkowski, and R. K. Kostuk, “Resonant waveguide-grating switching device with nonlinear optical material,” Appl. Opt. 38(24), 5181–5185 (1999).
    [CrossRef] [PubMed]
  15. Y. Kanamori, T. Kitani, and K. Hane, “Control of guided resonance in a photonic crystal slab using microelectromechanical actuators,” Appl. Phys. Lett. 90(3), 031911 (2007).
    [CrossRef]
  16. D. Nau, R. P. Bertram, K. Buse, T. Zentgraf, J. Kuhl, S. G. Tikhodeev, N. A. Gippius, and H. Giessen, “Optical switching in metallic photonic crystal slabs with photoaddressable polymers,” Appl. Phys. B 82(4), 543–547 (2006).
    [CrossRef]
  17. F. Yang, G. Yen, G. Rasigade, J. A. N. T. Soares, and B. T. Cunningham, “Optically tuned resonant optical reflectance filter,” Appl. Phys. Lett. 92(9), 091115 (2008).
    [CrossRef]
  18. Z. Sekkat and W. Knoll, eds., Photoreactive Organic Thin Films (Academic, San Diego, CA, 2002), and references therein.
  19. Z. Sekkat and M. Dumont, “Photoinduced orientation of azo dyes in polymeric films. Characterization of molecular angular mobility,” Synth. Met. 54(1-3), 373–381 (1993).
    [CrossRef]
  20. V. M. Churikov and C. C. Hsu, “Optical control of third harmonic generation in azo-doped polymethylmethacrylate thin films,” Appl. Phys. Lett. 77(14), 2095–2097 (2000).
    [CrossRef]
  21. V. M. Churikov and C. C. Hsu, “Optically induced anisotropy of third-order susceptibility in azo-dye polymers,” J. Opt. Soc. Am. B 18(11), 1722–1731 (2001).
    [CrossRef]
  22. J. H. Lin, N. D. Lai, and C. C. Hsu, “Optical control of recovery speed of photoinduced third-harmonic generation in azo-copolymer thin films,” Appl. Phys. Lett. 88(13), 131111 (2006).
    [CrossRef]
  23. S. Boonruang, A. Greenwell, and M. G. Moharam, “Broadening the angular tolerance in two-dimensional grating resonance structures at oblique incidence,” Appl. Opt. 46(33), 7982–7992 (2007).
    [CrossRef] [PubMed]
  24. S. Boonruang, A. Greenwell, and M. G. Moharam, “Multiline two-dimensional guided-mode resonant filters,” Appl. Opt. 45(22), 5740–5747 (2006).
    [CrossRef] [PubMed]
  25. N. D. Lai, W. P. Liang, J. H. Lin, and C. C. Hsu, “Rapid fabrication of large-area periodic structures containing well-defined defects by combining holography and mask techniques,” Opt. Express 13(14), 5331–5337 (2005).
    [CrossRef] [PubMed]
  26. N. D. Lai, W. P. Liang, J. H. Lin, C. C. Hsu, and C. H. Lin, “Fabrication of two- and three-dimensional periodic structures by multi-exposure of two-beam interference technique,” Opt. Express 13(23), 9605–9611 (2005).
    [CrossRef] [PubMed]

2009

B.-H. Cheong, O. N. Prudnikov, E. Cho, H.-S. Kim, J. Yu, Y.-S. Cho, H.-Y. Choi, and S. T. Shin, “High angular tolerant color filter using subwavelength grating,” Appl. Phys. Lett. 94(21), 213104 (2009).
[CrossRef]

2008

I. D. Block, N. Ganesh, M. Lu, and B. T. Cunningham, “A sensitivity model for predicting photonic crystal biosensor performance,” IEEE Sens. J. 8(3), 274–280 (2008).
[CrossRef]

F. Yang, G. Yen, G. Rasigade, J. A. N. T. Soares, and B. T. Cunningham, “Optically tuned resonant optical reflectance filter,” Appl. Phys. Lett. 92(9), 091115 (2008).
[CrossRef]

2007

2006

S. Boonruang, A. Greenwell, and M. G. Moharam, “Multiline two-dimensional guided-mode resonant filters,” Appl. Opt. 45(22), 5740–5747 (2006).
[CrossRef] [PubMed]

J. H. Lin, N. D. Lai, and C. C. Hsu, “Optical control of recovery speed of photoinduced third-harmonic generation in azo-copolymer thin films,” Appl. Phys. Lett. 88(13), 131111 (2006).
[CrossRef]

D. Nau, R. P. Bertram, K. Buse, T. Zentgraf, J. Kuhl, S. G. Tikhodeev, N. A. Gippius, and H. Giessen, “Optical switching in metallic photonic crystal slabs with photoaddressable polymers,” Appl. Phys. B 82(4), 543–547 (2006).
[CrossRef]

2005

2001

2000

G. Levy-Yurista and A. A. Friesem, “Very narrow spectral filters with multilayered grating-waveguide structures,” Appl. Phys. Lett. 77(11), 1596–1598 (2000).
[CrossRef]

V. M. Churikov and C. C. Hsu, “Optical control of third harmonic generation in azo-doped polymethylmethacrylate thin films,” Appl. Phys. Lett. 77(14), 2095–2097 (2000).
[CrossRef]

1999

1997

P. Rochon, A. Natansohn, C. L. Callender, and L. Robitaille, “Guided mode resonance filters using polymer films,” Appl. Phys. Lett. 71(8), 1008–1010 (1997).
[CrossRef]

D. Rosenblatt, A. Sharon, and A. A. Friesem, “Resonant grating waveguide structures,” IEEE J. Quantum Electron. 33(11), 2038–2059 (1997).
[CrossRef]

1996

A. Sharon, D. Rosenblatt, and A. A. Friesem, “Narrow spectral bandwidths with grating waveguide structures,” Appl. Phys. Lett. 69(27), 4154–4156 (1996).
[CrossRef]

A. Sharon, D. Rosenblatt, A. A. Friesem, H. G. Weber, H. Engel, and R. Steingrueber, “Light modulation with resonant grating-waveguide structures,” Opt. Lett. 21(19), 1564–1566 (1996).
[CrossRef] [PubMed]

1993

Z. Sekkat and M. Dumont, “Photoinduced orientation of azo dyes in polymeric films. Characterization of molecular angular mobility,” Synth. Met. 54(1-3), 373–381 (1993).
[CrossRef]

1992

R. Magnusson and S. S. Wang, “New principle for optical filters,” Appl. Phys. Lett. 61(9), 1022–1024 (1992).
[CrossRef]

1990

1981

Bagby, J. S.

Bertram, R. P.

D. Nau, R. P. Bertram, K. Buse, T. Zentgraf, J. Kuhl, S. G. Tikhodeev, N. A. Gippius, and H. Giessen, “Optical switching in metallic photonic crystal slabs with photoaddressable polymers,” Appl. Phys. B 82(4), 543–547 (2006).
[CrossRef]

Block, I. D.

I. D. Block, N. Ganesh, M. Lu, and B. T. Cunningham, “A sensitivity model for predicting photonic crystal biosensor performance,” IEEE Sens. J. 8(3), 274–280 (2008).
[CrossRef]

Boonruang, S.

Boye, R. R.

Buse, K.

D. Nau, R. P. Bertram, K. Buse, T. Zentgraf, J. Kuhl, S. G. Tikhodeev, N. A. Gippius, and H. Giessen, “Optical switching in metallic photonic crystal slabs with photoaddressable polymers,” Appl. Phys. B 82(4), 543–547 (2006).
[CrossRef]

Callender, C. L.

P. Rochon, A. Natansohn, C. L. Callender, and L. Robitaille, “Guided mode resonance filters using polymer films,” Appl. Phys. Lett. 71(8), 1008–1010 (1997).
[CrossRef]

Cheong, B.-H.

B.-H. Cheong, O. N. Prudnikov, E. Cho, H.-S. Kim, J. Yu, Y.-S. Cho, H.-Y. Choi, and S. T. Shin, “High angular tolerant color filter using subwavelength grating,” Appl. Phys. Lett. 94(21), 213104 (2009).
[CrossRef]

Cho, E.

B.-H. Cheong, O. N. Prudnikov, E. Cho, H.-S. Kim, J. Yu, Y.-S. Cho, H.-Y. Choi, and S. T. Shin, “High angular tolerant color filter using subwavelength grating,” Appl. Phys. Lett. 94(21), 213104 (2009).
[CrossRef]

Cho, Y.-S.

B.-H. Cheong, O. N. Prudnikov, E. Cho, H.-S. Kim, J. Yu, Y.-S. Cho, H.-Y. Choi, and S. T. Shin, “High angular tolerant color filter using subwavelength grating,” Appl. Phys. Lett. 94(21), 213104 (2009).
[CrossRef]

Choi, H.-Y.

B.-H. Cheong, O. N. Prudnikov, E. Cho, H.-S. Kim, J. Yu, Y.-S. Cho, H.-Y. Choi, and S. T. Shin, “High angular tolerant color filter using subwavelength grating,” Appl. Phys. Lett. 94(21), 213104 (2009).
[CrossRef]

Churikov, V. M.

V. M. Churikov and C. C. Hsu, “Optically induced anisotropy of third-order susceptibility in azo-dye polymers,” J. Opt. Soc. Am. B 18(11), 1722–1731 (2001).
[CrossRef]

V. M. Churikov and C. C. Hsu, “Optical control of third harmonic generation in azo-doped polymethylmethacrylate thin films,” Appl. Phys. Lett. 77(14), 2095–2097 (2000).
[CrossRef]

Cunningham, B. T.

F. Yang, G. Yen, G. Rasigade, J. A. N. T. Soares, and B. T. Cunningham, “Optically tuned resonant optical reflectance filter,” Appl. Phys. Lett. 92(9), 091115 (2008).
[CrossRef]

I. D. Block, N. Ganesh, M. Lu, and B. T. Cunningham, “A sensitivity model for predicting photonic crystal biosensor performance,” IEEE Sens. J. 8(3), 274–280 (2008).
[CrossRef]

Dumont, M.

Z. Sekkat and M. Dumont, “Photoinduced orientation of azo dyes in polymeric films. Characterization of molecular angular mobility,” Synth. Met. 54(1-3), 373–381 (1993).
[CrossRef]

Engel, H.

Friesem, A.

Friesem, A. A.

G. Levy-Yurista and A. A. Friesem, “Very narrow spectral filters with multilayered grating-waveguide structures,” Appl. Phys. Lett. 77(11), 1596–1598 (2000).
[CrossRef]

D. Rosenblatt, A. Sharon, and A. A. Friesem, “Resonant grating waveguide structures,” IEEE J. Quantum Electron. 33(11), 2038–2059 (1997).
[CrossRef]

A. Sharon, D. Rosenblatt, and A. A. Friesem, “Narrow spectral bandwidths with grating waveguide structures,” Appl. Phys. Lett. 69(27), 4154–4156 (1996).
[CrossRef]

A. Sharon, D. Rosenblatt, A. A. Friesem, H. G. Weber, H. Engel, and R. Steingrueber, “Light modulation with resonant grating-waveguide structures,” Opt. Lett. 21(19), 1564–1566 (1996).
[CrossRef] [PubMed]

Ganesh, N.

I. D. Block, N. Ganesh, M. Lu, and B. T. Cunningham, “A sensitivity model for predicting photonic crystal biosensor performance,” IEEE Sens. J. 8(3), 274–280 (2008).
[CrossRef]

Gaylord, T. K.

Giessen, H.

D. Nau, R. P. Bertram, K. Buse, T. Zentgraf, J. Kuhl, S. G. Tikhodeev, N. A. Gippius, and H. Giessen, “Optical switching in metallic photonic crystal slabs with photoaddressable polymers,” Appl. Phys. B 82(4), 543–547 (2006).
[CrossRef]

Gippius, N. A.

D. Nau, R. P. Bertram, K. Buse, T. Zentgraf, J. Kuhl, S. G. Tikhodeev, N. A. Gippius, and H. Giessen, “Optical switching in metallic photonic crystal slabs with photoaddressable polymers,” Appl. Phys. B 82(4), 543–547 (2006).
[CrossRef]

Greenwell, A.

Hane, K.

Y. Kanamori, T. Kitani, and K. Hane, “Control of guided resonance in a photonic crystal slab using microelectromechanical actuators,” Appl. Phys. Lett. 90(3), 031911 (2007).
[CrossRef]

Hierle, R.

Hsu, C. C.

Kanamori, Y.

Y. Kanamori, T. Kitani, and K. Hane, “Control of guided resonance in a photonic crystal slab using microelectromechanical actuators,” Appl. Phys. Lett. 90(3), 031911 (2007).
[CrossRef]

Kashyap, R.

Katchalski, T.

Kim, H.-S.

B.-H. Cheong, O. N. Prudnikov, E. Cho, H.-S. Kim, J. Yu, Y.-S. Cho, H.-Y. Choi, and S. T. Shin, “High angular tolerant color filter using subwavelength grating,” Appl. Phys. Lett. 94(21), 213104 (2009).
[CrossRef]

Kitani, T.

Y. Kanamori, T. Kitani, and K. Hane, “Control of guided resonance in a photonic crystal slab using microelectromechanical actuators,” Appl. Phys. Lett. 90(3), 031911 (2007).
[CrossRef]

Kostuk, R. K.

Kuhl, J.

D. Nau, R. P. Bertram, K. Buse, T. Zentgraf, J. Kuhl, S. G. Tikhodeev, N. A. Gippius, and H. Giessen, “Optical switching in metallic photonic crystal slabs with photoaddressable polymers,” Appl. Phys. B 82(4), 543–547 (2006).
[CrossRef]

Lai, N. D.

Levy-Yurista, G.

T. Katchalski, G. Levy-Yurista, A. Friesem, G. Martin, R. Hierle, and J. Zyss, “Light modulation with electro-optic polymer-based resonant grating waveguide structures,” Opt. Express 13(12), 4645–4650 (2005).
[CrossRef] [PubMed]

G. Levy-Yurista and A. A. Friesem, “Very narrow spectral filters with multilayered grating-waveguide structures,” Appl. Phys. Lett. 77(11), 1596–1598 (2000).
[CrossRef]

Liang, W. P.

Lin, C. H.

Lin, J. H.

Lu, M.

I. D. Block, N. Ganesh, M. Lu, and B. T. Cunningham, “A sensitivity model for predicting photonic crystal biosensor performance,” IEEE Sens. J. 8(3), 274–280 (2008).
[CrossRef]

Magnusson, R.

Martin, G.

Moharam, M. G.

Natansohn, A.

P. Rochon, A. Natansohn, C. L. Callender, and L. Robitaille, “Guided mode resonance filters using polymer films,” Appl. Phys. Lett. 71(8), 1008–1010 (1997).
[CrossRef]

Nau, D.

D. Nau, R. P. Bertram, K. Buse, T. Zentgraf, J. Kuhl, S. G. Tikhodeev, N. A. Gippius, and H. Giessen, “Optical switching in metallic photonic crystal slabs with photoaddressable polymers,” Appl. Phys. B 82(4), 543–547 (2006).
[CrossRef]

Nemova, G.

Prudnikov, O. N.

B.-H. Cheong, O. N. Prudnikov, E. Cho, H.-S. Kim, J. Yu, Y.-S. Cho, H.-Y. Choi, and S. T. Shin, “High angular tolerant color filter using subwavelength grating,” Appl. Phys. Lett. 94(21), 213104 (2009).
[CrossRef]

Rasigade, G.

F. Yang, G. Yen, G. Rasigade, J. A. N. T. Soares, and B. T. Cunningham, “Optically tuned resonant optical reflectance filter,” Appl. Phys. Lett. 92(9), 091115 (2008).
[CrossRef]

Robitaille, L.

P. Rochon, A. Natansohn, C. L. Callender, and L. Robitaille, “Guided mode resonance filters using polymer films,” Appl. Phys. Lett. 71(8), 1008–1010 (1997).
[CrossRef]

Rochon, P.

P. Rochon, A. Natansohn, C. L. Callender, and L. Robitaille, “Guided mode resonance filters using polymer films,” Appl. Phys. Lett. 71(8), 1008–1010 (1997).
[CrossRef]

Rochon, P. L.

Rosenblatt, D.

D. Rosenblatt, A. Sharon, and A. A. Friesem, “Resonant grating waveguide structures,” IEEE J. Quantum Electron. 33(11), 2038–2059 (1997).
[CrossRef]

A. Sharon, D. Rosenblatt, and A. A. Friesem, “Narrow spectral bandwidths with grating waveguide structures,” Appl. Phys. Lett. 69(27), 4154–4156 (1996).
[CrossRef]

A. Sharon, D. Rosenblatt, A. A. Friesem, H. G. Weber, H. Engel, and R. Steingrueber, “Light modulation with resonant grating-waveguide structures,” Opt. Lett. 21(19), 1564–1566 (1996).
[CrossRef] [PubMed]

Sekkat, Z.

Z. Sekkat and M. Dumont, “Photoinduced orientation of azo dyes in polymeric films. Characterization of molecular angular mobility,” Synth. Met. 54(1-3), 373–381 (1993).
[CrossRef]

Sharon, A.

D. Rosenblatt, A. Sharon, and A. A. Friesem, “Resonant grating waveguide structures,” IEEE J. Quantum Electron. 33(11), 2038–2059 (1997).
[CrossRef]

A. Sharon, D. Rosenblatt, and A. A. Friesem, “Narrow spectral bandwidths with grating waveguide structures,” Appl. Phys. Lett. 69(27), 4154–4156 (1996).
[CrossRef]

A. Sharon, D. Rosenblatt, A. A. Friesem, H. G. Weber, H. Engel, and R. Steingrueber, “Light modulation with resonant grating-waveguide structures,” Opt. Lett. 21(19), 1564–1566 (1996).
[CrossRef] [PubMed]

Shin, S. T.

B.-H. Cheong, O. N. Prudnikov, E. Cho, H.-S. Kim, J. Yu, Y.-S. Cho, H.-Y. Choi, and S. T. Shin, “High angular tolerant color filter using subwavelength grating,” Appl. Phys. Lett. 94(21), 213104 (2009).
[CrossRef]

Soares, J. A. N. T.

F. Yang, G. Yen, G. Rasigade, J. A. N. T. Soares, and B. T. Cunningham, “Optically tuned resonant optical reflectance filter,” Appl. Phys. Lett. 92(9), 091115 (2008).
[CrossRef]

Steingrueber, R.

Stockermans, R. J.

Tikhodeev, S. G.

D. Nau, R. P. Bertram, K. Buse, T. Zentgraf, J. Kuhl, S. G. Tikhodeev, N. A. Gippius, and H. Giessen, “Optical switching in metallic photonic crystal slabs with photoaddressable polymers,” Appl. Phys. B 82(4), 543–547 (2006).
[CrossRef]

Wang, S. S.

Weber, H. G.

Yang, F.

F. Yang, G. Yen, G. Rasigade, J. A. N. T. Soares, and B. T. Cunningham, “Optically tuned resonant optical reflectance filter,” Appl. Phys. Lett. 92(9), 091115 (2008).
[CrossRef]

Yen, G.

F. Yang, G. Yen, G. Rasigade, J. A. N. T. Soares, and B. T. Cunningham, “Optically tuned resonant optical reflectance filter,” Appl. Phys. Lett. 92(9), 091115 (2008).
[CrossRef]

Yu, J.

B.-H. Cheong, O. N. Prudnikov, E. Cho, H.-S. Kim, J. Yu, Y.-S. Cho, H.-Y. Choi, and S. T. Shin, “High angular tolerant color filter using subwavelength grating,” Appl. Phys. Lett. 94(21), 213104 (2009).
[CrossRef]

Zentgraf, T.

D. Nau, R. P. Bertram, K. Buse, T. Zentgraf, J. Kuhl, S. G. Tikhodeev, N. A. Gippius, and H. Giessen, “Optical switching in metallic photonic crystal slabs with photoaddressable polymers,” Appl. Phys. B 82(4), 543–547 (2006).
[CrossRef]

Ziolkowski, R. W.

Zyss, J.

Appl. Opt.

Appl. Phys. B

D. Nau, R. P. Bertram, K. Buse, T. Zentgraf, J. Kuhl, S. G. Tikhodeev, N. A. Gippius, and H. Giessen, “Optical switching in metallic photonic crystal slabs with photoaddressable polymers,” Appl. Phys. B 82(4), 543–547 (2006).
[CrossRef]

Appl. Phys. Lett.

F. Yang, G. Yen, G. Rasigade, J. A. N. T. Soares, and B. T. Cunningham, “Optically tuned resonant optical reflectance filter,” Appl. Phys. Lett. 92(9), 091115 (2008).
[CrossRef]

Y. Kanamori, T. Kitani, and K. Hane, “Control of guided resonance in a photonic crystal slab using microelectromechanical actuators,” Appl. Phys. Lett. 90(3), 031911 (2007).
[CrossRef]

R. Magnusson and S. S. Wang, “New principle for optical filters,” Appl. Phys. Lett. 61(9), 1022–1024 (1992).
[CrossRef]

A. Sharon, D. Rosenblatt, and A. A. Friesem, “Narrow spectral bandwidths with grating waveguide structures,” Appl. Phys. Lett. 69(27), 4154–4156 (1996).
[CrossRef]

P. Rochon, A. Natansohn, C. L. Callender, and L. Robitaille, “Guided mode resonance filters using polymer films,” Appl. Phys. Lett. 71(8), 1008–1010 (1997).
[CrossRef]

G. Levy-Yurista and A. A. Friesem, “Very narrow spectral filters with multilayered grating-waveguide structures,” Appl. Phys. Lett. 77(11), 1596–1598 (2000).
[CrossRef]

B.-H. Cheong, O. N. Prudnikov, E. Cho, H.-S. Kim, J. Yu, Y.-S. Cho, H.-Y. Choi, and S. T. Shin, “High angular tolerant color filter using subwavelength grating,” Appl. Phys. Lett. 94(21), 213104 (2009).
[CrossRef]

V. M. Churikov and C. C. Hsu, “Optical control of third harmonic generation in azo-doped polymethylmethacrylate thin films,” Appl. Phys. Lett. 77(14), 2095–2097 (2000).
[CrossRef]

J. H. Lin, N. D. Lai, and C. C. Hsu, “Optical control of recovery speed of photoinduced third-harmonic generation in azo-copolymer thin films,” Appl. Phys. Lett. 88(13), 131111 (2006).
[CrossRef]

IEEE J. Quantum Electron.

D. Rosenblatt, A. Sharon, and A. A. Friesem, “Resonant grating waveguide structures,” IEEE J. Quantum Electron. 33(11), 2038–2059 (1997).
[CrossRef]

IEEE Sens. J.

I. D. Block, N. Ganesh, M. Lu, and B. T. Cunningham, “A sensitivity model for predicting photonic crystal biosensor performance,” IEEE Sens. J. 8(3), 274–280 (2008).
[CrossRef]

J. Lightwave Technol.

J. Opt. Soc. Am.

J. Opt. Soc. Am. A

J. Opt. Soc. Am. B

Opt. Express

Opt. Lett.

Synth. Met.

Z. Sekkat and M. Dumont, “Photoinduced orientation of azo dyes in polymeric films. Characterization of molecular angular mobility,” Synth. Met. 54(1-3), 373–381 (1993).
[CrossRef]

Other

Z. Sekkat and W. Knoll, eds., Photoreactive Organic Thin Films (Academic, San Diego, CA, 2002), and references therein.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Schematics of the 2D WGS. From top to bottom are: 2D sinusoidal square-lattice grating layer (SU8), guiding layer (SU8), cladding layer (DR1/PMMA) and glass substrate. (b) SEM image and its zoom-in view (inset) of the 2D grating structure.

Fig. 2
Fig. 2

Experimental setup for reflection spectra measurement and inset is a He-Cd laser with 442 nm as the pump beam for the pump-probe experiment. θ: incident angle, λ/2: half-wave plate, L: lens and P: polarizer.

Fig. 3
Fig. 3

Angle-resolved reflection spectra of the WGS at the different incident angle (θ) for (a) transverse-electric (TE) and (b) transverse-magnetic (TM) modes. The reflection spectra were normalized with the reflection spectrum from a microscope slide using the same light source. Open square (□) denotes the calculated GMR peak positions obtained with 2D grating [23,24] and waveguide mode [4] equations. The parameters used in the calculation are Tw = 1.24 µm, ns = 1.58, nc = 1.53, Λ = 585 nm, and azimuthal angle ϕ = 7°. For clarity, each curve was shifted to have 0.5 unit spacing between adjacent plots.

Fig. 4
Fig. 4

Reflection spectra of the GMR mode of the WGS pumped by a He-Cd laser at 442 nm with a constant excitation power (70 mW) under different exposure times: 0.3, 5.1, 14.7 and 47.4 (s), for co-polarized (a) and cross-polarized (b) configurations. (c) The exposure time dependences of the GMR peak position for co-polarized and cross-polarized configurations, respectively. (d) The theoretical calculation results of the GMR peak position versus nc.

Fig. 5
Fig. 5

The maximum GMR shift versus the excitation power. The straight lines are for the guidance of eye.

Fig. 6
Fig. 6

Demonstration of optical modulation of the GMR. Black line and red line are reflection signals recorded by two individual channels at 650.2 nm and 647.0 nm, respectively. Dotted line at the bottom represents the optical pumping signal.

Metrics